计算机视觉导航定位技术研究概要

合集下载

机器人视觉导航与定位技术综述

机器人视觉导航与定位技术综述

机器人视觉导航与定位技术综述第一章:引言随着技术的进步和应用的推广,机器人在各个领域发挥着越来越重要的作用。

其中,视觉导航与定位技术是机器人感知和认知环境的关键能力之一。

本文将综述机器人视觉导航与定位技术的基本概念、主要方法和应用领域。

第二章:机器人视觉导航技术2.1 视觉传感器视觉导航技术的核心是对环境的感知和识别。

视觉传感器是机器人获取视觉信息的重要设备,常用的视觉传感器包括摄像头、激光雷达等。

摄像头可以通过图像采集和处理,得到环境的视觉信息。

激光雷达则可以获取环境的距离信息,通过扫描建立环境的三维模型。

2.2 环境地图构建机器人导航过程中,需要对环境进行建模和表示。

环境地图构建是将机器人获取的感知数据整合成一个可以被机器人读取和理解的形式。

环境地图可以基于图像、点云等数据进行构建,常用的地图表示方法有栅格地图、拓扑地图和语义地图等。

2.3 机器人定位方法机器人在导航过程中需要知道自身的位置,机器人定位就是确定机器人在地图中的位置和姿态。

常见的机器人定位方法有激光雷达SLAM、视觉SLAM和里程计等。

激光雷达SLAM利用激光雷达获取环境的三维信息,通过建立地图和机器人的路径来实现定位。

视觉SLAM则通过计算机视觉算法来实现机器人的自主定位。

里程计是利用编码器测量机器人轮子的转动来进行定位。

第三章:机器人视觉导航与定位应用领域3.1 无人驾驶无人驾驶技术是机器人视觉导航与定位应用的一个典型领域。

通过车载摄像头和激光雷达等传感器,结合导航算法,实现车辆的自主导航和定位。

3.2 室内导航机器人室内导航机器人广泛应用于医院、办公楼等室内环境。

机器人可以通过搭载摄像头和激光雷达等传感器,利用视觉导航技术实现自主导航和定位,为用户提供导航和服务。

3.3 工业自动化在工业领域,机器人的视觉导航与定位技术也得到了广泛应用。

机器人可以通过视觉传感器获取工作场所的信息,实现智能导航和定位,提高生产效率和产品质量。

基于计算机视觉的机器人导航与感知技术研究

基于计算机视觉的机器人导航与感知技术研究

基于计算机视觉的机器人导航与感知技术研究在当今科技快速发展的时代,人工智能技术带来了极大的变革和创新。

机器人作为人工智能技术的主要应用形式之一,在工业、军事、医疗等诸多领域逐渐得到提升和广泛应用。

机器人的导航与感知技术作为机器人能够自主运作的基础,更是受到了各大研究机构的重视和投入。

在机器人导航与感知技术中,基于计算机视觉的技术是研究的热点之一,本文就以此作为分析的切入点。

一、基于计算机视觉的机器人感知技术机器人的感知技术是指机器人通过传感器获取外部环境信息,进行数据分析处理,并结合内部输入信号,完成相关操作的技术。

其中,视觉传感技术是机器人感知技术的主要组成部分之一,也是其中最重要的方向之一。

基于计算机视觉的技术是应用于机器人感知技术最为广泛的一种形式。

计算机视觉技术通过模仿人类的视觉感知方式,将数字化的图像信息转化为具有实际意义的感知信息,实现机器人的自主化运作。

目前,计算机视觉技术主要包含视觉目标检测、语义分割、实例分割、姿态估计等多个方向。

在机器人领域,基于计算机视觉的技术主要用于机器人导航、自主避障、目标识别、手势识别等方面。

二、基于计算机视觉的机器人导航技术基于计算机视觉的技术在机器人导航中发挥了重要的作用,为机器人实现自主导航提供了强有力的技术支持。

基于计算机视觉的导航技术主要有以下几个方向。

1、激光雷达与视觉融合导航技术激光雷达是机器人导航中常用的传感器之一,可以精确测量距离和角度。

但是激光雷达在遇到玻璃、水面、雪等物质时会受到干扰,导致数据丢失。

因此,将激光雷达与视觉相结合,在机器人导航中发挥了不可替代的作用。

2、基于深度学习的视觉导航技术深度学习是计算机视觉领域的重要技术之一。

基于深度学习的视觉导航技术可以实现对环境的高精度感知、目标位置的检测与识别,以及路径规划的自主完成。

3、相机实时姿态估计技术的应用相机姿态估计技术是基于计算机视觉的一种重要技术,它可以实现对摄像头的实时姿态估计。

基于计算机视觉的无人自主导航技术研究

基于计算机视觉的无人自主导航技术研究

基于计算机视觉的无人自主导航技术研究一、引言随着人工智能和计算机技术的不断发展,无人自主导航技术已经成为了一个备受瞩目的研究领域。

而基于计算机视觉的无人自主导航技术则是其中的一个重要分支。

本文将详细介绍基于计算机视觉的无人自主导航技术的研究现状、应用领域、研究目标、关键技术和发展趋势等方面。

二、研究现状无人自主导航技术的研究起源于20世纪60年代的美国,经过几十年的发展,如今,无人自主导航技术已经成为了一个重要的技术领域。

基于计算机视觉的无人自主导航技术,则是指通过计算机视觉技术识别环境,以及对物体形态、位置、速度等信息进行综合分析,从而实现无人车辆或者机器人的自主导航。

在当前的研究中,基于计算机视觉的无人自主导航技术主要包括以下几个方面:1、环境感知技术:通过使用激光雷达、相机、超声波感应器等设备获取周围环境信息,对环境进行识别和建模,为机器人或无人车辆提供其自身位姿和周围环境信息。

2、运动估计技术:通过分析相邻帧之间的运动,来精确估计车辆或机器人的运动状态和位置信息。

3、目标检测技术:通过使用深度学习网络等技术,对环境中出现的物体进行快速准确的识别和定位。

4、路径规划技术:根据环境的建模信息和机器人或车辆的位置信息,规划最优路径。

5、控制与感知融合技术:将环境感知信息和控制信息作为输入,运用融合算法对其进行处理,从而实现完全自主、精准、高效的导航。

三、应用领域基于计算机视觉的无人自主导航技术具有广泛的应用领域。

主要应用于以下几个领域:1、军事领域:在现代战争中,无人驾驶飞机等无人机器人的使用已经成为了一项重要的军事战略,基于计算机视觉的无人自主导航技术为无人飞行器和机器人的自主导航提供了精确、高效的技术保障。

2、安防领域:基于计算机视觉的无人自主导航技术可以用于智能监控和识别仪器的开发,可以实现智能监测和灵活高效的布控能力,提高安保效果。

3、物流配送领域:将基于计算机视觉的无人自主导航技术应用于物流配送领域,可以实现智能配送和智能仓储,实现更快更准确的配送,提高效率。

《2024年计算机视觉技术应用研究综述》范文

《2024年计算机视觉技术应用研究综述》范文

《计算机视觉技术应用研究综述》篇一一、引言计算机视觉技术是人工智能领域的重要组成部分,其通过模拟人类视觉系统,实现对图像、视频等视觉信息的处理、分析和理解。

近年来,随着计算机技术的飞速发展,计算机视觉技术在各个领域得到了广泛应用,包括但不限于安防监控、医疗诊断、自动驾驶、智能机器人等。

本文旨在综述计算机视觉技术的研究现状、应用领域以及未来发展趋势。

二、计算机视觉技术概述计算机视觉技术是一种利用图像处理技术、模式识别技术和人工智能技术等手段,对图像和视频信息进行获取、传输、存储、分析和理解的技术。

其核心技术包括图像处理、特征提取、目标检测、图像识别等。

计算机视觉技术的应用,能够提高人们的生产效率和生活质量,具有重要的应用价值。

三、计算机视觉技术研究现状目前,计算机视觉技术的研究主要集中在以下几个方面:图像处理技术、深度学习算法、三维重建技术等。

其中,深度学习算法在计算机视觉领域的应用最为广泛,如卷积神经网络(CNN)在图像分类、目标检测、人脸识别等领域取得了显著的成果。

此外,随着硬件设备的不断发展,计算机视觉技术的处理速度和精度得到了显著提升。

四、计算机视觉技术应用领域1. 安防监控:计算机视觉技术在安防监控领域的应用主要体现在智能视频监控和人脸识别等方面。

通过智能视频监控系统,可以实现实时监控和预警功能,提高安防系统的效率和准确性。

2. 医疗诊断:计算机视觉技术可以帮助医生实现图像分析、病变检测等功能,提高医疗诊断的准确性和效率。

如计算机辅助诊断系统在肺癌、乳腺癌等疾病的诊断中得到了广泛应用。

3. 自动驾驶:计算机视觉技术是实现自动驾驶的关键技术之一。

通过图像处理和识别技术,可以实现车辆对周围环境的感知和判断,从而实现在复杂道路环境下的自动驾驶。

4. 智能机器人:计算机视觉技术可以帮助机器人实现目标识别、姿态估计等功能,提高机器人的智能化程度和应用范围。

如服务机器人在餐饮、医疗等领域得到了广泛应用。

视觉导航综述

视觉导航综述

视觉导航及实验验证平台综述摘要:本文概述视觉导航技术。

视觉导航通过图像采集设备收集近距离的环境信息,并利用计算机视觉技术进行图像处理获得环境信息,实现导航。

首先比较了各种导航方式的优缺点,分析视觉导航的意义。

接着概述了视觉导航的应用领域和研究现状,然后分析比较了视觉导航中的一些关键技术,简单介绍了视觉导航领域的SLAM问题。

最后,综合国内外视觉导航技术研究存在问题,提出进一步研究方向和应用途径。

关键词:视觉导航;移动机器人;智能车辆;图像匹配;路径识别0 引言在当今世界的先进技术领域里,往往存在这样的问题:为了完成某种特殊的任务,需要在已知或者未知环境中,使特殊的能完成既定任务的实验设备或平台按照既定的且满足最优条件的路径运动或者到达既定目的地,这一类的问题便是导航。

对于一般的导航系统,在给定命令的前提下,结合环境中的各种探测信息,并根据自身位姿信息作出决策使运动体而到达目标,在运动过程中,还需要不断优化全局路径。

导航系统需要完成的任务包括以下三点:一,获取信息;二,处理信息;三,作出决策(即路径规划)。

目前广泛使用的导航方法有[1]:航标法,航位推算法,天文导航,惯性导航,无线电导航,卫星定位导航和组合导航等。

下文对各种导航方法对比说明。

航标法习惯称之为目视方法,它借助于信标和参照物对运动物体进行引导。

目前仍在应用,但是这种方法过于依赖经验,受天气、地理条件的影响。

航位推算法是通过一系列的速度增量来确定位置的,是一种自主导航方法,保密性强。

但是随着时间推移会产生误差积累。

天文导航是通过仪器设备对天体的位置精确测定,根据地理关系算出位置的相对导航方法,其缺点是误差积累受时间和气象条件限制,定位时间长,操作计算复杂[1]。

惯性导航通过加速度测量技术和积分技术的综合应用得到运动体的速度和位置信息。

这种导航技术完全依靠载体上的设备自主完成导航任务,因此隐蔽性好,不受外界条件限制。

但是加速度及精度和误差积累严重限制该方法的应用。

基于计算机视觉的室内定位技术研究

基于计算机视觉的室内定位技术研究

基于计算机视觉的室内定位技术研究室内定位技术在现代生活中扮演着重要的角色。

不仅可以帮助人们在陌生地方快速找到目的地,还可以为商场、博物馆等公共场所提供更好的服务。

然而,室内环境的复杂性和局限性,在室内定位技术的研究和应用中带来了挑战。

基于计算机视觉的室内定位技术成为了当前较为研究和应用广泛的技术方法之一。

一、计算机视觉技术在室内定位中的应用计算机视觉技术是指利用计算机实现对图像和视频等视觉信息的处理与分析。

在室内定位中,计算机视觉技术可以用于建立室内地图、识别室内物品和人体姿态等方面。

建立室内地图是室内定位的基础。

传统的建图方式需要使用专门的测量设备和人工绘制地图,成本较高且易受人为因素干扰。

而利用计算机视觉技术可以通过从室内环境中获取的图像或视频数据,自动提取环境特征,建立室内地图。

由于计算机视觉技术在处理大量数据时具有高效性和准确性,因此相比于传统方法,可以更快速、更精准地实现室内地图的建立。

识别室内物品是室内定位关键的一步。

通过识别室内物品可以确定人在室内环境中的位置,提供导航和定位服务。

传统的识别室内物品的方法需要使用标记或传感器进行标识,这些方式存在成本高、难维护等问题。

而基于计算机视觉技术的室内定位可以通过识别室内物品的形状、颜色和纹理等特征,实现室内物品的实时识别和定位,以辅助人们快速找到目的地。

人体姿态识别在室内定位中也具有重要意义。

人体姿态识别指对人体的动作姿态进行跟踪,能够有效地检测人的位置、运动和姿态等信息。

利用计算机视觉技术实现人体姿态识别可以在不增加额外传感器的情况下提供准确的姿态信息,为室内定位服务提供更多数据来源。

二、室内定位中面临的挑战虽然基于计算机视觉的室内定位技术已经被广泛研究和应用,但仍然存在一些挑战。

首先,室内环境的复杂性和多变性是基于计算机视觉的室内定位技术所面临的主要挑战之一。

室内环境随时都可能会发生变化,例如室内家具的移动、窗帘的拉开等。

这些变化可能会对环境特征的提取和地图的更新造成影响。

视觉导航技术综述

视觉导航技术综述

视觉导航技术综述唐超颖,杨忠,沈春林(南京航空航天大学自动化学院,江苏 南京 210016)摘要:概述了视觉导航技术。

视觉导航依据视觉图像,利用图像处理、计算机视觉、模型识别等相关技术获取运动体的运动信息和空间位置信息,实现导航。

首先,简单比较了各种常用的导航方式,分析了视觉导航的研究意义;其次,总结了目前视觉导航的应用领域及应用概况;接着,介绍了局部视觉和分布式组合视觉两种导航方式的含义及应用情况;然后,分析、比较了目前视觉导航研究中的一些关键技术;最后,综合国内外视觉导航技术研究的现状及存在的问题,提出了进一步研究的方向与途径。

关键词:视觉导航、移动机器人、智能车辆、三维重建、图像匹配、路径识别0 引 言导航是指运动体按照预先给定的任务命令,根据已知的地图信息做出全局路径规划,并在行进过程中,不断感知周围的局部环境信息,做出各种决策,随时调整自身的姿态与位置,引导自身安全行驶,直至目标位置。

导航系统要解决的问题包括:一、空间位置、方向、环境信息的检测;二、所获信息的分析、处理及综合;三、运动路径规划。

根据环境信息的完整程度、导航指示信号类型、导航地域等因素的不同,目前常见的导航方法有:惯性导航、电磁导航、卫星导航、激光导航、红外导航、无线电导航、视觉导航及各种方式的组合导航等。

惯性导航利用加速度计与陀螺仪计算航程,推知当前位置和下一步目的地,不易受外界环境的影响,是目前的主要导航方法,但随着航程的增长,定位误差将会不断累加,导致定位精度下降[1];电磁导航也称地下埋线导航,20世纪70年代迅速发展并广泛应用于柔性生产,其原理是在路径上连续埋设多条引导电缆,分别流过不同频率的电流,通过感应线圈对电流的检测来感知路径信息,该技术简单实用,但其成本高,改造和维护困难,且不适用于长距离导航[2];卫星导航利用卫星发射无线电波到地面接收器的时间来推算地面接收器所在的经纬度,其中GPS是目前真正实用的一种卫星导航和定位系统,但其技术为美国所垄断,我国也正在致力于这方面的研究;激光和红外线定位由于可以达到很高的精度,近年也被广泛应用于导航领域,但激光导航需要向外界发射能量,不易隐身,红外导航易受日光影响,一般用于夜间导航;无线电导航方式中,角度到达定位和信号强度定位的精度不高,只能提供粗略的位置信息,抵达时间定位可以达到很高的精度,但是电波以光速传播,要达到米级精度,时间粒度需要纳秒级以上,且易受空中各种无线电波的干扰[3]。

《2024年计算机视觉技术应用研究综述》范文

《2024年计算机视觉技术应用研究综述》范文

《计算机视觉技术应用研究综述》篇一一、引言计算机视觉技术是人工智能领域的重要分支,其研究领域广泛涉及图像处理、模式识别、机器学习等多个方面。

随着科技的不断发展,计算机视觉技术在各个领域的应用越来越广泛,从安防监控、自动驾驶到医学诊断,它正深刻改变着人类社会的生产生活方式。

本文将对计算机视觉技术的概念、原理以及其应用领域的现状与前景进行综合分析。

二、计算机视觉技术概述1. 技术概念:计算机视觉是使机器“看”世界的过程。

通过计算机视觉技术,人类可以实现对图像的获取、处理、分析和理解,从而让机器能够像人一样“看”懂世界。

该技术主要依赖于图像处理、模式识别和机器学习等技术手段。

2. 技术原理:计算机视觉技术主要通过对图像的采集、预处理、特征提取、分类识别等步骤来实现对图像信息的理解和分析。

具体而言,该技术首先通过图像传感器等设备获取图像信息,然后对图像进行预处理和滤波,提取出图像中的关键特征,最后通过分类器等算法对图像进行分类和识别。

三、计算机视觉技术的应用领域1. 安防监控:计算机视觉技术在安防监控领域的应用十分广泛。

通过安装摄像头等设备,可以实现对公共场所的实时监控和安全防范。

同时,通过计算机视觉技术可以对监控视频进行智能分析和识别,提高安全防范的效率和准确性。

2. 自动驾驶:自动驾驶技术是计算机视觉技术的又一重要应用领域。

通过利用计算机视觉技术,车辆可以实现对周围环境的感知和识别,从而实现对道路的准确判断和车辆的自主驾驶。

3. 医学诊断:计算机视觉技术在医学诊断领域的应用也日益广泛。

通过对医学影像的智能分析和识别,医生可以更准确地诊断疾病,提高诊断的准确性和效率。

四、计算机视觉技术的现状与挑战目前,计算机视觉技术在各个领域的应用已经取得了显著的成果。

然而,该技术仍面临着一些挑战和问题。

首先,由于图像信息的复杂性和多样性,计算机视觉技术的准确性和鲁棒性仍需进一步提高。

其次,计算机视觉技术的应用需要大量的数据和算法支持,因此其计算成本和存储成本较高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档