带电粒子在磁场中运动之多解周期运动问题
2024届物理一轮复习讲义专题强化十七 带电粒子在匀强磁场中的多解和临界问题含答案

2024届物理一轮复习讲义专题强化十七带电粒子在匀强磁场中的多解和临界问题学习目标会分析带电粒子在匀强磁场中的多解问题和临界极值问题,提高思维分析综合能力。
考点一带电粒子在磁场中运动的多解问题造成多解问题的几种情况分析类型分析图例带电粒子电性不确定带电粒子可能带正电荷,也可能带负电荷,初速度相同时,正、负粒子在磁场中运动轨迹不同,形成多解如带正电,其轨迹为a;如带负电,其轨迹为b磁场方向不确定只知道磁感应强度大小,而未具体指出磁感应强度方向,由于磁感应强度方向不确定而形成多解粒子带正电,若B垂直纸面向里,其轨迹为a,若B垂直纸面向外,其轨迹为b临界状态不唯一带电粒子飞越有界磁场时,可能穿过磁场飞出,也可能转过180°从入射界面一侧反向飞出,于是形成多解运动具有周期性带电粒子在部分是电场、部分是磁场空间运动时,运动往往具有周期性,因而形成多解例1 (多选)(2022·湖北卷) 在如图1所示的平面内,分界线SP将宽度为L的矩形区域分成两部分,一部分充满方向垂直于纸面向外的匀强磁场,另一部分充满方向垂直于纸面向里的匀强磁场,磁感应强度大小均为B,SP与磁场左右边界垂直。
离子源从S处射入速度大小不同的正离子,离子入射方向与磁场方向垂直且与SP 成30°角。
已知离子比荷为k ,不计重力。
若离子从P 点射出,设出射方向与入射方向的夹角为θ,则离子的入射速度和对应θ角的可能组合为( )图1A.13kBL ,0° B.12kBL ,0° C.kBL ,60° D.2kBL ,60°答案 BC解析 若离子通过下部分磁场直接到达P 点,如图甲所示,甲根据几何关系,有R =L ,q v B =m v 2R ,可得v =qBLm =kBL ,根据对称性可知出射速度与SP 成30°角向上,故出射方向与入射方向的夹角为θ=60°。
当粒子上下均经历一次时,如图乙所示,乙因为上下磁感应强度均为B ,则根据对称性有R =12L ,根据洛伦兹力提供向心力有q v B =m v 2R ,可得v =qBL 2m =12kBL ,此时出射方向与入射方向相同,即出射方向与入射方向的夹角为θ=0°。
带电粒子在磁场中运动多解问题归类分析

带电粒子在磁场中运动多解问题归类分析作者:刘德华来源:《中学教学参考·理科版》2014年第05期新课程改革要求着力培养学生的创新能力,近年高考中经常出现多解问题。
要解答好多解问题,要求学生具有相应的发散性思维能力。
带电粒子在磁场中运动类问题是高考中常出现的问题,分析研究带电粒子在磁场中运动的多解问题,提高考生对这类题的解题能力,提高考生的高考得分能力,对广大高三师生而言,具有重要的意义。
造成带电粒子在磁场中运动时多解的原因主要有以下几种:1.带电粒子所带电荷电性不确定造成多解;2.带电粒子运动方向不确定造成多解;3.带电粒子速度大小不确定造成多解;4.磁场方向不确定造成多解;5.临界状态不确定造成多解;6.粒子运动的周期性造成多解。
下面结合例题进行分类分析。
一、带电粒子带电性的不确定造成多解图1电荷有正有负,有不少试题,没有明确题中所说的带电粒子是带正电荷,还是带负电荷,这时解题者应当分别讨论粒子带正电荷和带负电荷两种情况,从而保证试题解答的完整性。
分析:由于运动电荷在磁场中所受洛伦兹力的方向与其带电性质有关,所以带电小球第一次经过最低点时,所受洛伦兹力的方向就有可能不同,在分析时通过画出第一次经过最低点时的受力示意图,让学生深刻理解多解的情况,拓宽学生思维的广度和深度。
二、速度方向的不确定造成多解速度具有方向性,有不少试题,没有明确题中所说的研究对象的运动方向,这时解题者应当考虑带电粒子速度方向的不确定所造成的洛伦兹力方向的多样性,以防漏解。
变式:上题中,若小球带正电,则小球通过最低点时,悬线对小球的拉力多大?分析:由于运动电荷在磁场中所受洛伦兹力方向与其运动方向有关,所以小球经过最低点时,所受洛伦兹力的方向就有两种,通过发散性思维,在分析时画出从A点摆到C点时以及从B点回到C点时小球的受力情况(如图2甲、乙所示),从而得出小球在最低点时,拉力的两种情况。
三、速度大小的不确定造成多解运动电荷在磁场中所受洛伦兹力的大小与其速度大小有关,有不少试题,没有明确题中所说的带电粒子在磁场中初速度的大小,这时解题者应当考虑初速度大小的不确定性造成的初始时刻洛伦兹力的大小存在多种情况。
18.4带电粒子在磁场中运动的临界及多解问题(原卷版)

18.4.带电粒子在磁场中运动的临界、多解问题要点一. 带电粒子在磁场中运动的临界问题1.临界问题的特点带电粒子在磁场中运动,由于速度或大小的变化,往往会存在临界问题,如下所示为常见的三种临界草图。
临界特点:(1)粒子刚好穿出磁场的条件:在磁场中运动的轨迹与边界相切.(2)根据半径判断速度的极值:轨迹圆的半径越大,对应的速度越大.(3)根据圆心角判断时间的极值:粒子运动转过的圆心角越大,时间越长.(4)根据弧长(或弦长)判断时间的极值:当速率一定时,粒子运动弧长(或弦长)越长,时间越长.2.解题思路分析思路:以临界问题的关键词“恰好”“最大”“至少”“要使......”等为突破口,寻找临界点,确定临界状态,画出临界状态下的运动轨迹,建立几何关系求解.往往采用数学方法和物理方法的结合:1.利用“矢量图”“边界条件”结合“临界特点”画出“临界轨迹”。
2.利用“三角函数”“不等式的性质”“二次方程的判别式”等求临界极值。
一般解题流程:3.探究“临界轨迹”的方法1. “伸缩圆”动态放缩法定点粒子源发射速度大小不同、方向相同的同种带电粒子时,其轨迹半径不同,相当于定点圆在“伸缩”。
特点:1.速度越大,轨迹半径越大。
2.各轨迹圆心都在垂直于初速度方向的直线上。
应用:结合具体情境根据伸缩法,可以分析出射的临界点,求解临界半径。
2. “旋转圆”旋转平移法定点粒子源发射速度大小相同、方向不同的同种带电粒子时,其轨迹半径相同,相当于定点圆在“旋转”特点:1.半径相同,方向不同。
2.各轨迹圆心在半径为R的同心圆轨迹上。
旋转圆的应用:结合具体情境,可以分析圆心角、速度偏向角、弦切角、弧长、弦长的大小;求解带电粒子的运动时间.应用情景1.(所有的弦长中直径最长)速度大小相同、方向不同的同种带电粒子,从直线磁场边界上P点入射。
M点是粒子打到直线边界上的最远点(所有的弦长中直径最长).应用情景2.(所有的弦长中直径最长)速度大小相同方向不同的同种带电粒子,从圆形磁场边界上的P射入磁场;①若轨迹半径>磁场半径当PM距离为磁场直径时,粒子出射点与入射点之间的距离最远、共有弦最长、时间最长。
带电粒子在磁场中的多解问题

应旳圆心角为 或 3
B
22
设圆弧旳半径为R,则有2R2=x2,可得:
R L 2n
v2 qvB m
R
v qBL 2m n
n=1、2、3、……(
n取奇数
⑶当n取奇数时,微粒从P到Q过程中圆心角旳总和为
1
n
2
n 3
2
2n
t1
2n
m qB
2 m
qB
n
其中n=1、3、5、……
当n取偶数时,微粒从P到Q过程中圆心角旳总和为
mv0 a 2mv0 L<b。试求磁场旳左边界距坐标原点 旳e可B能距离.(eB成果可用反三角函数表达)
解: 设电子在磁场中作圆周运动旳轨道半径为r, 则
解得
eBv0 r
m mv 0
v02 r
①
②
eB
y P v0
x
0
Q
⑴当r>L时,磁场区域及电子运动轨迹如图1所示,
由几何关系有 sin L eBL③
v0
c
(2)当v0最大时:
R1
R1
cos 60
L 2
得R1 = L
则
vmax
qBR1 m
qBL m
当v0最小时: R2 R2 sin 30
L 2
得R2 = L/3
则
vmin
qBR2 m
qBL 3m
a
600
O
qBL
qBL
b B
3m v0 m
300
d
v0
c
带电粒子从ab边射出磁场,当速度为 vmax 时,
运动时间最短,
150 5m
t min
T 360
带点粒子在周期性变化的电场-磁场中的运动规律

带点例子在周期性的电场,磁场中的运动带电粒子在交变电场或磁场中运动的情况较复杂,运动情况不仅取决于场的变化规律,还与粒子进入场的的时候的时刻有关,一定要从粒子的受力情况着手,分析出粒子在不同时间间隔内的运动情况,若交变电压的变化周期远大于粒子穿越电场的时间,那么粒子在穿越电场的过程中,可看做匀强电场。
注意:空间存在的电场或磁场是随时间周期性变化的,一般呈现“矩形波”的特点。
交替变化的电场及磁场会使带电粒子顺次经过不同特点的电场,磁场或叠加的场,从而表现出多过程现象,其特点较为隐蔽。
(1) 仔细确定各场的变化特点及相应时间,其变化周期一般与粒子在磁场中的运动周期关联。
(2) 把粒子的运动过程用直观的草图进行分析。
如图甲所示,相隔一定距离的竖直边界两侧为相同的匀 强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L 的平行金属极板MN 和PQ ,两极板中心各有一小孔1S 、2S ,两极板间电压的变化规律如图乙所示,正反向电压的大小均为0U ,周期为0T 。
在0t =时刻将一个质量为m 、电量为q -(0q >)的粒子由1S 静止释放,粒子在电场力的作用下向右运动,在02T t =时刻通过2S 垂直于边界进入右侧磁场区。
(不计粒子重力,不考虑极板外的电场)(1)求粒子到达2S 时德 速度大小v 和极板距离d 。
(2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件。
(3)若已保证了粒子未与极板相撞,为使粒子在03t T =时刻再次到达2S ,且速度恰好为零,求该过程中粒子在磁场内运动的时间和磁感强度的大小如图甲所示,一对平行放置的金属板M 、N 的中心各有一小孔P 、Q ,PQ 的连线垂直于金属板,两板间距为d 。
(1)如果在板M 、N 之间加上垂直于纸面方向的磁场,磁感应强度随时间变化如图乙所示。
T=0时刻,质量为m 、电量为-q 的粒子沿PQ 方向以速度0υ射入磁场,正好垂直于N 板从Q 孔射出磁场。
带电粒子在磁场中运动之多解及周期运动问题

适用标准考点周期性与多解问题1.带电粒子电性不确立形成多解:受洛伦兹力作用的带电粒子,因为电性不一样,当速度同样时,正、负粒子在磁场中运动轨迹不一样,形成多解.如图 6 甲所示,带电粒子以速度v 垂直进入匀强磁场,如带正电,其轨迹为a,如带负电,其轨迹为 b .2.磁场方向不确立形成多解:有些题目只磁感觉强度的大小,而不知其方向,此时一定要考虑磁感觉强度方向不确立而形成的多解.如图乙所示,带正电粒子以速度 v 垂直进入匀强磁场,如 B 垂直纸面向里,其轨迹为 a,如 B 垂直纸面向外,其轨迹为 b .3.临界状态不独一形成多解:带电粒子在洛伦兹力作用下飞越有界磁场时,因为粒子运动轨迹是圆弧状,所以,它可能穿过去,也可能转过180 °从入射界面这边反向飞出,进而形成多解,如图丙所示.4.运动的周期性形成多解:带电粒子在局部是电场、局部是磁场的空间运动时,运动常常拥有来去性,进而形成多解,如图丁所示.一圆筒的横截面以下列图,其圆心为O.筒内有垂直于纸面向里的匀强磁场,磁感觉强度为B.圆筒下边有相距为 d 的平行金属板M 、N ,此中 M 板带正电荷, N 板带等量负电荷.质量为m、电荷量为q 的带正电粒子自M 板边沿的P 处由静止开释,经N 板的小孔S 以速度 v 沿半径 SO 方向射入磁场中.粒子与圆筒发生两次碰撞后仍从S 孔射出.设粒子与圆筒碰撞过程中没有动能损失,且电荷量保持不变,在不计重力的状况下,求:(1)M 、 N 间电场强度 E 的大小;(2)圆筒的半径 R.(3)保持M、N间电场强度 E 不变,仅将M 板向上平移,粒子仍从M 板边沿的P处由静止开释粒子自进入圆筒至从S 孔射出时期,与圆筒的碰撞次数n 。
1.以下列图,在纸面内有磁感觉强度大小均为B,方向相反的匀强磁场,虚线等边三角形ABC 为两磁场的理想界限。
三角形ABC 边长为 L,虚线三角形内为方向垂直纸面向外的匀强磁场,三角形外面的足够大空间为方向垂直纸面向里的匀强磁场。
1.3.2 专题 带电粒子在有界磁场中的运动 课件-2023年高二物理人教版(2019)

③半径关系:r=R/tanθ=Rtanα
④运动时间:t= 2θT/2 π= θT/ π
(2)不沿径向射入时,速度
o’
方向与对应点半径的夹角
相等(等角进出)
o
•
(3)非径向入射的距离和时间推论:
①若r 轨迹<R边界,当轨迹直径恰好是边界圆的一
条弦,此时出射点离入射点最远,且Xmax=2r,
角(弦切角)相等。若出射点到入射点之间距离为d,则
d=2R
1
t T
2
d=2Rsinθ
t
T
d=2Rsinθ
t T
【例1】水平直线MN上方有垂直纸面向里范围足够大的有界匀强磁场,磁感应强度为B,正、负电子同时从MN边界O点以与MN成45°角的相
同速率v射入该磁场区域(电子的质量为m,电荷量为e),正、负电子间的
射入筒内,射入时的运动方向与MN成30°角。当筒转过90°时,该粒
子恰好从小孔N飞出圆筒。不计重力。若粒子在筒内未与筒壁发生碰撞,
则带电粒子的比荷为(
)
【变式训练】在真空中半径 r =3×10-2m的圆形区域内有一匀强磁场,磁场
的磁感应强度B=0.2 T,方向如图所示,一个带正电的粒子以v0=1×106 m/s
(3)到入射点最远距离:
①和边界相交时,离出射点最远距离是以出射点为端点的直径或半径。
②和边界相切时,离出射点最远的距离是以出射点和切点为端点的弦长。
【例1】(多选)如图所示,圆形区域内有垂直纸面向里的匀强磁场,三个
质量和电荷量相同的带电粒子a、b、c,以不同的速率对准圆心O沿着
带电粒子在匀强磁场中的运动规律周期

粒子运动的描述
匀速圆周运动
当带电粒子以恒定速度在磁场中 运动时,如果磁场方向与粒子运 动方向垂直,粒子将做匀速圆周
运动。
螺旋线运动
如果磁场方向与粒子运动方向不垂 直,粒子将做螺旋线运动。
直线运动
当磁场方向与粒子运动方向平行时, 洛伦兹力为零,粒子将做直线运动。
周期性运动的条件
1 2
周期性条件
带电粒子在匀强磁场中做周期性运动时,其周期 T与粒子的质量m、电荷量q、磁感应强度B和圆 周运动的半径r有关。
带电粒子在匀强磁场 中的运动规律周期
• 引言 • 带电粒子在匀强磁场中的运动原理 • 带电粒子的周期性运动 • 带电粒子在磁场中的偏转 • 带电粒子在磁场中的能量变化 • 带电粒子在磁场中的实验研究 • 结论与展望
目录
Part
01
引言
主题简介
带电粒子在匀强磁场中的运动规律周期是物理学中的一个重要概念,涉及到电磁学和经 典力学的交叉领域。
Part
02
带电粒子在匀强磁场中的运动 原理
洛伦兹力
定义
洛伦兹力是带电粒子在 磁场中受到的力,其大 小与粒子所带电荷量、 速度和磁感应强度有关。
方向
洛伦兹力的方向垂直于 粒子运动速度和磁感应 强度方向,遵循左手定 则。
表达式
洛伦兹力的大小为 F=qvBsinθ,其中q为 粒子所带电荷量,v为 粒子运动速度,B为磁 感应强度,θ为速度与 磁感应强度之间的夹角。
详细描述
带电粒子在匀强磁场中受到洛伦兹力作用,当 此力充当向心力时,粒子将做匀速圆周运动。 其周期公式为T=2πm/qB,其中m为粒子质量, q为粒子电量,B为磁感应强度。
螺旋运动
总结词
带电粒子在匀强磁场中做螺旋运动时,其周期与粒子的旋转半径、线速度和磁 感应强度有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点4.7 周期性与多解问题
1.带电粒子电性不确定形成多解:受洛伦兹力作用的带电粒子,由于电性不同,当速度相同时,正、负粒子在磁场中运动轨迹不同,形成多解.
如图6甲所示,带电粒子以速度v垂直进入匀强磁场,如带正电,其轨迹为a,如带负电,其轨迹为b.
2.磁场方向不确定形成多解:有些题目只已知磁感应强度的大小,而不知其方向,此时必须要考虑磁感应强度方向不确定而形成的多解.
如图乙所示,带正电粒子以速度v垂直进入匀强磁场,如B垂直纸面向里,其轨迹为a,如B 垂直纸面向外,其轨迹为b.
3.临界状态不唯一形成多解:带电粒子在洛伦兹力作
用下飞越有界磁场时,由于粒子运动轨迹是圆弧状,
因此,它可能穿过去,也可能转过180°从入射界面这
边反向飞出,从而形成多解,如图丙所示.
4.运动的周期性形成多解:带电粒子在部分是电场、部分是磁场的空间运动时,运动往往具有往复性,从而形成多解,如图丁所示.
一圆筒的横截面如图所示,其圆心为O.筒有垂直于纸面向里的匀
强磁场,磁感应强度为B.圆筒下面有相距为d的平行金属板M、N,其中
M板带正电荷,N板带等量负电荷.质量为m、电荷量为q的带正电粒子
自M板边缘的P处由静止释放,经N板的小孔S以速度v沿半径SO方
向射入磁场中.粒子与圆筒发生两次碰撞后仍从S孔射出.设粒子与圆筒碰
撞过程中没有动能损失,且电荷量保持不变,在不计重力的情况下,求:
(1)M、N间电场强度E的大小;
(2)圆筒的半径R.
(3)保持M、N间电场强度E不变,仅将M板向上平移,粒子仍从M板边缘的P处
由静止释放粒子自进入圆筒至从S孔射出期间,与圆筒的碰撞次数n。
1.如图所示,在纸面有磁感应强度大小均为B,方向相反的匀强磁场,虚线等边三角形ABC
为两磁场的理想边界。
已知三角形ABC边长为L,虚线三角形为方向垂直纸面向外的匀强磁场,三角形外部的足够大空间为方向垂直纸面向里的匀强磁
场。
一电量为+q、质量为m的带正电粒子从AB边中点P垂直AB
边射入三角形外部磁场,不计粒子的重力和一切阻力,试求:
(1)要使粒子从P点射出后在最快时间通过B点,则从P点射出
时的速度v0为多大?
(2)满足(1)问的粒子通过B后第三次通过磁场边界时到B的
距离是多少?
(3)满足(1)问的粒子从P点射入外部磁场到再次返回到P点的最短时间为多少?画出
粒子的轨迹并计算。
2. 如图所示,空间某平面有一条折线是磁场的分界线,在折线的两侧分布着方向相反、与
平面垂直的匀强磁场,磁感应强度大小都为B .折线的顶角90A ∠=,P 、Q 是折线上的两点,AP =AQ =L .现有一质量为m 、电荷量为q 的带负
电微粒从P 点沿PQ 方向射出,不计微粒的重力。
(1) 若P 、Q 间外加一与磁场方向垂直的匀强电场,
能使速度为v 0射出的微粒沿PQ 直线运动到Q
点,求其电场强度。
(2) 撤去电场,为使微粒从P 点射出后,途经折线的顶点A 而到达Q 点,求初速度v
应满足什么条件?
(3) 求第(2)中微粒从P 点到达Q 点所用时间的最小值.
3. 如图所示,在xOy 平面存在I 、II 、III 、IV 四个场区,y 轴右侧存在匀强磁场I ,y 轴左侧
与虚线MN 之间存在方向相反的两个匀强电场,II 区电场方向竖直向下,III 区电场方向竖直向上,P 点是MN 与x 轴的交点。
有一质量
为m ,带电荷量+q 的带电粒子由原点O ,以速
度v 0沿x 轴正方向水平射入磁场I ,已知匀强
磁场I 的磁感应强度垂直纸面向里,大小为B 0,
匀强电场II 和匀强电场III 的电场强度大小均为400v B E ,如图所示,IV 区的磁场垂直纸面向外,大小为2
0B ,OP 之间的距离为008qB mv ,已知粒子最后能回到O 点。
(1) 带电粒子从O 点飞出后,第一次回到x 轴时的位置和时间;
(2) 根据题给条件画出粒子运动的轨迹;
(3) 带电粒子从O 点飞出后到再次回到O 点的时间。
4.如图所示,直线MN上方有平行于纸面且与MN成45°的有界匀强电场,电场强度大小
未知;MN下方为方向垂直于纸面向里的有界匀强磁场,磁感应强度大小为B.今从MN上的O点向磁场中射入一个速度大小为v、方向与MN成45°角的带正电粒子,该粒子在磁场中运动时的轨道半径为R.若该粒子从O点出发
记为第一次经过直线MN,而第五次经过直线MN时
恰好又通过O点.不计粒子的重力.求:
(1)电场强度E的大小;
(2)该粒子第五次从O点进入磁场后,运动轨道的
半径。
(3)该粒子从O点出发到再次回到O点所需的时间。
5.在如图所示,xOy坐标系第一象限的三角形区域(坐标如图中所标注)有垂直于纸面向外
的匀强磁场,在x 轴下方有沿+y方向的匀强电场,电场强度为E。
将一个质量为m、带电量为+q的粒子(重力不计)从P(0,-a)点由静止释放。
由于x轴上存在一种特殊物质,使粒子每经过一次x轴速度大小变为穿过
前的
2
2
倍。
(1)欲使粒子能够再次经过x轴,磁场的磁感应强度B0最小是多少?
(2)在磁感应强度等于第(1)问中B0的情况下,求粒子在磁场中的运动时间;(3)若磁场的磁感应强度变为第(1)问中B0的2倍,求粒子运动的总路程。
6.如图所示,在xOy平面的第一象限,分布有沿x轴负方向的场强E=4
3
×104N/C的匀强电
场,第四象限分布有垂直纸面向里的磁感应强度B1=0.2 T的匀强磁场,第二、三象限分布有垂直纸面向里的磁感应强度B2
的匀强磁场。
在x轴上有一个垂直
于y轴的平板OM,平板上开有一
个小孔P,P处连接有一段长度d=lcm径不计的准直管,管由于静电屏蔽没有电场。
y轴负方向上距O点3cm的粒子源S可以向第四象限平面各个方向发射a粒子,假设发射的a粒子速度大小v均为2×105m/s,此时有粒子通过准直管进入电场, 打到平板和准直
管管壁上的a粒子均被吸收。
已知a粒子带正电,比荷为q
m
=5×l07C/kg,重力不计,求:
(1)a粒子在第四象限的磁场中运动时的轨道半径和粒子从S到达P孔的时间;
(2)除了通过准直管的a粒子外,为使其余a粒子都不能进入电场,平板OM的长度至少
是多长?
(3)经过准直管进入电场中运动的a粒子,第一次到达y轴的位置与O点的距离;
(4)要使离开电场的a粒子能回到粒子源S处,磁感应强度B2应为多大?
7.如图所示,直径分别为D和2D的同心圆处于同一竖直面,O为圆心,GH为大圆的水平
直径。
两圆之间的环形区域(Ⅰ区)和小圆部(Ⅱ区)均存在垂直圆面向里的匀强磁场。
间距为d的两平行金属极板间有一匀强电场,上极板开有一小孔。
一质量为m、电量为+q
的粒子由小孔下方d 2
处静止释放,加速后粒子以竖直向上的速度v 射出电场,由H 点紧靠大圆侧射入磁场。
不计粒子的重力。
(1) 求⑴求极板间电场强度的大小;
(2) 若⑵粒子运动轨迹与小圆相切,求Ⅰ区磁感应强度的大小;
(3) 若⑶Ⅰ区、Ⅱ区磁感应强度的大小分别为2mv qD 、4mv qD
,粒子运动一段时间后再次经过H 点,求这段时间粒子运动的路程。
8. 如图,在x 轴下方有匀强磁场,磁感应强度大小
为B ,方向垂直于xOy 平面向外。
P 是y 轴上距
原点为h 的一点,N 0为x 轴上距原点为a 的一点。
A 是一块平行于x 轴的挡板,与x 轴的距离为2h ,A 的中点在y 轴上,长度略小于2
a 。
带点粒子与挡板碰撞前后,x 方向的分速度不变,y 方向的分
速度反向、大小不变。
质量为m ,电荷量为q (q >0)的粒子从P 点瞄准N 0点入射,最后又通过P 点。
不计重力。
求粒子入射速度的所有可能值。
9.如图所示,在无限长的竖直边界NS和MT间充满匀强电
场,同时该区域上、下部分分别充满方向垂直于NSTM平
面向外和向的匀强磁场,磁感应强度大小分别为B和2B,
KL为上下磁场的水平分界线,在NS和MT边界上,距
KL高h处分别有P、Q两点,NS和MT间距为1.8h。
质
量为m、带电量为+q的粒子从P点垂直于NS边界射入该
区域,在两边界之间做圆周运动,重力加速度为g。
(1)求该电场强度的大小和方向。
(2)要使粒子不从NS边界飞出,求粒子入射速度的最小值。
(3)若粒子能经过Q点从MT边界飞出,求粒子入射速度的所有可能值。