带电粒子在有界磁场中的运动时间

合集下载

带电粒子在有界磁场磁场中的运动

带电粒子在有界磁场磁场中的运动

d
αR O
过程模型:匀速圆周运动 规律:牛顿第二定律 + 圆周运动公式 条件:要求时间最短
t
s v
速度 v 不变,欲使穿过磁场时间最短,须使 s 有最 小值,则要求弦最短。
题1 一个垂直纸面向里的有界匀强磁场形 状如图所示,磁场宽度为 d。在垂直B的平面
内的A点,有一个电量为 -q、质量为 m、速
y B
如粒子带正电,则: 如粒子带负电,则:
60º v
60º
O 120º
x
A. 2mv qB
B. 2mvcosθ qB
C. 2mv(1-sinθ) qB
2mv(1-cosθ)
D. qB
M
D
C
θ θ θθ
P
N
θθ
练、 一个质量为m电荷量为q的带电粒子(不计重力)
从x轴上的P(a,0)点以速度v,沿与x正方向成60º的
束比荷为q/m=2 ×1011 C/kg的正离子,以不同角度α入射,
其中入射角 α =30º,且不经碰撞而直接从出射孔射出的
离子的速度v大小是 (
C)
αa
A.4×105 m/s B. 2×105 m/s
r
C. 4×106 m/s D. 2×106 m/s O′
O
解: 作入射速度的垂线与ab的垂直平分线交于 r
P
B v0
O
AQ
例、如图,A、B为水平放置的足够长的平行板,板间距离为
d =1.0×10-2m,A板上有一电子源P,Q点在P点正上方B
板上,在纸面内从P点向Q点发射速度在0~3.2×107m/s范
围内的电子。若垂直纸面内加一匀强磁场,磁感应强度
B=9.1×10-3T,已知电子质量 m=9.1×10-31kg ,电子电

带电粒子在有界磁场中运动时间问题的解题策略

带电粒子在有界磁场中运动时间问题的解题策略

带电粒子在有界磁场中运动时间问题的解题策略作者:冯守灿来源:《中学物理·高中》2013年第10期求解带电粒子在有界磁场中运动时间问题是磁场中一种常见题型,求解粒子运动时间的基本方法是:根据粒子圆周运动的周期T和轨道所对应的圆心角,并根据求得。

除粒子运动时间计算问题之外,还有磁场中粒子运动时间的定性分析问题,比如:不同粒子在磁场中运动时间的比较以及粒子在磁场中运动时间的最值问题,此类问题除了用常规方法求解之外,还可以结合题目所给条件,从不同角度加以分析判断,效果更好,现结合实例从两方面分析如下:1、如何求解粒子在磁场运动时间1.1利用周期和圆心角求时间例1、如图所示,有界匀强磁场的磁感应强度B=2×10-8 T;磁场宽度L=0.2 m、一带电粒子电荷量q=-3.2×10-19 C,质量m=6.4×10-27 kg,以v=4×104 m/s的速度沿OO′垂直射入磁场,在磁场中偏转后从右边界射出.求:(1)大致画出带电粒子的运动轨迹;(画在题图上)(2)带电粒子在磁场中运动的轨道半径;(3)带电粒子在磁场中运动时间?解析:(1)轨迹如图.(2)带电粒子在磁场中运动时,由牛顿运动定律,有qvB=mv2R R=mvqB=6.4×10-27×4×1043.2×10-19×2×10-3 m=0.4 m.(3)带点粒子在磁场中运动的周期为设粒子在磁场中运动对应的圆心角为,由上图可知:所以粒子在磁场中运动的时间为1.2利用周期和速度偏转角求时间例2、如图所示,一束电子(质量为m,电量为e)以速度v0沿水平方向由S点射入垂直于纸面向里,磁感应强度为B,而宽度为d的匀强磁场。

射出磁场时的速度方向与竖直边界成30°,则穿过磁场所用的时间是多少?解析:已知初速度和末速度的方向,易得速度的偏转角,由几何知识可知:粒子运动的圆弧对应的圆心角等于粒子速度的偏转角。

(完整版)高考物理带电粒子在磁场中的运动解析归纳

(完整版)高考物理带电粒子在磁场中的运动解析归纳

难点之九:带电粒子在磁场中的运动一、难点突破策略(一)明确带电粒子在磁场中的受力特点1. 产生洛伦兹力的条件:①电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用.②电荷的运动速度方向与磁场方向不平行. 2. 洛伦兹力大小:当电荷运动方向与磁场方向平行时,洛伦兹力f=0;当电荷运动方向与磁场方向垂直时,洛伦兹力最大,f=qυB ;当电荷运动方向与磁场方向有夹角θ时,洛伦兹力f= qυB ·sin θ3. 洛伦兹力的方向:洛伦兹力方向用左手定则判断 4. 洛伦兹力不做功.(二)明确带电粒子在匀强磁场中的运动规律带电粒子在只受洛伦兹力作用的条件下:1. 若带电粒子沿磁场方向射入磁场,即粒子速度方向与磁场方向平行,θ=0°或180°时,带电粒子粒子在磁场中以速度υ做匀速直线运动.2. 若带电粒子的速度方向与匀强磁场方向垂直,即θ=90°时,带电粒子在匀强磁场中以入射速度υ做匀速圆周运动.①向心力由洛伦兹力提供:R v mqvB 2=②轨道半径公式:qBmvR =③周期:qB m 2v R 2T π=π=,可见T 只与q m有关,与v 、R 无关。

(三)充分运用数学知识(尤其是几何中的圆知识,切线、弦、相交、相切、磁场的圆、轨迹的圆)构建粒子运动的物理学模型,归纳带电粒子在磁场中的题目类型,总结得出求解此类问题的一般方法与规律。

1. “带电粒子在匀强磁场中的圆周运动”的基本型问题(1)定圆心、定半径、定转过的圆心角是解决这类问题的前提。

确定半径和给定的几何量之间的关系是解题的基础,有时需要建立运动时间t 和转过的圆心角α之间的关系(T 2t T 360t πα=α=或)作为辅助。

圆心的确定,通常有以下两种方法。

① 已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图9-1中P 为入射点,M 为出射点)。

带电粒子在磁场中运动的多解问题

带电粒子在磁场中运动的多解问题

内) 侧中点处有一质量为m,电荷量为e的静止电子,经
过M、N间电压为U的电场加速后射入圆筒,在圆筒壁
上碰撞n次后,恰好沿原路返回到出发点。(不考虑重
力,设碰撞过程中无动能损失)求:
⑴电子到达小孔S时的速度大小;
⑵电子第一次到达S所需要的时间; ⑶电子第一次返回出发点所需的时间。
OR
NS M me
解:⑴ 设加速后获得的速度为v ,根据
当粒子从左边射出时, 若运动轨迹半径最大,
则其圆心为图中O1点, 半径 r1=d/4。 因由此于粒r子从mq左Bv0边,射所出以必v须0 满r足Bmqr≤,r1。Or11
Bdq 即 v0 4m
l
d/2 v0 乙
当粒子从右边射出时,若运动轨迹半径最小,则其圆
心为图中O2点,半径为r2。由几何关系可得
当减速到v1时,若qv1B=mg f1=0则以v1作匀速运动
Wf=1/2mv02 - 1/2mv12 < I2/2m 所以选项A C D正确。
qv0B qv1B f
mg mg
4. 运动的重复性形成多解 带电粒子在部分是磁场,部分是电场的空间运动时,
运动往往具有重复性,因而形成多解。
例6. 如图所示,在x轴上方有一匀强电场,场强为E,
r22
(r2
d)2 2
l 2,
d l2 r2 4 d
因此粒子从右边射出必须满足的条件是r≥r2
( d 2 4l 2 )qB
即 v0
4dm
所以当
v0
Bdq 4m
O2
r2-d/2 r2
l

v0
(dΒιβλιοθήκη 24l 2 4dm
)qB
时,

带电粒子在有界匀强磁场中的运动-高考物理复习

带电粒子在有界匀强磁场中的运动-高考物理复习

√A.3
B.2
C.32
D.23
电子1、2在磁场中都做匀速圆周运动,根据题意 画出两电子的运动轨迹,如图所示,电子1垂直边 界射入磁场,从b点离开,则运动了半个圆周,ab 即为直径,c点为圆心; 电子2以相同速率垂直磁场方向射入磁场,经t2时间从a、b连线的中 点c离开磁场, 根据半径 r=mBqv可知,电子 1 和 2 的半径相等, 根据几何关系可知,△aOc为等边三角形,
粒子运动轨迹与 y 轴交点的纵坐标为 y=-2rcos 30° =-233d,故 D 错误.
考向4 带电粒子在多边形边界或角形区域磁场中运动
例4 (多选)(2023·河北石家庄市模拟)如图所示,△AOC为直角三角形,∠O
=90°,∠A=60°,AO=L,D为AC的中点.△AOC中存在垂直于纸面向里的匀
√C.若带电粒子与挡板碰撞,则受到挡板作用力的冲量 大小为5q2BL
√D.带电粒子在磁场中运动时间可能为3πqmB
若粒子带正电,粒子与挡板MN碰撞后恰好从 Q点射出,粒子运动轨迹如图甲所示, 设轨迹半径为 r2,由几何知识得 L2+(r2-0.5L)2 =r22,解得 r2=54L,根据牛顿第二定律得 qv2B=mvr222,解得 v2=54qmBL, 根据动量定理得 I=2mv2=5q2BL,故 A 错误,C 正确; 若粒子带负电,则粒子的运动轨迹如图乙所示, 粒子做圆周运动的半径为 r1=12L,由牛顿第二定律得 qv1B=mvr112,解得 v1=q2BmL,此时半径最小,速度也最小,故 B 错误;
2.平行边界(往往存在临界条件,如图所示)
3.圆形边界(进出磁场具有对称性) (1)沿径向射入必沿径向射出,如图甲所示. (2)不沿径向射入时,如图乙所示. 射入时粒子速度方向与半径的夹角为θ,射出磁场时速度方向与半径的 夹角也为θ.

带电粒子在磁场中的运动时间公式

带电粒子在磁场中的运动时间公式

带电粒子在磁场中的运动时间公式
在磁场中,带电粒子会受到洛伦兹力的作用,这个力会改变粒
子的运动轨迹。

带电粒子在磁场中的运动时间公式可以表示为:T = 2πm / (|q|B)。

其中,T表示带电粒子在磁场中运动一周所需的时间,m是粒子
的质量,q是粒子的电荷,B是磁场的磁感应强度。

这个公式告诉我们,带电粒子在磁场中的运动时间与粒子的质
量和电荷以及磁场的磁感应强度有关。

当磁场的磁感应强度增大时,粒子的运动时间会减小;当粒子的电荷增大时,运动时间也会减小;而当粒子的质量增大时,运动时间会增大。

带电粒子在磁场中的运动时间公式的应用非常广泛。

在物理学
和工程学中,我们可以利用这个公式来设计和控制粒子在磁场中的
运动,从而应用于粒子加速器、磁共振成像等领域。

这个公式也为
我们提供了理论基础,帮助我们更好地理解和研究带电粒子在磁场
中的运动规律。

总之,带电粒子在磁场中的运动时间公式是一个重要的物理公式,它为我们提供了理论基础和实际应用价值,帮助我们更好地理解和控制带电粒子在磁场中的运动。

带电粒子在有界磁场中的运动全

带电粒子在有界磁场中的运动全
带电粒子在有界磁场中的 运动全
• 引言 • 带电粒子在磁场中的基本性质 • 有界磁场中的带电粒子运动 • 实际应用和案例分析 • 结论
01
引言
主题简介
01
带电粒子在有界磁场中的运动是 一个经典问题,涉及到电磁学的 基本原理和粒子动力学的应用。
02
该问题在理论物理、天体物理、 核聚变等领域有广泛的应用,是 理解许多自然现象的基础。
回旋加速器
回旋加速器是一种利用磁场和电场控制粒子运动的加速器,其原理是将粒子在磁场中回旋 加速,通过逐渐增加电场强度来提高粒子的能量。回旋加速器常用于核物理、高能物理等 领域的研究。
核磁共振成像
核磁共振成像
磁场强度
射频脉冲
核磁共振成像是一种基于磁场和射频 脉冲的医学成像技术,其原理是利用 磁场对氢原子核的共振效应,检测人 体内氢原子核的信号,从而获得人体 内部的图像。核磁共振成像具有无辐 射、无创、高分辨率等优点,广泛应 用于医学诊断和治疗。
其他形状轨迹
根据磁场的具体形状和粒子的运动 状态,还可能出现其他形状的轨迹, 如8字形、螺旋形等。
霍尔效应
霍尔电压
当带电粒子在垂直于电流方向的磁场中运动时,会在垂直于电流 和磁场的方向上产生电压,即霍尔电压。
霍尔电流
在霍尔电压的作用下,带电粒子会在垂直于霍尔电压的方向上形 成电流,即霍尔电流。
应用
THANKS
感谢观看
霍尔效应在测量磁场、研究半导体材料等方面有广泛应用。
04
实际应用和案例分析
粒子加速器
粒子加速器
带电粒子在有界磁场中运动时,可以利用磁场对粒子的洛伦兹力来控制粒子的运动轨迹, 从而实现粒子的加速。粒子加速器是现代科学技术中非常重要的实验设备,广泛应用于物 理、化学、生物学等领域。

带电粒子在有界磁场中运动的临界问题

带电粒子在有界磁场中运动的临界问题

带电粒子在有界磁场中运动的临界问题“临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。

带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。

一、解题方法画图→动态分析→找临界轨迹。

(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了──这一般都不难。

)二、常见题型(B为磁场的磁感应强度,v0为粒子进入磁场的初速度)分述如下:第一类问题:例1 如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。

一电子从CD边界外侧以速率v0垂直匀强磁场射入,入射方向与CD边界夹角为θ。

已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v0至少多大?分析:如图2,通过作图可以看到:随着v0的增大,圆半径增大,临界状态就是圆与边界EF相切,然后就不难解答了。

第二类问题:例2如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN线上某点O正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m、电量为e、速度为v0=BeL/m 的质子,不计质子重力,打在MN上的质子在O点右侧最远距离OP=________,打在O点左侧最远距离OQ=__________。

分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆──就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),OP=,OQ=L。

【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向里。

P为屏上的一小孔,PC与MN垂直。

一群质量为m、带电荷量为-q的粒子(不计重力),以相同的速率v,从P处沿垂直于磁场的方向射入磁场区域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

带电粒子在有界磁场中的运动时间
一、如何求解粒子在磁场运动时间
1、利用周期和圆心角求时间
模型:有界直双线边界匀强磁场的磁感应强度B;磁场宽度L、一带电粒子电荷量q,质量m,以v的速度垂直射入磁场,在磁场中偏转后从右边界射出.求:
(1)大致画出带电粒子的运动轨迹;
(2)带电粒子在磁场中运动的轨道半径;
(3)带电粒子在磁场中运动时间
2、利用周期和速度偏转角求时间
掌握圆心角和偏转角关系后,在已知偏转角情况下,可直接求解,而不需再画轨迹和找圆心角,从而简化了解题。

3、利用周期和弦切角求时间
例3、在直角区域aob内,有垂直纸面向里的匀强磁场,一对正、负电子从o点沿纸面以相同速度射入磁场中,速度方向与边界ob成30°角,求正、负电子在磁场中运动的时间之比.
二、如何比较粒子在磁场中运动时间
1、若粒子运动周期相同,利用圆心角、偏转角比较时间
例、正方形空间存在方向垂直于纸面向里的匀强磁场,一细束由两种粒子组成的粒子流沿垂直于磁场的方向从一条边的中点入射.这两种粒子带同种电荷,它们的电荷量、质量均不同,但其比荷相同,且都包含不同速率的粒子.不计重力.下列说法正确的是()
A.入射速度不同的粒子在磁场中的运动时间一定不同
B.入射速度相同的粒子在磁场中的运动轨迹一定相同
C.在磁场中运动时间相同的粒子,其运动轨迹一定相同
D.在磁场中运动时间越长的粒子,其轨迹所对的圆心角一定越大
2、若粒子周期和轨道半径均相同,利用弦长比较时间
3、若粒子运动速率相同,还可以利用弧长大小比较时间
例、在半径为R的圆形区域内有匀强磁场.在边长为2R的正方形区域里也有匀强磁场,两个磁场的磁感应强度大小相同.两个相同的带电粒子以相同的速率分别从M、N两点射入匀强磁场.在M点射入的带电粒子,其速度方向指向圆心;在N点射入的带电粒子,速度方向与边界垂直,且N点为正方形边长的中点,则下列说法正确的是()
A.带电粒子在磁场中飞行的时间可能相同
B.从M点射入的带电粒子可能先飞出磁场
C.从N点射入的带电粒子可能先飞出磁场
D.从N点射入的带电粒子不可能比M点射入的带电粒子先飞出磁场
三、巩固提升
如图甲示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一、四象限有磁场,方向垂直于Oxy平面向里。

位于极板左侧的粒子源沿x 轴正右连接发射质量为m、电量为+q、速度相同、重力不计的带电粒子在0~3t时间内两板间加上如图乙所示的电压(不考虑极边缘的影响)。

已知t=0时刻进入两板间的带电粒子恰好在t0时刻经极板边缘射入磁场。

上述m、q、l、t0、B为已知量。

(不考虑粒子间相互影响及返回板间的情况)
(1)求电压U的大小。

(2)求t0/2时进入两板间的带
电粒子在磁场中做圆周运动的
半径。

(3)何时进入两板间的带电粒
子在磁场中的运动时间最短?
求此最短时间。

相关文档
最新文档