第3章 电极反应动力学基础

合集下载

电化学第3章电化学极化讲解

电化学第3章电化学极化讲解

电化学第3章电化学极化讲解第3章电化学极化(电荷转移步骤动⼒学)绪论中曾提到:⼀个电极反应是由若⼲个基本步骤形成的,⼀个反应⾄少有三个基本步骤:00R R ze O O s s →→+→-1) 反应粒⼦⾃溶液深处向电极表⾯的扩散——液相传质步骤。

2) 反应粒⼦在界⾯得失电⼦的过程——电化学步骤。

3) 产物⽣成新相,或向溶液深处扩散。

当有外电流通过电极时,?将偏离平衡值,我们就说此时发⽣了极化。

如果传质过程是最慢步骤,则?的偏离是由浓度极化引起的(此时0i s i C C ≠,e ?的计算严格说是⽤s i C 。

⽆浓度极化时0i s i C C =,?的改变是由s i C 的变化引起)。

这时电化学步骤是快步骤,平衡状态基本没有破坏。

因此反映这⼀步骤平衡特征的Nernst ⽅程仍能使⽤,但须⽤?代e ?,s i C 代0i C ,这属于下⼀章的研究内容。

如果传质等步骤是快步骤,⽽电化学步骤成为控制步骤,则这时?偏离e ?是由电化学极化引起的,也就是本章研究的内容。

实际上该过程常常是⽐较慢的,反应中电荷在界⾯有积累(数量渐增),?随之变化。

由此引起的?偏离就是电化学极化,这时Nernst ⽅程显然不适⽤了,这时?的改变将直接以所谓“动⼒学⽅式”来影响反应速度。

3.1 电极电位与电化学反应速度的关系电化学反应是⼀种特殊的氧化—还原反应(⼀个电极上既有氧化过程,⼜有还原过程)。

若⼀个电极上有净的氧化反应发⽣,⽽另⼀个电极上有净的还原反应发⽣,则在这两个电极所构成的电化学装置中将有电流通过,⽽这个电流刚好表征了反应速度的⼤⼩,)(nFv i v i =∝[故电化学中总是⽤i 表⽰v ,⼜i 为电信号,易测量,稳态下串联各步速度同,故浓差控制也⽤i 表⽰v 。

i 的单位为A/cm 2,zF 的单位为C/mol ,V 的单位为mol/(cm 2.s )]。

既然电极上有净的反应发⽣(反应不可逆了),说明电极发⽣了极化,?偏离了平衡值,偏离的程度⽤η表⽰,极化的⼤⼩与反应速度的⼤⼩有关,这⾥就来研究i ~?⼆者间的关系。

最新第三章-化学反应动力学基础教学讲义ppt

最新第三章-化学反应动力学基础教学讲义ppt

2)20世纪前叶:反应速率理论的创立 a. 碰撞理论:
把反应看作两个反应球体碰撞的结果;
b. 过渡态理论: 产生中间活化络合物的历程。
3)1950年代后,新的实验手段的利用,微 观反应动力学(分子反应动态学)得到 发展。
• 利用激光、交叉分子束等新实验手段,研究某 一量子态的反应物变化到某一确定量子态的产 物的速率及反应历程(态-态反应的层次);
应,反应速率越高。
过渡状态理论(活化络合物理论)
1930年艾林和佩尔采运用了量子力学方法提出:
碰撞理论把分子看成刚性球体,认为反 应是由于分子间发生突然的、不连续碰撞的 结果,这种形象过于简单化。过渡状态理论 纠正了这种形象,认为当具有足够能量的分 子彼此以适当的空间取向相互靠近到一定程 度时,会引起分子或原子内部结构连续性变 化,使原来以化学键结合的原子间的距离变 长,而没有结合的原子间的距离变短,形成 了过渡状态的构型,称为活化络合物。
化学动力学(chemical kinetics)
是研究化学反应速率(rate of reaction)和 反应机理(mechanism of reaction)的化学分支 学科。
化学动力学的主要内容 ➢确定化学反应的速率以及温度、压力、催化剂、 溶剂和光照等外界因素对反应速率的影响; ➢研究化学反应机理,揭示化学反应速率本质; ➢探求物质结构与反应能力之间的关系和规律。
药物代谢动力学研究内容
• 药物体内过程 : 机体对药物的处置 吸收(absorption) 分布 (distribution) 代谢(metabolism) 排泄 (excretion)
• 体内药物浓度(血药浓度)动力学规律
非管途径给药的药-时曲线
预测制剂中化学活性物质的稳定性 指导设计安全、稳定及有效的制剂处方 提出有关制剂正确的工艺技术及合适的

电极反应基础动力学及机理

电极反应基础动力学及机理
(一)电化学原理
电极反应基础动力学及机理 电极上电子转移的机理 电极反应速率的影响因素
稀土学院
3.1电极上电子转移的机理 (1)电极反应种类 ①电极反应的本质 一种包含电子的、向或自一种表面(一般为 电子导体或半导体)转移的复相化学过程。 ②基本电荷迁移过程 *阴极还原过程 *阳极氧化过程
稀土学院
稀土学院
稀土学院
③Tafel方程 *经验方程 *只适用于不存在物质传递对电流影响(即极化超电 势较大)的情况。 * Tafel行为是完全不可逆电极过程的标志。
稀土学院
稀土学院
平衡时电极反应的正、逆向速度不一定为零
稀土学院
3.4电流-超电势方程 (1)电极电势与超电势的关系式 φ =η +φ eq
稀土学院
(2)i-η方程的几种近似处理 ①低超电势时的线性特性 x值很小时, ex=1+x 对于足够小的超电势 电荷传递电阻或电化学反应电阻
②高超电势时的Tafel行为 电极上发生阴极还原反应,且η 很大时
稀土学院
③电化学反应的核心步骤 *电子在电极/溶液界面上的异相传递 平衡态
*电子迁移 电极反应 ④电化学反应速度的表示式
稀土学院
稀土学院
3.3交换电流 (1)平衡电位下的电极反应速度 施加电位=平衡电极电势时,电极反应处于平衡 态,通过的净电流为零,i=if-ib=0 交换电流 i0=if=ib i0:描述平衡电位下电极反应能力大小的物理量。 (2)平衡态时电极反应
(1)电极反应动力学简介 ①电极反应是伴有电极/溶液界面上电荷传递步骤的 多相化学过程。 ②电极反应自身的特点 *电极反应的速度不仅与温度、压力、溶液介质、固 体表面状态、传质条件等有关,且受施加于电极/ 溶液界面电位的影响,即,受电场的影响。 *电极反应的速度还依赖于电极/电解质溶液界面的 双电层结构。 即,受电场的影响,是电化学反应的特征。

第三章化学动力学基础

第三章化学动力学基础
反应的有关实验数据如下:
ÊÔ Ñé ± à ź cH 2/m ( L o 1)lcN/O m ( o L -1)l r/(moLl1s1)
1
6
7.9107
2
6
3.2106
3
6
4 1.3105
4
3
rddnB 1 dcB Vdt V Bdt Bdt
溶液中的化学反应:
aA(aq) + bB(aq)
yY(aq) + zZ(aq)
rdcAdcBdcYdcZ adt bdt ydt zdt
对于定容的气相反应:
r 1 dpB
B dt
§3.2 浓度对反应速率的影响 —速率方程
*
ct (A)
c0(A)
1 ct(A )
1
k kc 0 ( A )
*仅适用于只有一种反应物的二级反应。
§3.3 温度对反应速率的影响 —Arrhenius方程
3.3.1 Arrhenius方程 3.3.2 Arrhenius方程的应用 3.3.3 对Arrhenius方程的进一步分析
3.3.1 Arrhenius方程
反应速率方程 rkcA cB
k和cB影响反应速率。 k与温度有关,T增大,一般k也增大, 但k~T不是线性关系。
N 2O 5(C4)C l2N2O (C4)C 1 2lO 2(g不 ) 同温 k值 度
T/K 293.15 298.15 303.15 308.15 313.15 318.15
t 0
经过A点切线斜率 的负数为2700s时 刻的瞬时速率。
3.1.2 定容反应速率
例: N2O5(CCl4)
1
2NO2 (CCl4) + 2 O2(g)

电极过程动力学(全套课件)

电极过程动力学(全套课件)

§1.1 电极过程动力学的发展



电化学科学的发展大致可以分为三个阶段:电化学热 力学、电化学动力和现代电化学。 电化学热力学研究的是处在平衡状态的电化学体系, 涉及的主要问题是电能和化学能之间的转换的规律。 从19世纪末到20世纪初,在热力学基本原理被牢固地 确立后,用热力学方法研究电化学现象成了电化学研 究的主流,取得了重大的进展,使“电化学热力学” 这部分内容趋于成熟,成为物理化学课程的经典组成 部分。
3.
电极过程动力学主要形成是从20世纪40年代中期开
始:

前苏联Φ р у м к и н 学派抓住电极和溶液净化对电极反应
动力学数据重现性有重大影响这一关键问题,首先从实验技
术上开辟了新局面。证实了迟缓放电理论,研究了双电层结 构和各类吸附现象对电极反应速度的影响

英国Bockris,Parsons,Conway等人也在同一领域作出了奠基性的



§1.1 电极过程动力学的发展


电化学是在科学研究和生产实践中发展起来的,反过 来它又促进了生产力的发展。在化工、冶金、化学电 源、金属腐蚀和保护、电化学加工和电化学分析等工 业部门占有及其重要的地位。 近30年来,它在高新技术领域,如新能源、新材料、 微电子技术、生物化学等等方面也扮演重要角色。与 此同时,由于电化学理论与方法的发展,在与其他学 科边缘地域形成了融盐电化学、半导体电化学、催化 电化学、腐蚀电化学、金属电化学、生物电化学等新 兴学科。电化学应用已远远超出了化学领域,在国民 经济许多部门发挥了巨大作用。
5.

20世纪60年代以来,电化学实验技术仍然不断发展。
线性电势扫描方法(循环伏安法)成了后起之秀,交流阻 抗方法以及一系列更复杂灵巧的极化程序控制方法在很大 程度上取代了经典极化曲线测量和极谱方法。界面波谱技 术对电化学研究的影响日益显著。许多重要进展通过对新 材料、新体系研究而取得。

电极过程动力学导论

电极过程动力学导论
通过循环扫描电极电位,研究 电极反应的可逆性和动力学参 数。
计时电流法
通过测量电流随时间的变化, 推算电极反应的动力学参数。
电极过程动力学实验结果分析
动力学参数的确定
通过实验数据拟合,确定电极反应的 动力学参数,如反应速率常数、活化 能等。
电极过程的机理分析
根据实验结果,推断电极反应的机理 和中间产物。
THANKS FOR WATCHING
感谢您的观看
电极过程
在电化学反应中,电极与电解质溶液界面上的电子转移和相关化学反应的动态 过程。
涉及内容
电极电位、电流密度、反应速率等。
电极过程分类
可逆电极过程
电极反应速率相对较慢,电极电位与平衡电位相差较小,电极表面附近无显著的物质积累或减少。
不可逆电极过程
电极反应速率相对较快,电极电位与平衡电位相差较大,电极表面附近有显著的物质积累或减少。
电极过程动力学导论
contents
目录
• 引言 • 电极过程动力学基础 • 电极反应速率理论 • 电极过程动力学模型 • 电极过程动力学实验研究 • 电极过程动力学研究展望
01 引言
主题简介
电极过程动力学是研究电化学反应在 电极表面进行的速率和机理的学科, 涉及到电子转移、传质、化学反应等 多个方面。
随着实验技术的不断发展和理论模型的完善,电极过程动力学研究已经取得了许 多重要的成果,为电化学工业、能源存储和转化等领域的发展提供了重要的理论 支撑。
电极过程动力学研究发展趋势
随着新能源和环保技术的需求日益增 长,电极过程动力学研究将更加注重 高效、环保和可持续性,研究领域将 进一步拓展到新型电极材料、电化学 反应新机制和高效能量转化与存储等 方面。

电极过程动力学

电极过程动力学

电极过程动力学电极过程动力学是电化学中的一个重要分支,它着重研究电极电荷转移过程和相关的动力学机制。

电极过程动力学的研究对象包括电化学反应速率、电极化学反应的机理以及电化学反应的动态过程等。

本文将从电极反应速率、电位调控机理以及实际应用方面对电极过程动力学进行详细的介绍和分析。

一、电极反应速率1. 项里反应速率常数项里反应速率常数是衡量电极反应速率的重要参数。

它表示单位时间内反应物和产物之间的数量变化率。

在计算过程中,可以根据电荷转移过程中的动力学机制来确定项里反应速率常数。

通常情况下,项里反应速率常数与反应物和产物之间的活化能和电荷转移系数有关。

一般来说,项里反应速率常数越大,反应速率越快。

2. 泊松分布模型泊松分布模型是一种根据电子传输动力学研究电极反应速率的经典方法。

泊松分布模型假设电子从电极表面进入液相中的分布满足泊松分布。

据此,可以利用该模型计算出电极反应速率以及与之相关的电极化学反应机理。

然而,实际情况中,由于电极表面可能存在着非均匀性和多孔性等特征,泊松分布模型过于理想化,难以准确预测电极反应速率。

3. 热力学因素对电极反应速率的影响热力学因素对电极反应速率有着重要的影响。

根据热力学定律,电位差和电极之间的电势差会影响电子传输和离子转移速率。

当电极电位愈高,电位差就愈大,因此,电子和离子的传输速率就变得更快。

此外,反应物和产物之间的物理和化学吸附现象也会影响电极反应速率。

这些因素的影响程度需要结合具体的条件和反应机理来进行考虑。

二、电位调控机理1. 电位和电场电位是电子在电场作用下所具有的势能差。

由于电场力是由电荷带来的,因此,电位和电场强度是密切相关的。

在电极过程动力学中,电位的变化会影响电子传输过程,进而影响电极化学反应的速率和机理。

2. 离子选择电位离子选择电位可以影响电极的电化学反应机理和速率。

当电极表面存在多种离子时,离子选择电位会决定电极表面上离子种类的比例。

因此,在研究电极过程动力学时,需要对离子选择电位进行分析和控制。

反应动力学基础PPT课件

反应动力学基础PPT课件

式为:
r dFA dW
8
第八页,课件共140页。
空速与接触时间
空速:单位反应体积所处理的混合物的体积流量。因 次为时间的倒数(1/h)。
VSP
VS 0 VR
计算空速时的体积流量一般使用标态体积,特殊说明时可 使用操作状态流量。也有使用摩尔流量的,称为摩尔空速。
是衡量反应器生产强度的重要操作参数。例如:氨合成反应, 压力为10Mpa时,空速为10000(1/h);而当压力为30Mpa时, 空速则为28000-30000(1/h)。
19
第十九页,课件共140页。
一氧化氮氧化动力学方程建立
由于第二步为速率的控制步骤因此有:
r k2C( NO)2Co2
第一步达到平衡,则 有: C( NO)2 K1CN2O
代入上式得
r k2 K1CN2OCo2 k2CN2OCo2
因此,当得到的速率方程与由质量作用定律得到的形式 相同,不能说明该反应一定是基元反应。但基元反应 的速率方程可用质量作用定律来表示。
20
第二十页,课件共140页。
例:反应机理分析
如果所得动力学实验结果与由所设的反应机理推导得到 的速率方程相符合,绝对不能肯定说所设的反应机理是 正确的。只能说明是一个可能的反应机理,因为不同的反应 机理完全可能推导出形式相同的速率方程 。
例如NO的氧化反应,如果机理为:
NO O2 NO3
例2.2
28
第二十八页,课件共140页。
例题计算结果
29
第二十九页,课件共140页。
2.3 温度对反应速率的影响
在幂函数型速度方程中,以反应速率常数k来体现 温度对反应速率的影响。对于一定的温度,反应 速率k为定值。通常用阿累尼乌斯方程表示反应速率 常数与温度的关系。即:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 电极反应动力学基础
3.1 电化学反应理论
对于一个已知的电极反应,在某些电势区可能 没有电流,而在另外某些电势区则会有不同程度 的电流流过。电极反应的特点就是反应速度与电 极电势有关,仅通过改变电势就可以使反应速度 改变许多个数量级
.
1. 电化学反应的能级表示
电化学反应牵涉到电极和电解液中的氧 化剂(O)或还原剂(R)之间的电子传递,因 此这一反应与电极的能带结构和电解液中 氧化剂和还原剂的态密度分布有密切的关 系。
1. 物质扩散到电极表面(由传质系数kd来描述) 2. 离子氛重排(10-8s) 3. 溶液偶极子的重新取向(10-11s) 4. 中心离子和配体之间发生的变化(10-14s) 5. 电子转移(10-16s) 6. 反向的变化
.
1. 物质扩散到电极 表面(由传质系 数kd来描述)
2. 离子氛重排 (10-8s)
如果我们把指前因子写成: A A' exp S / R
那么 k A' exp H T . S / RT A' exp G / RT
3. 速率常数与电极电势的关系
用描述均相反应动力学相似的方式,在建立电子 转移动力学模型中,用抛物线的能量图表示反应物 和生成物.
假定电极电位在0 V时的阴极反应活化能和阳极 反应活化能各为G0,c <G0,a,若电极电位从0 V 向正方向移动到+ ,则电极上电子的能量将改变 -nF(能量下降),
.
(a)
图1.1.3 (a) 在含0.01MFe3+,Sn4+和Ni2+的1MHCl溶液中, 初始为~1V(相对NHE)的铂电极. 上它们可能还原的电势。
可能氧化的反应
零电流下 的近似电势
Sn4++2e Sn2+
I2+2e Fe3++e
2IFe2+
E0 V(相对于NHE) 0 (Au) +0.15
0 (Hg)
E0 V(相对于NHE)
2H++2e H2(动力学缓慢) 零电流下的近似电势
(c)
图1.1.3 (c) 在含0.01MCr3+和Zn2+的1MHCl中汞电 极上它们可能还原的电势。
.
电极
溶液
导带 O
EF R
价带
态密度
图2.1 电极/电解液界面电子转移的能量示意图
.
电极 EF
溶液
电极
O
O’ads
新取向(10-11s)
4. 中心离子和配体
R’ads
之间发生的变化 (10-14s)
R’surf
5. 电子转移(10-
R
16s)
6. 反向的变化
.
3.2 电极反应速率
1. 速率表达式
当反应 O + ne-
R
处于平衡状态时,其电极电位eq与溶液中 氧化剂和还原剂的浓度cO和cR之间符合 Nernst关系:
eq
'
RT nF
ln
cOb cRb
.
当电极反应不处于平衡状态时,从电化学反应的动力学角度
研究电极反应,
O + ne-
k
fkb R
反应速率和反应电流分别为vf vb和ic ia,则有:
还原反应速率:
vf
k f cOs
ic nFA
氧化反应速率:
vb
kbcRs
ia nFA
式中A为电极/溶液界面面积;c.Os和cRs分别为氧化剂和还原剂在电 极表面处的浓度。
RT
=0
k
0 f
Af
exp
G0,c RT
kb
Ab
exp
G0,a RT
e
xp
(1 )nF
RT .
kb0
Ab
exp
G0,a RT
再设 f=F/RT
kf
k
0 f
exp(nf )
kb
+0.54
+0.77
O2+4H++4e 2H2O +1.23
Au3++3e Au
+1.50
(b)
图1.1.3 (b) 在含0.01M Sn2+和F. e2+的1M HI溶液中,初始为 ~0.1V(相对NHE)的金电极上可能的氧化反应的电势。
-0.76 Zn2++2e Zn
-0.41 Cr3++e Cr2+
溶液 O
R
R
EF
态密度 (a)
态密度 (b)
图2.2 改变电极电位对电子转移的能量的影响 (a)阴极极化.;(b)阳极极化
2. 电化学反应的步骤
我们考虑这样一种电极反应情况,既电极上的氧化 还原反应没有化学键的形成或断裂,例如下面的例子
Fe3+(aq) + e Fe2+(aq) 其机理包括以下几个步骤:
电化学反应一般地可以用下式来表示:
O+ne-
R
.
电极
溶液
电势 电子的能级
空的MO 满的MO
电极 溶液 e
A+e A-
(a) 图1.1.2(a) 溶液中物质A的还原过程(a)的表示法
.
电极
溶液
电子的能级 电势
空的MO 满的MO
电极
溶液
e
A-e A+
(b) 图1.1.2(b) 溶液中物质A的氧化过程(b)的表示法
总的电化学反应,即电极上净反应速率为:
vnet
vf
vb
k f cOs
kbcRs
ic ia nFA
i nFA
电极上净电流
i ic ia nFA k f cOs kbcRs
电极上总的电化学反应为该电极上阴极电 流和阳极电流之差
.
需要注意的是,电极反应属异相反应, 异相反应和均相反应不同,反应速率总是 与反应物在电极表面的浓度相关,电极表 面的浓度往往与溶液本体的浓度不同。
3. 溶液偶极子的重 新取向(10-11s)
4. 中心离子和配体 之间发生的变化 (10-14s)
5. 电子转移(1016s)
6. 反向的变化
.
电极过程中的物
1. 物质扩散到电极
质传递
表面(由传质系
6-1 电化学实验内容 数kd来描述)
2. 离子氛重排
O’surf
(10-8s) O 3. 溶液偶极子的重
.
2. 速率常数与温度的关系
实验表明,溶液中的大多数反应,其速率常数随温度 的变化符合Arrhenius公式。事实上任何形式的电极反应, 其活化焓 与速率H常数之间的关系也符合Arrhenius公式:
kAexpH/RT
A是指前因子。在电子转移反应中,离子氛重排是基本步 骤,这步骤包含活化熵ΔS≠(activation entropy)。重新 取向和重排引起能级的分裂,从而使活化络合物的能级与 初态不同,
.
.
On e R
G a G o ,a 1n F
GcGo,cnF1nF
Go,cnF
.
Gc =G0,c + nF
Ga =G0,a - (1-)nF
假定反应速率常数kf和kb具有Arrhenius形式
kf
Af
exp
Gc RT
kb
Ab
exp
பைடு நூலகம்
Ga RT
kf
Af
exp
G0,c RT
exp
nF
相关文档
最新文档