高二下学期期末文科数学及答案

合集下载

高二下学期期末考试数学文科试题答案试题

高二下学期期末考试数学文科试题答案试题

2021—2021学年下期期末统一检测高二数学试题(文科)参考答案及评分意见一、选择题〔50分〕CBCDD BDABB二、填空题〔25分〕11.二 12. (2,3) 13. -2 14. 4x -y -4=0. 15. ①②④三、解答题〔75分〕16. 〔12分〕解:(1)M ={x |2x -3>0}=⎩⎨⎧⎭⎬⎫x |x >32…………………………………………………..3分 N =⎩⎨⎧⎭⎬⎫x |1-2x -1≥0={x |x ≥3或者x <1};………………………………………..6分 (2)M ∩N ={x |x ≥3}…………………………………………………………………..9分 M ∪N ={x |x <1或者x >32}.………………………………………………………………….12分17. 〔12分〕解:∵函数y =c x 在R 上单调递减,∴0<c <1. ……………………………………2分即p :0<c <1,∵c >0且c ≠1,∴非p :c >1. ……………………………………3分又∵f (x )=x 2-2cx +1在⎝ ⎛⎭⎪⎫12,+∞上为增函数,∴c ≤12. 即q :0<c ≤12,∵c >0且c ≠1,∴非q :c >12且c ≠1. …………………………5分 又∵“p 或者q 〞为真,“p 且q 〞为假,∴p 真q 假或者p 假q 真.[6分]①当p 真,q 假时,{c |0<c <1}∩⎩⎨⎧⎭⎬⎫c |c >12且c ≠1=⎩⎨⎧⎭⎬⎫c |12<c <1.………………………………………8分 ②当p 假,q 真时,{c |c >1}∩⎩⎨⎧⎭⎬⎫c |0<c ≤12=∅. ……………………………10分 综上所述,实数c 的取值范围是⎩⎨⎧⎭⎬⎫c |12<c <1.………………………………………12分18.〔12分〕解: ∵y ′=2ax +b ,…………………………………………………………………2分∴抛物线在点Q (2,-1)处的切线斜率为k =y ′|x =2=4a +b .∴4a +b =1.①…………………………………………………………………………4分 又∵点P (1,1)、Q (2,-1)在抛物线上,∴a +b +c =1,②4a +2b +c =-1.③…………………………………………………..………………8分联立①②③解方程组,得⎩⎪⎨⎪⎧ a =3,b =-11,c =9.∴实数a 、b 、c 的值分别为3、-11、9. …………………………………………………12分19.〔12分〕解: (1)由图象知A =3,以M ⎝ ⎛⎭⎪⎫π3,0为第一个零点,N ⎝ ⎛⎭⎪⎫5π6,0为第二个零点.……………………………2分 列方程组⎩⎪⎨⎪⎧ ω·π3+φ=0,ω·5π6+φ=π, 解之得⎩⎪⎨⎪⎧ ω=2,φ=-2π3.…………………4分∴所求解析式为y =3sin ⎝⎛⎭⎪⎫2x -2π3.………………………………………………6分(2)f (x )=3sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π6-2π3 =3sin ⎝⎛⎭⎪⎫2x -π3,…………………………………………………………………8分 令2x -π3=π2+k π(k ∈Z ),那么x =512π+k π2(k ∈Z ),………………………10分 ∴f (x )的对称轴方程为x =512π+k π2(k ∈Z ).……………………………………12分20.〔13分〕解: (1)由,得f ′(x )=3x 2-a . …………………………………………………2分因为f (x )在(-∞,+∞)上是单调增函数,所以f ′(x )=3x 2-a ≥0在(-∞,+∞)上恒成立,即a ≤3x 2对x ∈(-∞,+∞)恒成立.因为3x 2≥0,所以只需a ≤0. ………………………………………………………6分 又a =0时,f ′(x )=3x 2≥0,f (x )在实数集R 上单调递增,所以a ≤0. …………7分(2)假设f ′(x )=3x 2-a ≤0在(-1,1)上恒成立,那么a ≥3x 2在x ∈(-1,1)时恒成立.…………………………………………………9分 因为-1<x <1,所以3x 2<3,所以只需a ≥3. ………………………………………11分 当a =3时,在x ∈(-1,1)上,f ′(x )=3(x 2-1)<0,……………………………12分 即f (x )在(-1,1)上为减函数,所以a ≥3.故存在实数a ≥3,使f (x )在(-1,1)上单调递减………………………………………13分21.〔14分〕解:(1)令x =y =0,得f (0+0)=f (0)+f (0),即f (0)=0. …………………………………………………………………………3分(2)令y =-x ,得f (x -x )=f (x )+f (-x ),又f (0)=0,那么有0=f (x )+f (-x ),即f (-x )=-f (x )对任意x ∈R 成立,所以f (x )是奇函数.…………………………………………………………………8分(3)解〔方法一〕因为f (x )在R 上是增函数,又由(2)知f (x )是奇函数.f (k ·3x )<-f (3x -9x -2)=f (-3x +9x +2),所以k ·3x <-3x +9x+2………………………………………………………………10分由k ·3x <-3x +9x +2,得k <3x +23x -1. u =3x +23x -1≥22-1,3x =2时,取“=〞,即u 的最小值为22-1,要使对x ∈R ,不等式k <3x +23x -1恒成立, 只要使k <22-1. …………………………………………………………………………14分〔方法二〕因为f (x )在R 上是增函数,又由(2)知f (x )是奇函数.f (k ·3x )<-f (3x -9x -2)=f (-3x +9x +2),所以k ·3x <-3x +9x +2,……………………………………………………………10分32x -(1+k )·3x+2>0对任意x ∈R 成立.令t =3x >0,问题等价于t 2-(1+k )t +2>0对任意t >0恒成立.令f (t )=t 2-(1+k )t +2,其对称轴为x =1+k 2,………………………12分 当1+k 2<0即k <-1时,f (0)=2>0,符合题意;当1+k2≥0即k≥-1时,对任意t>0,f(t)>0恒成立⇔⎩⎪⎨⎪⎧1+k2≥0,Δ=1+k2-4×2<0,解得-1≤k<-1+2 2.综上所述,当k<-1+22时,f(k·3x)+f(3x-9x-2)<0对任意x∈R恒成立.…14分励志赠言经典语录精选句;挥动**,放飞梦想。

(完整版)高二下期末文科数学试题及答案,推荐文档

(完整版)高二下期末文科数学试题及答案,推荐文档

(Ⅱ)设点 P 在曲线 C 上,求点 P 到直线 l 的距离的最小值 .
19. (本题满分 12 分)一次考试中,5 名学生的数学、物理成绩如下
学生
A1
A2
A3
A4
A5
数学 x (分) 89
91
93
95
97
物理 y (分) 87
89
89
92
93
求 y 关于 x 的线性回归方程.
21.(本题满分 12 分)已知在长方体 ABCD A1B1C1D1 中, AD AA1 1 , AB 2 ,点 F 是
10
5
1
5
A.
B.
C. D.
11 11
6
36
3.已知点
F1,F2
为椭圆
x2 9
y2 25
1的两个焦点,则
F1, F2
的坐标为
A. (4, 0), (4, 0) B. (3, 0), (3, 0) C. (0, 4), (0, 4) D. (0, 3), (0,3)
4.命题 P: x 0, x3 0 ,那么 P 是
(Ⅱ) 在以 O 为极点, x 轴的正半轴为极轴建立极坐标系,设点 P 的极坐标为 2 2, 3 ,
4
求点 P 到线段 AB 中点 M 的距离.
18.(本题满分
12
分ห้องสมุดไป่ตู้已知曲线
C
:
x
3
3 cos ( 为参数),直线 l : (cos
3 sin ) 12 .
y 3 sin
(Ⅰ)求直线 l 的直角坐标方程及曲线 C 的普通方程;
AB 边上动点,点E是棱 B1B 的中点. (Ⅰ)求证: D1F A1D ; (Ⅱ)求多面体 ABCDED1 的体积.

高二文科数学第二学期期末考试试题及答案

高二文科数学第二学期期末考试试题及答案

答案一、选择题1-5 DABCB 6-10 DADDC 11-12 BC二、填空题13.丁 14.充分15.(n +1)(n +2) …(n +n)=2n ×1×3×…×(2n -1) 16.2ΔABC ΔBOC ΔBDC S =S S ⋅ 三、解答题17.证明:由(1tan )(1tan )2A B ++= 可得tan tan 21tan 4tan 1tan()1tan 1tan 41tan tan 4A A B A A A A π--π=-===-π+++…………………5分()4B A k k π=-+π∈Z 即()4A B k k π+=+π∈Z因为A,B 都是钝角,即2A B π<+<π, 所以54A B π+=.…………………………10分 18………………6分 (Ⅱ)222()80(4241636)9.6()()()()40402060n ad bc K a b c d a c b d -⨯⨯-⨯===++++⨯⨯⨯由2(7.879)0.005P K ≥≈,所以有99.5%的把握认为“成绩与班级有关系”. …………………12分19.解:(Ⅰ)…………………2分(Ⅱ)()12456855x =++++=,()13040605070505y =++++=,…………4分213805550 6.514555b -⨯⨯==-⨯,50 6.5517.5a y bx =-=-⨯=,…………………8分 ∴回归直线方程为 6.517.5y x =+.…………………10分(Ⅲ)当10x =时,预报y 的值为10 6.517.582.5y =⨯+=.…………………12分20.(1)几何证明选讲解析:(Ⅰ)证明:连接BE ,则△ABE 为直角三角形,因为∠ABE =∠ADC =90,∠AEB =∠ACB ,所以△ABE ∽△ADC ,则=,即ABAC =ADAE.又AB =BC ,所以ACBC =ADAE. …………………6分(Ⅱ)因为FC 是⊙O 的切线,所以FC 2=AFBF.又AF =4,CF =6,则BF =9,AB =BF -AF =5.因为∠ACF =∠CBF ,又∠CFB =∠AFC ,所以△AFC ∽△CFB ,则=,即AC ==.…………………12分20.(2)坐标系与参数方程解析:(Ⅰ)直线参数方程可以化为根据直线参数方程的意义,这是一条经过点,倾斜角为60的直线.…………………6分 (Ⅱ)直线l 的直角坐标方程为y =x +,即x -y +=0,极坐标方程ρ=2cos 的直角坐标方程为2+2=1,所以圆心到直线l 的距离d ==,所以|AB |=2=.…………………12分20.(3)不等式选讲解:(Ⅰ)由()3f x ≤得,||3x a ≤-,解得33a x a ≤≤-+.又已知不等式()3f x ≤的解集为{|15}x x ≤≤-,所以31,35,a a -=-⎧⎨+=⎩解得2a =.…………………6分(Ⅱ)当2a =时,()|2|f x x =-,设()()(5)g x f x f x =++,于是()21,3,|2||3|5,32,21,2,x x g x x x x x x --<-⎧⎪-≤≤⎨⎪+>⎩=-++=所以当3x <-时,()5g x >;当32x ≤≤-时,()5g x =;当2x >时,()5g x >.综上可得,()g x 的最小值为5.从而若()(5)f x f x m ≥++,即()g x m ≥对一切实数x 恒成立,则m 的取值范围为(-∞,5].…………………12分21.(1)几何证明选讲解析:(Ⅰ)证明:由已知条件,可得∠BAE =∠CAD.因为∠AEB 与∠ACB 是同弧上的圆周角,所以∠AEB =∠ACD.故△ABE ∽△ADC. …………………6分(Ⅱ)因为△ABE ∽△ADC ,所以=,即ABAC =ADAE.又S =ABACsin ∠BAC ,且S =ADAE ,故ABACsin ∠BAC =ADAE.则sin ∠BAC =1,又∠BAC 为三角形内角,所以∠BAC =90. …………………12分21.(2)坐标系与参数方程(Ⅰ)2sin ρθ=可得22sin ρρθ=,即222x y y += 所以曲线C 的直角坐标方程为222x y y +=.…………………6分 (Ⅱ)直线l 的普通方程为4(2)3y x =--,令0y =可得2x =,即(2,0)M ,又曲线C 为圆,圆C 的圆心坐标为(0,1),半径1r =,则MC =1MN MC r ∴≤+=+.…………………12分21.(3)不等式选讲解 (Ⅰ)由|21|1x <-得1211x <<--,解得01x <<. 所以{}M |01x x <<=.…………………6分(Ⅱ)由(Ⅰ)和M a b ∈,可知01a <<,01b <<.所以(1)()(1)(1)0ab a b a b >+-+=--. 故1ab a b >++.…………………12分22.(1)几何证明选讲解析:(Ⅰ)延长BE 交圆E 于点M ,连接CM ,则∠BCM =90,又BM =2BE =4,∠EBC =30,∴ BC =2,又∵ AB =AC ,∴ AB =BC =.由切割线定理知AF 2=ABAC =3=9.∴ AF =3. …………………6分(Ⅱ)证明:过点E 作EH ⊥BC 于点H ,则△EDH 与△ADF 相似,从而有==,因此AD =3ED . …………………12分22.(2)坐标系与参数方程(I )由2cos 2sin x y ϕϕ=⎧⎨=⎩可得224x y +=,由4sin()3πρθ=+得24(sin cos cos sin )33ππρρθθ=+,即222x y y +=+,整理得22((1)4x y +-=.…………………6分 (II )圆1C 表示圆心在原点,半径为2的圆,圆2C表示圆心为,半径为2的圆, 又圆2C的圆心在圆1C 上,由几何性质可知,两圆相交.…………………12分22.(3)不等式选讲解:(I )当2a =时,|2||4|4x x -+-≥,当2x ≤时,得264x -+≥,解得1x ≤;当24x <<时,得24≥,无解;当4x ≥时,得264x -≥,解得5x ≥;故不等式的解集为{| 15}x x x ≤≥或.…………………6分(II )2||x a a -≤可解得22{|}x a a x a a -≤≤+, 因为22{|}{|26}x a a x a a x x -≤≤+⊆-≤≤, 所以2226a a a a ⎧-≤-⎪⎨+≤⎪⎩解得1232a a -≤≤⎧⎨-≤≤⎩即12a -≤≤,又因为1a >,所以12a <≤.…………………12分。

2021-2022学年高二下学期期末考试文科数学试题含答案

2021-2022学年高二下学期期末考试文科数学试题含答案
∴ ,
∵ 是 中点,
∴ 是 中点.
取 中点 ,连结 ,
∵四边形 是菱形, ,
∴ ,
又 , ,
∴ 平面 , .
∴ .
∴三棱锥 的体积 .
19(12分)
(1)根据已知条件,可得列联表如下:
男性
女性
合计
喜欢冰雪运动
(注:1分)
不喜欢冰雪运动
(注:1分)
合计
的观测值 5分
所以不能在犯错误的概率不超过 的前提下认为“喜欢冰雪运动”与“性别”有关系;
A. B. C. D.
5. 函数 的零点所在区间( )
A. B. C. D. ,
6. 执行下图的程序框图,若输入的 ,则输出的 值为( )
A.60B.48C.24D.12
7.设 均为非零向量,且 , ,则 与 的夹角为()
A. B. C. D.
8.已知函数 ,则函数 的图象可能是()
A. B. C. D.
21(12分)
(1)解:由抛物线定义,得 ,由题意得, ,解得
所以抛物线 的方程为 .
(2)证明:①直线 斜率不存在时,
可设 , ,

, ,
又 , ,
,解得 ,
, 为垂足,

故存在定点 ,使得 为定值,
②直线 斜率存在时,设直线 , 解得 ,
设 , , , ,则 , ,
因为 ,所以 ,
得 ,
所以 ,
男性
女性
合计
喜欢冰雪运动
不喜欢冰雪运动
合计
统计数据表明:男性喜欢冰雪运动的人数占男性人数的 ;女性喜欢冰雪运动的人数占女性人数的 .
(1)完成 列联表,并判断能否在犯错误的概率不超过 的前提下,认为“喜欢冰雪运动”与“性别”有关系;(结果精确到 )

高二文科数学第二学期期末考试试题及答案

高二文科数学第二学期期末考试试题及答案

复习试卷答案一、选择题1-5 6-10 11-12二、填空题13.丁 14.充分15.(n +1)(n +2) …(n +n)=2n ×1×3×…×(2n -1)16.2ΔABC ΔBOC ΔBDC S =S S ⋅三、解答题17.证明:由(1tan )(1tan )2A B ++= 可得tantan 21tan 4tan 1tan()1tan 1tan 41tan tan 4A A B A A A A π--π=-===-π+++…………………5分 ()4B A k k π=-+π∈Z 即()4A B k k π+=+π∈Z因为都是钝角,即2A B π<+<π, 所以54A B π+=.…………………………10分 18.解:(Ⅰ)22列联表如下:………………6分(Ⅱ)222()80(4241636)9.6()()()()40402060n ad bc K a b c d a c b d -⨯⨯-⨯===++++⨯⨯⨯ 由2(7.879)0.005P K ≥≈,所以有99.5%的把握认为“成绩与班级有关系”. …………………12分19.解:(Ⅰ)…………………2分(Ⅱ)()12456855x =++++=,()13040605070505y =++++=,…………4分213805550 6.514555b -⨯⨯==-⨯,50 6.5517.5a y bx =-=-⨯=,…………………8分 ∴回归直线方程为 6.517.5y x =+.…………………10分(Ⅲ)当10x =时,预报y 的值为10 6.517.582.5y =⨯+=.…………………12分20.(1)几何证明选讲解析:(Ⅰ)证明:连接,则△为直角三角形,因为∠=∠=90,∠=∠,所以△∽△,则=,即=.又=,所以=. …………………6分(Ⅱ)因为是⊙O 的切线,所以2=.又=4,=6,则=9,=-=5.因为∠=∠,又∠=∠,所以△∽△,则=,即==.…………………12分20.(2)坐标系与参数方程解析:(Ⅰ)直线参数方程可以化为根据直线参数方程的意义,这是一条经过点,倾斜角为60的直线.…………………6分(Ⅱ)直线l 的直角坐标方程为y =x +,即x -y +=0,极坐标方程ρ=2的直角坐标方程为2+2=1,所以圆心到直线l 的距离d ==,所以=2=.…………………12分20.(3)不等式选讲解:(Ⅰ)由()3f x ≤得,||3x a ≤-,解得33a x a ≤≤-+.又已知不等式()3f x ≤的解集为{|15}x x ≤≤-,所以31,35,a a -=-⎧⎨+=⎩解得2a =.…………………6分(Ⅱ)当2a =时,()|2|f x x =-,设()()(5)g x f x f x =++,于是()21,3,|2||3|5,32,21,2,x x g x x x x x x --<-⎧⎪-≤≤⎨⎪+>⎩=-++=所以当3x <-时,()5g x >;当32x ≤≤-时,()5g x =;当2x >时,()5g x >. 综上可得,()g x 的最小值为5.从而若()(5)f x f x m ≥++,即()g x m ≥对一切实数x 恒成立,则m 的取值范围为(-∞,5].…………………12分21.(1)几何证明选讲解析:(Ⅰ)证明:由已知条件,可得∠=∠.因为∠与∠是同弧上的圆周角,所以∠=∠.故△∽△. …………………6分(Ⅱ)因为△∽△,所以=,即=.又S = ∠,且S =,故 ∠=.则 ∠=1,又∠为三角形内角,所以∠=90. …………………12分21.(2)坐标系与参数方程(Ⅰ)2sin ρθ=可得22sin ρρθ=,即222x y y +=所以曲线C 的直角坐标方程为222x y y +=.…………………6分 (Ⅱ)直线l 的普通方程为4(2)3y x =--, 令0y =可得2x =,即(2,0)M ,又曲线C 为圆,圆C 的圆心坐标为(0,1), 半径1r =,则5MC =.51MN MC r ∴≤+=+.…………………12分21.(3)不等式选讲解 (Ⅰ)由|21|1x <-得1211x <<--,解得01x <<. 所以{}M |01x x <<=.…………………6分 (Ⅱ)由(Ⅰ)和M a b ∈,可知01a <<,01b <<. 所以(1)()(1)(1)0ab a b a b >+-+=--.故1ab a b >++.…………………12分22.(1)几何证明选讲解析:(Ⅰ)延长交圆E 于点M ,连接,则∠=90,又=2=4,∠=30,∴ =2,又∵ =,∴ ==.由切割线定理知2==3=9.∴ =3. …………………6分(Ⅱ)证明:过点E 作⊥于点H ,则△与△相似, 从而有==,因此=3. …………………12分22.(2)坐标系与参数方程(I )由2cos 2sin x y ϕϕ=⎧⎨=⎩可得224x y +=, 由4sin()3πρθ=+得24(sin cos cos sin )33ππρρθθ=+, 即22223x y y x +=+,整理得22(3)(1)4x y -+-=.…………………6分 ()圆1C 表示圆心在原点,半径为2的圆,圆2C 表示圆心为(3,1),半径为2的圆, 又圆2C 的圆心(3,1)在圆1C 上,由几何性质可知,两圆相交.…………………12分22.(3)不等式选讲解:(I )当2a =时,|2||4|4x x -+-≥,当2x ≤时,得264x -+≥,解得1x ≤;高二文科数学第二学期期末考试试题与答案11 / 11 当24x <<时,得24≥,无解;当4x ≥时,得264x -≥,解得5x ≥;故不等式的解集为{| 15}x x x ≤≥或.…………………6分()2||x a a -≤可解得22{|}x a a x a a -≤≤+, 因为22{|}{|26}x a a x a a x x -≤≤+⊆-≤≤, 所以2226a a a a ⎧-≤-⎪⎨+≤⎪⎩解得1232a a -≤≤⎧⎨-≤≤⎩即12a -≤≤,又因为1a >,所以12a <≤.…………………12分。

高二下学期文科数学期末复习试题含答案

高二下学期文科数学期末复习试题含答案

高二文科数学期末复习一、填空题:1.若复数z 满足()12i 34i z +=-+(i 是虚数单位),则=z . 答案:i 21+.2.设全集=U Z ,集合2{|20=--≥A x x x ,}∈x Z ,则U=A (用列举法表示).答案:{0,1}.3.若复数z 满足i iz 31+-=(i 是虚数单位),则=z .i +4.已知A ,B 均为集合{=U 2,4,6,8,10}的子集,且}4{=⋂B A ,}10{)(=⋂A B C U ,则=A .答案:{4,10}5.已知全集R U =,集合=A {32|≤≤-x x },=B {1|-<x x 或4>x },那么集合⋂A (UB )等于 .答案:{x|-1≤x≤3}解析:主要考查集合运算.由题意可得,UB ={x|-1≤x≤4},A ={x|-2≤x≤3},所以(⋂A U)B ={x|-1≤x≤3}.6.已知集合},3,1{m A =,}4,3{=B ,且}4,3,2,1{=B A ,则实数m = . 答案:27.命题“若b a >,则b a 22>”的否命题为 . 答案:若b a ≤,则ba22≤8.设函数()⎩⎨⎧=x xx f 2log 2 11>≤x x ,则()[]=2f f .答案:2 9.函数)23(log 5.0-=x y 的定义域是 .答案:]1,32(10.已知9.01.17.01.1,7.0log ,9.0log ===c b a ,则c b a ,,按从小到大依次为 .答案:c a b <<11.设函数)(x f 是定义在R 上的奇函数.若当),0(∞+∈x 时,x x f lg )(=,则满足0)(>x f 的x 的取值范围是 .答案:),1()0,1(∞+-12.曲线C :x x y ln =在点M (e ,e )处的切线方程为 . 答案:e x y -=213.已知函数211)(xx f -=的定义域为M ,)1(log )(2x x g -=(1-≤x )的值域为N ,则(RM )N ⋂等于 .答案:{x|x≥1}解析:考查定义域求解.可求得集合M ={x|-1<x<1},集合N ={g (x )|g (x )≥1},则RM ={x|x≤-1或x≥1},∴(RM )N ⋂={x|x≥1}.14.设⎪⎩⎪⎨⎧+--=,11,2|1|)(2x x x f 1||1||>≤x x ,则)]21([f f 等于 .答案:134解析:本题主要考查分段函数运算. ∵232|121|)21(-=--=f ,∴134)23(11)23()]21([2=-+=-=f f f .15.已知函数)1ln()(2++=x x x f ,若实数a ,b 满足0)1()(=-+b f a f ,则b a +等于 .答案:1解析:考查函数奇偶性.观察得)(x f 在定义域内是增函数, 而)1ln()(2++-=-x x x f )(11ln2x f x x -=++=,∴)(x f 是奇函数,则)1()1()(b f b f a f -=--=,∴b a -=1,即1=+b a .16.若函数)(log )(3ax x x f a -=(0>a ,1≠a )在区间(21-,0)上单调递增,则a 的范围是 .答案:143<≤a解析:本题考查复合函数单调性,要注意分类讨论.设ax x x u -=3)(,由复合函数的单调性,可分10<<a 和1>a 两种情况讨论:①当10<<a 时,ax x x u -=3)(在(21-,0)上单调递减,即03)('2≤-=a x x u 在(21-,0)上恒成立,∴43≥a ,∴143<≤a ;②当1>a 时,ax x x u -=3)(在(21-,0)上单调递增,即03)('2≥-=a x x u 在(21-,0)上恒成立,∴0≤a ,∴a 无解.综上,可知143<≤a .17.已知()f x 为偶函数,且)3()1(x f x f -=+,当02≤≤-x 时,xx f 3)(=,则=)2011(f . 答案:3118.函数221x xy =+的值域为 .答案:)1,0(19.已知函数)(x f 的定义域为A ,若其值域也为A ,则称区间A 为)(x f 的保值区间.若()ln g x x m x =++的保值区间是[,)e +∞ ,则实数m 的值为 .答案:1-20.若不等式0122<-+-m x mx 对任意]2,2[-∈m 恒成立,则实数x 的取值范围是 .答案:)213,217(+-21.直线1=y 与曲线a x x y +-=2有四个交点,则实数a 的取值范围是 . 答案:)45,1(22.已知函数0)(3(log 2≠-=a ax y a 且)1±≠a 在]2,0[上是减函数,则实数a 的取值范围是 . 答案:)23,1()0,1( -二、解答题: 1.已知函数132)(++-=x x x f 的定义域为A ,函数)1()]2)(1lg[()(<---=a x a a x x g 的定义域为B . (1)求A ;(2)若A B ⊆,求实数a 的取值范围. 解:(1)由0132≥++-x x ,得011≥+-x x ,∴1-<x 或1≥x , ……4分即),1[)1,(+∞--∞= A ; ……6分 (2)由0)2)(1(>---x a a x ,得0)2)(1(<---a x a x .∵1<a ,∴a a 21>+.∴)1,2(+=a a B . ……8分 ∵A B ⊆,∴12≥a 或11-≤+a ,即21≥a 或2-≤a . ……12分而1<a ,∴121<≤a 或2-≤a .故当A B ⊆时,实数a 的取值范围是)1,21[]2,( --∞. ……14分2.已知命题p :函数)2(log 25.0a x x y ++=的值域为R ,命题q :函数x a y )25(--= 是减函数.若p 或q 为真命题,p 且q 为假命题,求实数a 的取值范围.解:对命题p :∵函数)2(log 25.0a x x y ++=的值域为R ,∴1)1(222-++=++a x a x x 可以取到),0(+∞上的每一个值,∴01≤-a ,即1≤a ; ……4分命题q :∵函数xa y )25(--=是减函数,∴125>-a ,即2<a . ……8分 ∵p 或q 为真命题,p 且q 为假命题,∴命题p 与命题q 一真一假,若p 真q 假,则1≤a 且2≥a ,无解, ……10分 若p 假q 真,则21<<a , ……12分 ∴实数a 的取值范围是)2,1( ……14分3.某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为2.1万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为)10(<<x x ,则出厂价相应提高的比例为x 75.0,同时预计年销售量增加的比例为x 6.0.已知年利润=(出厂价–投入成本)⨯年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年有所增加,问投入成本增加的比例x 应在什么范围内? 解:(1)由题意得)10)(6.01(1000)]1(1)75.01(2.1[<<+⨯⨯+⨯-+⨯=x x x x y ,…5分 整理得 )10( 20020602<<++-=x x x y ;……7分(2)要保证本年度的利润比上年度有所增加,当且仅当⎩⎨⎧<<>⨯--.10,01000)12.1(x y …10分即⎩⎨⎧<<>+-.10,020602x x x 解不等式得 310<<x . ……13分答:为保证本年度的年利润比上年度有所增加,投入成本增加的比例x 应满足33.00<<x .…14分 4.已知命题p :指数函数xa x f )62()(-=在R 上单调递减,命题Q :关于x 的方程012322=++-a ax x 的两个实根均大于3.若p 或q 为真,p 且q 为假,求实数a 的取值范围.解:若p 真,则f (x )=(2a -6)x在R 上单调递减,∴0<2a -6<1,∴3<a<72,若q 真,令f (x )=x 2-3ax +2a 2+1,则应满足⎩⎪⎨⎪⎧Δ= -3a 2-4 2a 2+1 ≥0--3a2>3f 3 =9-9a +2a 2+1>0,∴⎩⎪⎨⎪⎧a ≥2或a ≤-2a>2a<2或a>52,故a>52,又由题意应有p 真q 假或p 假q 真.①若p 真q 假,则⎩⎪⎨⎪⎧3<a<72a ≤52,a 无解.②若p 假q 真,则⎩⎪⎨⎪⎧a ≤3或a ≥72a>52,∴52<a ≤3或a ≥72.故a 的取值范围是{a|52<a ≤3或a ≥72}.5.已知函数)(x f 满足对任意实数y x ,都有1)()()(+++=+xy y f x f y x f ,且2)2(-=-f .(1)求)1(f 的值;(2)证明:对一切大于1的正整数t ,恒有t t f >)(;(3)试求满足t t f =)(的所有的整数t ,并说明理由.解:(1)令0==y x ,得1)0(-=f ;令1-==y x ,得2)1()1()2(+-+-=-f f f ,又2)2(-=-f ,∴2)1(-=-f ; 令1,1-==y x ,得)1()1()0(-+=f f f ,∴1)1(=f . ……4分 (2)令1=x ,得2)()1(+=-+y y f y f ①∴当N y ∈时,有0)()1(>-+y f y f ,由1)1(),()1(=>+f y f y f 知对*N y ∈有0)(>y f ,∴当*N y ∈时,111)(2)()1(+>+++=++=+y y y f y y f y f ,于是对于一切大于1的正整数t ,恒有t t f >)(. ……9分 (3)由①及(1)可知1)4(,1)3(=--=-f f ; ……11分下面证明当整数4-≤t 时,t t f >)(,∵4-≤t ,∴02)2(>≥+-t 由① 得0)2()1()(>+-=+-t t f t f ,即 0)4()5(>---f f ,同理0)5()6(>---f f , ……,0)2()1(>+-+t f t f ,0)1()(>+-t f t f , 将以上不等式相加得41)4()(->=->f t f ,∴当4-≤t 时,t t f >)(, ……15分 综上,满足条件的整数只有2,1-=t . ……16分6.如下图所示,图1是定义在R 上的二次函数)(x f 的部分图象,图2是函数)(log )(b x x g a +=的部分图象.(1)分别求出函数)(x f 和)(x g 的解析式;(2)如果函数)]([x f g y =在区间[1,m )上单调递减,求实数m 的取值范围. 解:(1)由题图1得,二次函数)(x f 的顶点坐标为(1,2), 故可设函数2)1()(2+-=x a x f ,又函数)(x f 的图象过点(0,0),故2-=a , 整理得x x x f 42)(2+-=.由题图2得,函数)(log )(b x x g a +=的图象过点(0,0)和(1,1),故有⎩⎨⎧=+=1)1(log 0log b b aa ,∴⎩⎨⎧==12b a ,∴)1(log )(2+=x x g (1->x ).(2)由(1)得)142(l og )]([22++-==x x x f g y 是由t y 2log =和1422++-=x x t 复合而成的函数,而t y 2log =在定义域上单调递增,要使函数)]([x f g y =在区间[1,m )上单调递减,必须1422++-=x x t 在区间[1,m )上单调递减,且有0>t 恒成立.由0=t 得262±=x ,又因为t 的图象的对称轴为1=x .所以满足条件的m 的取值范围为2621±<<m .7.已知1212)3(4)(234+-++-=x x m x x x f ,R m ∈.(1)若f 0)1('=,求m 的值,并求)(x f 的单调区间;(2)若对于任意实数x ,0)(≥x f 恒成立,求m 的取值范围.解:(1)由f ′(x )=4x 3-12x 2+2(3+m )x -12,得f ′(1)=4-12+2(3+m )-12=0,解得m =7.………2分所以 f ′(x )=4 x 3-12x 2+20x -12=4(x -1)(x 2-2x +3) .方程x 2-2x +3=0的判别式Δ=22-3×4=-8<0,所以x 2-2x +3>0. 所以f ′(x )=0,解得x =1.……………………………4分由此可得f (x )的单调减区间是(-∞,1),f (x )的单调增区间是(1,+∞).…8分(2)f (x )=x 4-4x 3+(3+m )x 2-12x +12=(x 2+3)(x -2)2+(m -4)x 2. 当m <4时,f (2)=4(m -4)<0,不合题意;……………12分当m≥4时,f (x )=(x 2+3)(x -2)2+(m -4)x 2≥0,对一切实数x 恒成立. 所以,m 的取值范围是[4,+∞).……………16分。

高二下学期数学期末试卷及答案(文科)

高二下学期数学期末试卷及答案(文科)

下期高中二年级教学质量监测数学试卷(文科)(考试时间120分 满分150分)第Ⅰ卷 选择题(满分60分)一、选择题:本大题共12小题;每小题5分;满分60分;每小题只有一个选项符合题目要求;请将正确答案填在答题栏内。

1. 设集合M ={长方体};N ={正方体};则M ∩N =:A .MB .NC .∅D .以上都不是 2. “sinx =siny ”是“x =y ”的:A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 3. 下列函数是偶函数的是:A .)0()(2≥=x x x fB . )2cos()(π-=x x f C . x e x f =)(D . ||lg )(x x f =4. 从单词“equation ”中选取5个不同的字母排成一排;含有“qu ”(其中“qu ”相连且顺序不变)的不同排法共有()个: A .480 B . 840 C . 120 D . 7205. 72)12(xx +的展开式中倒数第三项的系数是:A .267CB . 6672CC . 2572CD . 5572C 6. 直线a ⊥平面α;直线b ∥平面α;则直线a 、b 的关系是:A .可能平行B . 一定垂直C . 一定异面D . 相交时才垂直7. 已知54cos ),0,2(=-∈x x π;则=x 2tan : A .274B . 274-C .724 D . 724-8. 抛物线的顶点在原点;焦点与椭圆14822=+x y 的一个焦点重合;则抛物线方程是:A .y x 82±=B . x y 82±=C . y x 42±=D . x y 42±=9. 公差不为0的等差数列}{n a 中;632,,a a a 成等比数列;则该等比数列的公比q 等于: A . 4 B . 3 C . 2 D . 110. 正四面体的内切球(与正四面体的四个面都相切的球)与外接球(过正四面体四个顶点的球)的体积比为: A .1:3 B . 1:9 C . 1:27 D . 与正四面体的棱长无关11. 从1;2;3;…;9这九个数中;随机抽取3个不同的数;这3个数的和为偶数的概率是:A .95 B . 94 C . 2111 D . 2110 12. 如图:四边形BECF 、AFED 都是矩形;且平面AFED ⊥平面BCDEF ;∠ACF =α;∠ABF =β;∠BAC =θ;则下列式子中正确的是: A .θβαcos cos cos •= B .θβαcos sin sin •=C .θαβcos cos cos •=D .θαβcos sin sin •=。

高二数学(文科)第二学期期末考试试题(含参考答案)

高二数学(文科)第二学期期末考试试题(含参考答案)

A.

B.

C.

D.

【答案】 C 【解析】设 A(x 1,y1),B(x 2,y2), 又 F(1,0), 则 =(1-x 1,-y1), =(x 2-1,y 2), 由题意知 =3 ,
因此

又由 A 、B 均在抛物线上知
解得
直线 l 的斜率为
=± ,
因此直线 l 的方程为 y= (x-1) 或 y=- (x-1). 故选 C.
【答案】 D
【解析】因为特称命题的否定是全称命题,
为奇函数 不为偶函数
所以 , 命题 p: ? a∈R,f(x) 为偶函数 , 则¬ p 为: ? a∈R,f(x) 不为偶函数
故选: D
7. 某种产品的广告费支出与校舍(单位元)之间有下表关系(

2
4
5
6
) 8
30
40
60
50
70
与 的线性回归方程为
2016-2017 学年第二学期期末检测
高二数学(文科)试题
第Ⅰ卷(共 60 分) 一、选择题:本大题共 12 个小题 , 每小题 5 分, 共 60 分 . 在每小题给出的四个选项中,只有一 项是符合题目要求的 .
1. 若复数
,则
()
A.
B.
C.
D.
【答案】 C
【解析】由题意得,
,故选 C.
2. 点 极坐标为
区分

.
5. 已知双曲线
的离心率为 2,则双曲线 的渐近线的方程为(

A.
B.
C.
D.
【答案】 B
【解析】根据题意 , 双曲线的方程为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二文科 数学试卷【完卷时间:120分钟;满分150分】一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项符合题目要求.)1.设集合{}{}d c b B b a A ,,,,==, ,则B A ( )A .{}d c b a ,,,B .{}d c b ,,C .{}d c a ,,D . {}b2.命题“∃x ∈R ,x 3-2x +1=0”的否定是( )A .∃x ∈R ,x 3-2x +1≠0B .不存在x ∈R ,x 3-2x +1≠0C .∀x ∈R ,x 3-2x +1≠0D . ∀x ∈R ,x 3-2x +1=0 3.函数11)(-+=x x x f 的定义域是( ) A .(1,)-+∞ B .[1,)-+∞ C .(1,1)(1,)-+∞ D .[1,1)(1,)-+∞4. 将指数函数()x f 的图象向右平移一个单位,得到如图的()x g的图象,则()=x f ( )A .x⎪⎭⎫ ⎝⎛21 B .x⎪⎭⎫ ⎝⎛31 C .x2 D .x3 5.下列函数中,既是偶函数又在区间()+∞,0上单调递减的是( ) A .1y x=B .21y x =-+C .xy e -=D . lg ||y x =6. 函数()log (43)a f x x =-过定点( )A .(3,14) B .(3,04) C .(1,1) D .(1, 0)7. 已知2.12=a ,8.0)21(-=b ,2log 25=c ,则c b a ,,的大小关系为( )A .a b c <<B .b a c <<C .c a b <<D .a c b <<)(x g8. 函数x x x f -=ln )(在区间],0(e 的最大值为( )A .e -1B . e - C. -1 D .09. 已知函数⎩⎨⎧>-≤=)0()3()0(2)(x x f x x f x ,则=)2013(f ( )A . 2B . 1 C.21 D .41 10.已知a 是x x f x 2log )21()(-=的零点,若000,()x a f x <<则的值满足( )A .0()0f x =B .0()0f x <C .0()0f x >D .0()f x 的符号不确定11.定义一种运算:=a a b b ⎧⊗⎨⎩ <a ba b ≥已知函数()=2(3-)x f x x ⊗,那么函数=()y f x 的图像大致是 ( )12.某同学在研究函数2()1xf x x =+()x ∈R 时,给出下列结论: ①()()0f x f x -+=对任意x ∈R 成立; ②函数()f x 的值域是(2,2)-;③若12x x ≠,则一定有12()()f x f x ≠; ④函数()()2g x f x x =-在R 上有三个零点.则正确结论的序号是( )A .②③④B .①②③C . ①③④D .①②③④二、填空题:(本大题共4小题,每小题4分,共16分。

把答案填在答题卡的相应位置.)13. 幂函数的图象过点1(3,)9,则其解析式为14.已知关于x 的不等式02≥+-m mx x 在R 上恒成立,则实数m 的取值范围是______15.函数)(x f 是定义在R 上的偶函数,且满足(2)()f x f x +=.当[0,1]x ∈时,()2f x x =.若在区间[2,2]-上方程()0ax a f x +-=恰有三个不相等的实数根,则实数a 的取值范围是 _______.16.若直角坐标平面内两点P 、Q 满足条件:①P 、Q 都在函数()f x 的图象上;②P 、Q 关于原点对称,则称点对(P ,Q )是函数()f x 的一个“友好点对”(点对(P ,Q )与(Q ,P )看作同一个“友好点对”).已知函数⎪⎩⎪⎨⎧<+≥=-)0(,2)0(,2)(2x x x x e x f x ,则()f x 的 “友好点对”有 个.三、解答题:(本大题共6小题,共74分。

解答应写出文字说明,证明过程或演算步骤.)17.(本小题满分12分)已知集合}2{≥=x x A ,}0))(2({<+-=a x a x x B . 0>a (Ⅰ)当3=a 时,求集合A ∩B ;(Ⅱ)命题p :x ∈A ,命题q :x ∈B ,若⌝p 是q 的充分条件,求实数a 的取值范围.18.(本小题满分12分)已知命题p :函数x a y =在R 上单调递增;q :函数2)(+=ax x f 在(-1,2)上存在一个零点.如果“p 或q ”为真,且“p 且q ”为假,求实数a 的范围.19.(本小题满分12分) 已知函数b ax e x f x+-=)((1)若)(x f 在2=x 有极小值21e -,求实数b a ,的值;(2)若)(x f 在定义域R 内单调递增,求实数a 的取值范围.20.(本小题满分12分)已知函数)1,0(,11log )(≠>-+=a a xxx f a且 (1)求)(x f 的定义域; (2)证明)(x f 为奇函数;(3)求使0)(>x f 成立的的取值范围.21.(本小题满分12分)某小商品公司开发一种亚运会纪念品,每件产品的成本是15元,销售价是20元,月平均销售a 件,通过改进工艺,产品的成本不变,质量和技术含金提高,市场分析的结果表明:如果产品的销售价提高的百分率为(01)x x <<,那么月平均销售量减少的百分率为2x ,记改进工艺后,该公司销售纪念品的月平均利润是y (元)。

(1)写出y 与x 的函数关系式;(2)改进工艺后,确定该纪念品的售价,使该公司销售该纪念品的月平均利润最大。

22.(本小题满分14分)已知函数()ln f x ax x =+()a ∈R .(Ⅰ)若2a =,求曲线()y f x =在1x =处切线的斜率; (Ⅱ)求()f x 的单调区间; (Ⅲ)设2()22gx xx =-+,若对任意1(0,)x ∈+∞,均存在[]20,1x ∈,使得12()()f x g x <,求a 的取值范围.高二文科数学答卷一、选择题:1~5:ACDCB 6~10: DACBC 11~12:AB二、填空题:13:2-=x y 14:[]4,0 15:[)1,0 16:2 三、解答题:17. (Ⅰ)解:因为集合}22{}2{≥-≤=≥=x x x x x A 或, ………… 2分 当3=a 时,集合{|(6)(3)0}{|36}B x x x x x =-+<=-<<, ………… 4分 所以A ∩,23{-≤<-=x x B 或26}x ≤<. …………… 6分(Ⅱ)∵⌝p 是q 的充分条件∴⌝q p ⇒即B A C R ⊆ …………… 7分 ∵{}22<<-=x x A C R{}a x a x a x a x x B 2}0))(2({<<-=<+-= , 0>a ……… 9分∴⎪⎩⎪⎨⎧≥≥>∴⎪⎩⎪⎨⎧≥-≤->1202220a a a a a a ………………………… 11分 解得 2≥a . 故实数a 的取值范围为[)+∞,2 …………………… 12分 18.解:∵命题p :函数x a y =在R 上单调递增∴p :1>a ………… 2分∵命题q :函数2)(+=ax x f 在(-1,2)上存在一个零点. ∴0)2()1(<⋅-f f 即0)22()2(<+⋅+-a a ………… 4分∴q : 1-<a 或 2>a ………… 6分由“p 或q ”为真,且 “p 且q ”为假, 得“p 真q 假”或“p 假q 真”. ………… 7分若p 真q 假,则⎩⎨⎧≤≤->211a a 得 21≤<a ;………… 9分若p 假q 真,则⎩⎨⎧>-<≤211a a a 或得1-<a ………… 11分综上所述,实数a 的取值范围为(]2,1()1, -∞-………… 12分 19.解:(1)a e x f x -=')( …………1分依题意得⎪⎩⎪⎨⎧-=+-=-⎩⎨⎧-=='22221201)2(0)2(eb a e a e e f f 即…………4分 解得⎩⎨⎧==12b e a ,故所求的实数1,2==b e a …………6分(2)由(1)得a e x f x -=')(∵)(x f 在定义域R 内单调递增 ∴0)(≥-='a e x f x在R 上恒成立…………8分即R x e a x ∈≤,恒成立∵),0(+∞∈∈x e R x 时, …………10分 ∴0≤a 所以实数a 的取值范围为(]0,∞- …………12分 20.解:(1)由011>-+xx得0)1)(1(<-+x x ∴11<<-x所以)(x f 的定义域为()1,1- …………3分 (2)∵)(x f 的定义域为()1,1-关于原点对称 …………4分又)(11log 11log 11log )(1x f xxx x x x x f aa a -=-+-=⎪⎭⎫⎝⎛-+=+-=--…………6分 ∴)(x f 为奇函数 …………7分 (3)当1>a 时,由1log 011log a axx=>-+得 012111>-∴>-+xxx x 即0)1(2<-x x ∴10<<x …………9分 当10<<a 时,由1log 011log a axx=>-+得 012111<-∴<-+xxx x 即0)1(2>-x x ∴10><x x 或∵11<<-x ∴01<<-x …………11分 综上所述,当1>a 时,原不等式的解集为()1,0当10<<a 时,原不等式的解集为()0,1- …………12分21.解:(1)改进工艺后,每件产品的销售价为20(1)x +元,月平均销售量为2(1)a x -件, ………………………………………………………2分则月平均利润2(1)[20(1)15]y a x x =-⋅+-(元),y x ∴与的函数关系式为235(144)(01)y a x x x x =+--<< …………5分(2)由212125(4212)0,23y a x x x x '=--===-得(舍), …………6分 110,0;1,0.22x y x y ''∴<<><<<当时当时 …………9分∴函数2315(144)(01)2y a x x x x x =+--<<=在处取得最大值。

相关文档
最新文档