高中数学21种解题方法
高中数学解题的典型方法与技巧

高中数学解题的典型方法与技巧高中数学解题的典型方法与技巧在解数学题目时,不是运算错误确实是时刻不够,总之,确实是最后得不到全分!这是为啥呢?三个字:不熟练。
那如何才能熟练呢?除了大量刷题之外,你需要的更多的是总结,小数老师总结了21个解题方法和技巧,需要的就用起来吧!第一章高中数学解题差不多方法一、配方法配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。
何时配方,需要我们适当推测,同时合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。
有时也将其称为“凑配法”。
最常见的配方是进行恒等变形,使数学式子显现完全平方。
它要紧适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。
配方法使用的最差不多的配方依据是二项完全平方公式(a+b)2=a2+2ab +b2,将那个公式灵活运用,可得到各种差不多配方形式,如:二、换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。
换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
换元法又称辅助元素法、变量代换法。
通过引进新的变量,能够把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。
或者变为熟悉的形式,把复杂的运算和推证简化。
它能够化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。
换元的方法有:局部换元、三角换元、均值换元等。
局部换元又称整体换元,是在已知或者未知中,某个代数式几次显现,而用一个字母来代替它从而简化问题,因此有时候要通过变形才能发觉。
三角换元,应用于去根号,或者变换为三角形式易求时,要紧利用已知代数式中与三角知识中有某点联系进行换元。
高中数学轻松搞定排列组合难题21种方法_3514

练习题:一个班有 6 名战士,其中正副班长各 1 人现从中选 4 人完成四种不 同的任务,每人完成一种任务,且正副班长有且只有 1 人参加,则不同 的选法有 192 种 九.小集团问题先整体后局部策略 例 9.用 1,2,3,4,5 组成没有重复数字的五位数其中恰有两个偶数夹 1,5在 两个奇数之间,这样的五位数有多少个? 解:把1,5,2,4当作一个小集团与3排队共有 A 2 2 种排法,再排小集团 2 2 2 2 内部共有 A 2 2 A 2 种排法,由分步计数原理共有 A 2 A 2 A 2 种排法.
1524
小集团排列问题中,先整体后局部,再结合其它策略进行处理。
练习题: 1.计划展出 10 幅不同的画,其中 1 幅水彩画,4幅油画,5幅国画, 排成一 行陈列,要求同一品种的必须连在一起,并且水彩画不在两端,那么共有 5 4 陈列方式的种数为 A 2 2 A5 A4 5 5 2. 5 男生和5女生站成一排照像,男生相邻,女生也相邻的排法有 A 2 2 A5 A5 种 十.元素相同问题隔板策略 例 10.有 10 个运动员名额, 分给 7 个班, 每班至少一个,有多少种分配方案? 解:因为 10 个名额没有差别,把它们排成一排。相邻名额之间形成9个 空隙。在9个空档中选6个位置插个隔板,可把名额分成7份,对 应地分给7个班级,每一种插板方法对应一种分法共有 C96 种分法。
甲 乙 丙 丁
要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并 为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列.
练习题:某人射击 8 枪, 命中 4 枪, 4 枪命中恰好有 3 枪连在一起的情形的不 同种数为 20 三.不相邻问题插空策略 例 3.一个晚会的节目有 4 个舞蹈,2 个相声,3 个独唱,舞蹈节目不能连续出场, 则节目的出场顺序有多少种? 解:分两步进行第一步排 2 个相声和 3 个独唱共有 A 5 5 种,第二步将 4 舞蹈插 4 入第一步排好的 6 个元素中间包含首尾两个空位共有种 A 6 不同的方法, 由 4 分步计数原理,节目的不同顺序共有 A 5 种 5 A6
高中数学52种快速做题方法

高中数学52种快速做题方法1、适用条件[直线过焦点],必有ecosA=(x-1)/(x 1),其中A为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。
注:上述公式适合一切圆锥曲线。
如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x 1)/(x-1),其他不变。
2、函数的周期性问题(记忆三个)(1)若f(x)=-f(x k),则T=2k;(2)若f(x)=m/(x k)(m不为0),则T=2k;(3)若f(x)=f(x k) f(x-k),则T=6k。
注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。
c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。
3、关于对称问题(无数人搞不懂的问题)总结如下(1)若在R上(下同)满足:f(a x)=f(b-x)恒成立,对称轴为x=(a b)/2(2)函数y=f(a x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a x) f(a-x)=2b,则f(x)图像关于(a,b)中心对称4、函数奇偶性(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5、数列爆强定律(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n m)=S(m) q mS(n)可以迅速求q6、数列的终极利器,特征根方程首先介绍公式:对于an 1=pan q(n 1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p (n-1) x,这是一阶特征根方程的运用。
排列组合常见21种解题方法

排列组合常见21种解题方法排列组合是高中数学中的重要知识点,也是考试中常见的题型。
在解决排列组合问题时,我们可以运用多种方法来求解,下面将介绍常见的21种解题方法。
1. 直接法,根据排列组合的定义,直接计算排列或组合的个数。
2. 公式法,利用排列组合的公式进行计算,如排列公式P(n,m)=n!/(n-m)!,组合公式C(n,m)=n!/(m!(n-m)!)。
3. 递推法,通过递推关系式求解排列组合问题,如利用排列数的递推关系P(n,m)=P(n-1,m)+P(n-1,m-1)。
4. 分类讨论法,将问题进行分类讨论,分别求解每种情况的排列组合个数,然后合并得出最终结果。
5. 组合数性质法,利用组合数的性质,如C(n,m)=C(n,n-m),C(n,m)=C(n-1,m)+C(n-1,m-1),简化计算过程。
6. 二项式定理法,利用二项式定理展开式子,求解排列组合问题。
7. 二项式系数法,利用二项式系数的性质,如n个不同元素的排列个数为n!,n个相同元素的排列个数为1,简化计算过程。
8. 容斥原理法,利用容斥原理求解排列组合问题,排除重复计算的部分。
9. 对称性法,利用排列组合的对称性质,简化计算过程。
10. 逆向思维法,从问题的逆向思考,求解排列组合问题。
11. 生成函数法,利用生成函数求解排列组合问题,将排列组合问题转化为多项式求解。
12. 构造法,通过构造合适的排列组合模型,求解问题。
13. 图论法,将排列组合问题转化为图论问题,利用图论算法求解。
14. 动态规划法,利用动态规划算法求解排列组合问题,降低时间复杂度。
15. 贪心算法法,利用贪心算法求解排列组合问题,简化计算过程。
16. 模拟法,通过模拟排列组合过程,求解问题。
17. 枚举法,将所有可能的排列组合情况列举出来,求解问题。
18. 穷举法,通过穷举所有可能的情况,求解问题。
19. 数学归纳法,利用数学归纳法证明排列组合的性质,求解问题。
高中数学21种解题方法与技巧全汇总

01解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
02因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法03配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
配方法的主要根据有:04换元法解某些复杂的特型方程要用到“换元法”。
换元法解方程的一般步骤是:设元→换元→解元→还元05待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。
适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
其解题步骤是:①设②列③解④写06复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:(-----)(----)=0 两种情况为或型②配成平方型:(----)2+(----)2=0 两种情况为且型07数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组08化简二次根式基本思路是:把√m化成完全平方式。
即:09观察法10代数式求值方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。
11解含参方程方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。
解含参方程一般要用‘分类讨论法’,其原则是:(1)按照类型求解(2)根据需要讨论(3)分类写出结论12恒相等成立的有用条件(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。
高中数学21种解题方法及例题

高中数学21种解题方法及例题高中数学是一门很重要的学科,也是很多学生觉得困难的学科之一。
在解题的过程中,学生通常需要掌握一些解题方法和技巧。
下面我将介绍高中数学中常用的21种解题方法,并给出相应的例题。
1.立体几何解题方法:首先根据题目要求,画出几何图形;然后根据图形的特点,运用相应的几何定理和计算公式,推导出求解所需的等式或关系式;最后代入数据进行计算。
例题:已知正方体的体积是64立方厘米,求正方体的边长。
2.二次函数解题方法:首先确定二次函数的类型,如抛物线开口方向等;然后根据题目要求,列出方程或不等式;最后解方程或不等式,求解出未知数。
例题:已知二次函数y=ax²+bx+c的图像经过点(-1, 2)和(2, 5),且在x=1处取得最小值2,求a、b、c的值。
3.反证法解题方法:假设所要证明的结论不成立,推导出与已知条件矛盾的结论,从而证明假设不成立,即所要证明的结论成立。
例题:证明根号2是无理数。
4.分析法解题方法:根据题目所给的条件,逐步分析问题,提取并利用条件之间的关系,推导出所要求的结论。
例题:在等腰梯形ABCD中,AB∥CD,AC和BD交于点O,设∠ACD=m,求∠BOD的度数。
5.数字特征解题法:根据题目要求,进行分析,找出问题中的数字特征,并利用特征进行计算或推导。
例题:设a,b,c均为正数,且满足等式a+b+c=1,求最大值3a²+6b+9c²。
6.整体与部分解题方法:把题目所给的整体看成若干个部分,通过对部分的分析和计算,得到整体的结论。
例题:某数的20%是30,求这个数。
7.函数与方程解题方法:根据题目要求,根据函数或方程的性质和变化规律,列出方程或不等式,最后求解未知数。
例题:已知函数f(x)=ax²+bx+c与y轴交于点A,与曲线y=x²交于点B和C,且B(1, 1),求方程f(x)=0的两个根的和的倒数。
8.逐次逼近法解题方法:通过逐步逼近,不断缩小求解范围,最终得到所要求解的值。
21种数学解题方法与技巧全汇总

高考很多同学总是特别头疼数学成绩,要知道数学题只要掌握了方法,就能够迅速提升。
距离高考还有99天,小编特地为大家整理了一份高中数学老师都推荐的数学解题方法,这里面的21种方法涵盖了高中数学的方方面面,可以说是高中数学解题方法大综合,各位同学一定要记得收藏哦!解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
配方法的主要根据有:换元法解某些复杂的特型方程要用到“换元法”。
换元法解方程的一般步骤是:设元→换元→解元→还元待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。
适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
其解题步骤是:①设②列③解④写复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:(-----)(----)=0 两种情况为或型②配成平方型:(----)2+(----)2=0 两种情况为且型数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组化简二次根式基本思路是:把√m化成完全平方式。
即:观察法代数式求值方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。
高中数学解题的21个典型方法与技巧

中学数学解题的21个典型方法与技巧1、解决肯定值问题(化简、求值、方程、不等式、函数)的基本思路是:把肯定值的问题转化为不含肯定值的问题。
详细转化方法有:①分类探讨法:依据肯定值符号中的数或表达式的正、零、负分状况去掉肯定值。
①零点分段探讨法:适用于含一个字母的多个肯定值的状况。
①两边平方法:适用于两边非负的方程或不等式。
①几何意义法:适用于有明显几何意义的状况。
2、依据项数选择方法和依据一般步骤是顺当进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式→选择用公式→十字相乘法→分组分解法→拆项添项法。
3、利用完全平方式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
配方法的主要依据有:①()2222a ab b a b ±+=± ①()2222222a b c ab bc ca a b c +++++=++ ①()()()22222212a b c ab bc ca a b b c c a ⎡⎤+++++=+++++⎣⎦ ①222222224224244b b b b b b ac ax bx c a x x c a x x c a x a a a a a a ⎛⎫-⎛⎫⎛⎫++=++=+⋅⋅++-=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭4、解某些困难的特型方程要用到换元法。
换元法解题的一般步骤是:设元→换元→解元→还元。
5、待定系数法是在已知对象形式的条件下求对象的一种方法。
适用于求解点的坐标、函数解析式、曲线方程等重要问题的解决。
其步骤是:①设①列①解①写6、困难代数等式条件的运用技巧:右边化为零,左边变形。
①因式分解型:()()0---⋅---=,两种状况为或型。
①配成平方型:()()220---+---=,两种状况为且型。
7、数学中两个最宏大的解题思路:①求值的思路−−−−−→方程思想与方法列欲求值字母的方程或方程组 ①求取值范围的思路−−−−−−→不等式思想与方法欲求范围字母的不等式或不等式组8的基本思路:把m 化成完全平方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.恒相等成立的有用条件 (1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。 (2)ax2+bx+c=0对于任意x都成立关于x的方程ax2+bx+c=0有无数解a=0、b=0、c=0。
5.待定系数法 待定系数法是在已知对象形式的条件下求对象的一种Байду номын сангаас法。适用于求点的坐标、函数解析式、曲线 方程等重要问题的解决。其解题步骤是: ①设 ②列 ③解 ④写
6.复杂代数等式 复杂代数等式型条件的使用技巧:左边化零,右边变形。 ①因式分解型: (-----)(----)=0 两种情况为或型 ②配成平方型: (----)2+(----)2=0 两种情况为且型
2.因式分解 根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:
提取公因式
选择用公式
十字相乘法
分组分解法
拆项添项法
3.配方法 利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。 配方法的主要根据有:
4.换元法 解某些复杂的特型方程要用到“换元法”。换元法解方程的一般步骤是: 设元→换元→解元→还元
13.恒不等成立的条件 由一元二次不等式解集为R的有关结论容易得到下列恒不等成立的条件:
14.平移规律 图像的平移规律是研究复杂函数的重要方法。平移规律是:
15.图像法 讨论函数性质的重要方法是图像法——看图像、得性质。 定义域 图像在X轴上对应的部分 值 域 图像在Y轴上对应的部分 单调性 从左向右看,连续上升的一段在X轴上对应的区间是增区间;从左向右看,连续下降的一段在X轴上 对应的区间是减区间。 最 值 图像最高点处有最大值,图像最低点处有最小值 奇偶性 关于Y轴对称是偶函数,关于原点对称是奇函数
求根标根
右上起穿
奇穿偶回 注意: ①高次不等式首先要用移项和因式分解的方法化为“左边乘积、右边是零”的形式。 ②分式不等式一般不能用两边都乘去分母的方法来解,要通过移项、通分合并、因式分解的方法化 为“商零式”,用穿线法解。
7.数学中两个最伟大的解题思路 (1)求值的思路列欲求值字母的方程或方程组 (2)求取值范围的思路列欲求范围字母的不等式或不等式组
8.化简二次根式 基本思路是:把√m化成完全平方式。即:
9.观察法
10.代数式求值 方法有: (1)直接代入法 (2)化简代入法 (3)适当变形法(和积代入法) 注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和 积代入法”求值。
16.函数、方程、不等式间的重要关系
方程的根
函数图像与x轴交点横坐标
不等式解集端点 17.一元二次不等式的解法 一元二次不等式可以用因式分解转化为二元一次不等式组去解,但比较复杂;它的简便的实用解法 是根据“三个二次”间的关系,利用二次函数的图像去解。具体步骤如下:
二次化为正
判别且求根
画出示意图
解集横轴中 18.一元二次方程根的讨论 一元二次方程根的符号问题或m型问题可以利用根的判别式和根与系数的关系来解决,但根的一般 问题、特别是区间根的问题要根据“三个二次”间的关系,利用二次函数的图像来解决。“图像 法”解决一元二次方程根的问题的一般思路是:
题意
二次函数图像
不等式组 不等式组包括:a的符号;△的情况;对称轴的位置;区间端点函数值的符号。
19.基本函数在区间上的值域 我们学过的一次函数、反比例函数、二次函数等有名称的函数是基本函数。基本函数求值域或最值 有两种情况: (1)定义域没有特别限制时---记忆法或结论法; (2)定义域有特别限制时---图像截断法,一般思路是:
画出图像
截出一断
得出结论 20.最值型应用题的解法 应用题中,涉及“一个变量取什么值时另一个变量取得最大值或最小值”的问题是最值型应用题。 解决最值型应用题的基本思路是函数思想法,其解题步骤是:
设变量
列函数
求最值
写结论 21.穿线法 穿线法是解高次不等式和分式不等式的最好方法。其一般思路是:
首项化正
1.解决绝对值问题 主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对 值的问题。具体转化方法有: ①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。 ②零点分段讨论法:适用于含一个字母的多个绝对值的情况。 ③两边平方法:适用于两边非负的方程或不等式。 ④几何意义法:适用于有明显几何意义的情况。