(完整版)实数知识点及例题
实数知识点及典型例题

实数知识点及典型例题一、实数知识点。
(一)实数的分类。
1. 有理数。
- 整数:正整数、0、负整数统称为整数。
例如:5,0,-3。
- 分数:正分数、负分数统称为分数。
分数都可以表示为有限小数或无限循环小数。
例如:(1)/(2)=0.5,(1)/(3)=0.333·s。
- 有理数:整数和分数统称为有理数。
2. 无理数。
- 无理数是无限不循环小数。
例如:√(2),π,0.1010010001·s(每两个1之间依次多一个0)。
3. 实数。
- 有理数和无理数统称为实数。
(二)实数的相关概念。
1. 数轴。
- 规定了原点、正方向和单位长度的直线叫做数轴。
- 实数与数轴上的点是一一对应的关系。
2. 相反数。
- 只有符号不同的两个数叫做互为相反数。
a的相反数是-a,0的相反数是0。
例如:3与-3互为相反数。
- 若a、b互为相反数,则a + b=0。
3. 绝对值。
- 数轴上表示数a的点与原点的距离叫做数a的绝对值,记作| a|。
- 当a≥slant0时,| a|=a;当a < 0时,| a|=-a。
例如:| 5| = 5,| -3|=3。
4. 倒数。
- 乘积为1的两个数互为倒数。
a(a≠0)的倒数是(1)/(a)。
例如:2的倒数是(1)/(2)。
(三)实数的运算。
1. 运算法则。
- 加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数。
- 减法法则:减去一个数等于加上这个数的相反数。
- 乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘都得0。
- 除法法则:除以一个数等于乘以这个数的倒数(除数不为0)。
2. 运算律。
- 加法交换律:a + b=b + a。
- 加法结合律:(a + b)+c=a+(b + c)。
- 乘法交换律:ab = ba。
实数知识点及典型例题

(4 )《实数》知识点总结及典型例题练习题第一节.平方根1.平方根与算数平方根的含义平方根:如果一个数的平方等于4,那么数X 就叫做d 的平方根。
即X —,记作X 二土長算数平方根:如果一个正数X 的平方等于a,那么正数x 叫做a 的篡:术士方投,即X 2=a,记作x 二需。
2 .平方根的性质与表示⑴表示:正数d 的平方根用土丽表示,亦叫做正平方根,也称为算术平方根,-百叫做a 的负 平方根。
⑵一个正数有两个平方根:土亦(根指数2省略) 0有一个平方根,为0,记作"=0负数没有平方根⑶平方与开平方互为逆运算开平方:求一个数。
的平方根的运算。
(y[a =6/ ( a >0 )⑷長的双重非负性:a>0且亦n0 (应用较广)例:Jx-4 +j4-x = y 得知 x = 4,y = 0⑸如果正数的小数点向右或者向左移动两位,它的正的平方根的小数点就相应地向右或向左移动 一位。
区分:4的平方根为 _____ 的平方根为 _________ 品=—4开平方后,得 ___________ (6)若 a > b > 0 ,则 yfa > y/b (7)y[a x y[b = 4ab(ci > O,b > 0)典型习题:(1) 求算数平方根与平方根 1:求下列数的平方根 36 0.09 (-4) 2 0 1(2) 解简单的二次方程3:81X 2-25 = O(3) 被开方数的意义5:若a 为实数,下列代数式中,一定是负数的是() A. -a 2 B. -( d+l)2 C.-倚D.-(|-«| + l)爷弋心/?>0)4 :4(X +1)2=8u>0 a <06:实数a在数轴上的位置如图所示,化简:-1| + yj(a-2)2二 * o 1 ~' 2 才(4):有关x的取值范围目前中考的所有考点例题:求使得下列各式成立的x的取值范围7:』3x-58:当加____________ 时,丁3 —加有意义;当加 ____________ 时,"加一3有意义io.等式= 成立的条件是( ).A、xllB、x>-\C、-1 <x< 1D、x<-ls£> 1(5)非负性知识点:总结:若儿个非负数的和为零,则每个非负数都为零,这个性质在代数式求值中经常被使用.10.已知a,b是实数,且有h_V5 + l| + (b + Q2=o,求的值.11 :.已知实数a、b、c 满足,2 a-1 + J” + c + (c-丄)?二0,,求a+b+c 的值.213•若y = Jx-l + Jl-x -1,求x, y 的值。
(完整版)实数知识点及例题

实数习题集【知识要点】1.实数分类:2.相反数:互为相反数b a ,0=+b a 4.倒数:互为倒数没有倒数.b a ,0;1=ab 5.平方根,立方根:±.==x ,a x a x 记作的平方根叫做数则数若,2a 若a x ,a x a x 33,==记作的立方根叫做数则数6.数轴的概念与画法.实数与数轴上的点一一对应;利用数形结合的思想及数轴比较实数大小的方法.【课前热身】1、36的平方根是 ;的算术平方根是 ;162、8的立方根是 ;= ;327-3、的相反数是 ;绝对值等于的数是37-34、的倒数的平方是 ,2的立方根的倒数的立方是。
5、的绝对值是 ,的绝对值是 。
211-6、9的平方根的绝对值的相反数是 。
7的相反数是 ,的相反数的绝对值是。
+-8的相反数之和的倒数的平方为 。
--+【典型例题】例1、把下列各数分别填入相应的集合里:2,3.0,10,1010010001.0,125,722,0,1223π---∙- 有理数集合:{ };无理数集合:{ };负实数集合:{ };例2、比较数的大小(1)(2)2332与6756--与例3.化简:实数有理数无理数整数(包括正整数,零,负整数)分数(包括正分数,负整数)正无理数负无理数)0(>a 3.绝对值:=a a0a -)0(=a )0(<a(1)233221-+-+-(2+例4.已知是实数,且有,求的值.b a ,0)2(132=+++-b a b a ,例5 若|2x+1|与互为相反数,则-xy 的平方根的值是多少?x y 481+总结:若几个非负数的和为零,则每个非负数都为零,这个性质在代数式求值中经常被使用.例6.已知为有理数,且,求的平方根b a ,3)323(2b a +=-b a +例7. 已知实数x 、y 、z 在数轴上的对应点如图试化简:。
x zx y y z x z x z ---++++-【课堂练习】1.无限小数包括无限循环小数和 ,其中 是有理数, 是无理数.2.如果,则是一个 数,的整数部分是 .102=x x x 3.的平方根是 ,立方根是 .644.的相反数是 ,绝对值是 .51-5.若 .==x x 则66.当时,有意义;_______x 32-x 7.当时,有意义;_______x x -118.若一个正数的平方根是和,则,这个正数是 ;12-a 2+-a ____=a 9.当时,化简;10≤≤x __________12=-+x x 10.的位置如图所示,则下列各式中有意义的是( ).b a , A 、B 、C 、D 、b a +b a -ab ab -11.全体小数所在的集合是( ).A 、分数集合B 、有理数集合C 、无理数集合D 、实数集合12.等式成立的条件是( ).1112-=+⋅-x x x A 、B 、C 、D 、1≥x 1-≥x 11≤≤-x 11≥-≤或x 13.若,则等于( ).64611)23(3=-+x x A 、B 、C、D 、214141-49-14.计算:(1) (221--4-(3(4) 24+-+-++81214150232-+-ab15.若,求的值.054=-++-y x x xy16.设a 、b 是有理数,且满足,求的值(21a +=-b a17.若,求的值。
初二(下)实数的知识点与练习题

第十三章 实数知识要点一: 1.实数的性质(1)实数范围内仍然适用在有理数范围内定义的一些概念(如倒数,相反数);(2)两实数的大小关系:正数大于0,0大于负数;两个正实数,绝对值大的实数大;两个负实数,绝对值大的实数反而小;(3)在实数范围内,加、减、乘、除(除数不为零)、乘方五种运算是畅通无阻的,但是开方运算要注意,正实数和零总能进行开方运算,而负实数只能开奇次方,不能开偶次方;(4)有理数范围内的运算律和运算顺序在实数范围内仍然相同. 2.实数与数轴的关系每一个实数都可以用数轴上的一个点表示;反之,数轴上每一个点都表示一个实数,即数轴上的点与实数是一一对应关系.3.实数的分类(1)按实数的定义分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 (2)按实数的正负分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧负无理数负分数负整数负有理数负实数负数)零(既不是正数也不是正无理数正分数正整数正有理数正实数实数4.实数的大小比较两实数的大小关系如下:正实数都大于0,负实数都小于0,正数大于一切负数;两个正实数,绝对值大的实数较大;两个负实数,绝对值大的实数反而小.实数和数轴上的点一一对应,在数轴上表示的两个实数,右边的数总大于左边的数.【典型例题】2-1C B A 例1若a 为实数,下列代数式中,一定是负数的是( ) A. -a 2 B. -( a +1)2 C.-2a D.-(a -+1)分析:本题主要考查负数和非负数的概念,同时涉及考查字母表示数这个知识点.由于a 为实数, a 2、( a +1)2、2a 均为非负数,∴-a 2≤0,-( a +1)2≤0,-2a ≤0.而0既不是正数也不是负数,是介于正数与负数之间的中性数.因此,A 、B 、C 不一定是负数.又依据绝对值的概念及性质知-(a -+1)﹤0.故选D例2 实数a 在数轴上的位置如图所示, 化简:2)2(1-+-a a =分析:这里考查了数形结合的数学思想,要去掉绝对值符号,必须清楚绝对值符号内的数是正还是负.由数轴可知:1﹤a ﹤2,于是,22)2(,112a a a a a -=-=--=-所以, 2)2(1-+-a a =a -1+2-a =1.例3 如图所示,数轴上A 、B 两点分别表示实数1,5,点B 关于点A 的对称点为C ,则点C 所表示的实数为( ) A. 5-2 B. 2-5 C.5-3 D.3-5分析:这道题也考查了数形结合的数学思想,同时又考查了对称的性质.B 、C 两点关于点A 对称,因而B 、C 两点到点A 的距离是相同的,点B 到点A 的距离是5-1,所以点C 到点A 的距离也是5-1,设点C 到点O 的距离为a ,所以a +1=5-1,即a =5-2.又因为点C 所表示的实数为负数,所以点C 所表示的实数为2-5.例4 已知a 、b 是有理数,且满足(a -2)2+3-b =0,则a b 的值为分析:因为(a -2)2+3-b =0,所以a -2=0,b -3=0。
实数知识点及例题

实数习题集【知识要点】1.实数分类:2.相反数:b a ,互为相反数 0=+b a4.倒数:b a ,互为倒数0;1=ab 没有倒数.5.平方根,立方根:==x ,a x a x 记作的平方根叫做数则数若,2±a . 若a x ,a x a x 33,==记作的立方根叫做数则数6.数轴的概念与画法.实数与数轴上的点一一对应;利用数形结合的思想及数轴比较实数大小的方法.实数易错题分类汇总典型例题一:计算1.计算()2010200902211-⨯⎪⎭⎫ ⎝⎛-的结果是【答案】-1 2. ()()212321-+-+⎪⎭⎫ ⎝⎛--π的值为【答案】13.下列计算中,正确的是( )A .020= B .2a a a =+C3=±D .623)(a a =【答案】D4.下列运算正确的是( )A .1331-÷= Ba = C .3.14 3.14ππ-=- D .326211()24a b a b =典型例题二:估算 1.82cm 接近于( )实数有理数无理数 整数(包括正整数,零,负整数) 分数(包括正分数,负整数)正无理数 负无理数)0(>a 3.绝对值: =aa 0 a -)0(=a )0(<aA .珠穆朗玛峰的高度B .三层楼的高度C .姚明的身高D .一张纸的厚度 【答案】C2.如图,数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是( )A .0>abB .0>-b aC .0>+b aD .0||||>-b a【答案】D典型例题三:应用题1.有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为( ) A .8人 B .9人 C .10人 D .11人【答案】B.2.一种商品原来的销售利润率是47%.现在由于进价提高了5%,而售价没变,所以该商品的销售利润率变成了 【注:销售利润率=(售价—进价)÷进价】 【答案】40%典型例题四:信息与推断题1.观察下列算式,用你所发现的规律得出20102的末位数字是( )21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,… A .2 B .4 C .6 D .8 【答案】B 2.观察下列算式:,65613,21873,7293,2433,813,273,93,1387654321========,通过观察,用你所发现的规律确定20023的个位数字是( )A.3B.9C.7D.1 【答案】B 3.观察下列各式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯……计算:3×(1×2+2×3+3×4+…+99×100)=( )A .97×98×99B .98×99×100C .99×100×101D .100×101×102 【答案】C4.已知:3212323=⨯⨯=C ,1032134535=⨯⨯⨯⨯=C ,154321345646=⨯⨯⨯⨯⨯⨯=C ,…,观察上面的计算过程,寻找规律并计算=610C . 【答案】210典型例题五:比较大小10 -1 a b B A1. 31.0与1.02.331与213. 215--与-2 4. 2003-2002与2002-2001作业:设2的整数部分为a ,小数部分为b ,则1+2a b -2b =第三讲 平移、旋转与对称专题例题精讲1. 正方形ABCD 在坐标系中的位置如图所示,将正方形ABCD绕D 点顺时针方向旋转90后,B 点的坐标为( )A .(22)-,B .(41),C .(31), D .(40),随堂练习1下列四张扑克牌图案,属于中心对称的是( ).2.观察下列银行标志,从图案看既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个D .4个例题精讲2将图(六)的正方形色纸沿其中一条对角线对折后,再沿原正方形的另 一条对角线对折,如图(七)所示。
实数知识点及例题

实数知识点及例题一、实数的概念实数是有理数和无理数的总称。
有理数包括整数(正整数、0、负整数)和分数(正分数、负分数);无理数是无限不循环小数。
例如,π(圆周率)、根号 2 等都是无理数。
而像 3、-5、025 等则是有理数。
二、实数的分类1、按定义分类:有理数:整数和分数。
无理数:无限不循环小数。
2、按性质分类:正实数:大于 0 的实数,包括正有理数和正无理数。
负实数:小于 0 的实数,包括负有理数和负无理数。
三、实数的基本性质1、实数的有序性:任意两个实数 a 和 b,必定有 a > b、a = b 或a <b 三种关系之一成立。
2、实数的稠密性:两个不相等的实数之间总有另一个实数存在。
3、实数的四则运算:实数的加、减、乘、除(除数不为 0)运算满足相应的运算律。
四、数轴数轴是规定了原点、正方向和单位长度的直线。
实数与数轴上的点一一对应,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。
例如,在数轴上表示 2 的点在原点右侧距离原点 2 个单位长度。
五、绝对值实数 a 的绝对值记作|a|,定义为:当a ≥ 0 时,|a| = a;当 a < 0 时,|a| = a。
绝对值的性质:1、|a| ≥ 0,即绝对值是非负的。
2、若|a| =|b|,则 a = ±b。
例如,|3| = 3,|-5| = 5。
六、相反数实数 a 的相反数是 a,它们的和为 0,即 a +(a) = 0。
例如,5 的相反数是-5,它们的和为 0。
若两个实数的乘积为 1,则这两个数互为倒数。
非零实数 a 的倒数是 1/a。
例如,2 的倒数是 1/2,-3 的倒数是-1/3。
八、实数的运算1、加法法则:同号两数相加,取相同的符号,并把绝对值相加。
异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
2、减法法则:减去一个数,等于加上这个数的相反数。
3、乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
(完整版)实数知识点和练习

第六章实数知识网络:考点一、实数的概念及分类1、实数的分类2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类,7等;(1)开方开不尽的数,如32π+8等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o等(这类在初三会出现)是有理数,而不是无判断一个数是否是无理数,不能只看形式,要看运算结果,如0,16理数。
3、有理数与无理数的区别(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。
考点二、平方根、算术平方根、立方根1、概念、定义(1)如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根。
(2)如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。
如果,那么x叫做a的平方根。
(3)如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。
如果,那么x叫做a的立方根。
2、运算名称(1)求一个正数a 的平方根的运算,叫做开平方。
平方与开平方互为逆运算。
(2)求一个数的立方根的运算,叫做开立方。
开立方和立方互为逆运算。
3、运算符号(1)正数a 的算术平方根,记作“a ”。
(2)a(a ≥0)的平方根的符号表达为。
(3)一个数a 的立方根,用表示,其中a 是被开方数,3是根指数。
4、运算公式4、开方规律小结(1)若a ≥0,则a 的平方根是a ±,a 的算术平方根a ;正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;0的平方根和算术平方根都是0;负数没有平方根。
实数都有立方根,一个数的立方根有且只有一个,并且它的符号与被开方数的符号相同。
正数的立方根是正数,负数的立方根是负数,0的立方根是0。
(2)若a<0,则a 没有平方根和算术平方根;若a 为任意实数,则a 的立方根是。
实数_知识点+题型归纳

第六章实数知识讲解+题型归纳知识讲解一、实数的组成1、实数又可分为正实数,零,负实数2.数轴:数轴的三要素——原点、正方向和单位长度。
数轴上的点与实数一一对应二、相反数、绝对值、倒数1. 相反数:只有符号不同的两个数互为相反数。
数a的相反数是-a。
正数的相反数是负数,负数的相反数是正数,零的相反数是零. 性质:互为相反数的两个数之和为0。
2.绝对值:表示点到原点的距离,数a的绝对值为3.倒数:乘积为1的两个数互为倒数。
非0实数a的倒数为1a. 0没有倒数。
4.相反数是它本身的数只有0;绝对值是它本身的数是非负数〔0和正数〕;倒数是它本身的数是±1. 三、平方根与立方根1.平方根:如果一个数的平方等于a,这个数叫做a的平方根。
数a的平方根记作〔a>=0〕特性:一个正数有两个平方根,它们互为相反数,零的平方根还是零。
负数没有平方根。
正数a的正的平方根也叫做a的算术平方根,零的算术平方根还是零。
开平方:求一个数的平方根的运算,叫做开平方。
2.立方根:如果一个数的立方等于a,那么称这个数为a立方根。
数a 的立方根用3a表示。
任何数都有立方根,一个正数有一个正的立方根;一个负数有一个负的立方根,零的立方根是零。
开立方:求一个数的立方根〔三次方根〕的运算,叫做开立方。
四、实数的运算有理数的加法法那么:a〕同号两数相加,取一样的符号,并把绝对值相加;b)异号两数相加。
绝对值相等时和为0;绝对值不相等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值. 任何数与零相加等于原数。
2.有理数的减法法那么:减去一个数等于加上这个数的相反数。
3.乘法法那么:a| |aa〕两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零.b〕几个不为0的有理数相乘,积的符号由负因数的个数决定,当负因数的个数为奇数时,积为负,为偶数,积为正c〕几个数相乘,只要有一个因数为0,积就为04.有理数除法法那么:a〕两个有理数相除〔除数不为0〕同号得正,异号得负,并把绝对值相除。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数习题集
【知识要点】
1.实数分类:
2.相反数:b a ,互为相反数 0=+b a
4.倒数:b a ,互为倒数
0;1=ab 没有倒数.
5.平方根,立方根:==x ,a x a x 记作的平方根叫做数则数若,2
±a .
若a x ,a x a x 33,=
=记作的立方根叫做数则数
6.数轴的概念与画法.实数与数轴上的点一一对应;利用数形结合的思想及数轴比较实数大小的方法. 【课前热身】
1、36的平方根是 ;16的算术平方根是 ;
2、8的立方根是 ;327-= ;
3、37-的相反数是 ;绝对值等于3的数是
4
、的倒数的平方是 ,2的立方根的倒数的立方是 。
5
、2的绝对值是
,11的绝对值是 。
6、9的平方根的绝对值的相反数是 。
7
+的相反数是
,-的相反数的绝对值是 。
8
-
-+的相反数之和的倒数的平方为 。
【典型例题】
例1、把下列各数分别填入相应的集合里:
2
,3.0,10,1010010001.0,125,722,0,1223π---•-Λ
有理数集合:{ }; 无理数集合:{ }; 负实数集合:{ }; 例2、比较数的大小 (1)2332与
(2)6756--与
例3.化简: (1)233221-+-+
-
实数
有理数
无理数 整数(包括正整数,零,负整数) 分数(包括正分数,负整数) 正无理数
负无理数
)0(>a
3.绝对值: =a
a
a -
)0(=a )0(<
a
(2
例4.已知b a ,是实数,且有0)2(132=+++-b a ,求b a ,的值.
例5 若|2x+1|与x y 48
1
+互为相反数,则-xy 的平方根的值是多少?
总结:若几个非负数的和为零,则每个非负数都为零,这个性质在代数式求值中经常被使用.
例6.已知b a ,为有理数,且3)323(2
b a +=-,求b a +的平方根
例7. 已知实数x 、y 、z 在数轴上的对应点如图 试化简:x z x y y z x z x z
---++++
-。
y x
z
【课堂练习】
1.无限小数包括无限循环小数和 ,其中 是有理数, 是无理数. 2.如果102
=x ,则x 是一个 数,x 的整数部分是 . 3.64的平方根是 ,立方根是 . 4.51-的相反数是 ,绝对值是 . 5.若==
x x 则6 .
6.当_______x 时,32-x 有意义; 7.当_______x 时,
x
-11有意义;
8.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ; 9.当10≤≤x 时,化简__________12
=-+x x ; 10.b a ,的位置如图所示,则下列各式中有意义的是( ). A 、b a + B 、b a -
C 、ab
D 、a b - 11.全体小数所在的集合是( ).
A 、分数集合
B 、有理数集合
C 、无理数集合
D 、实数集合
12.等式1112-=+⋅-x x x 成立的条件是( ).
A 、1≥x
B 、1-≥x
C 、11≤≤-x
D 、11≥-≤或x
13.若64
61
1)23(3
=
-+x ,则x 等于( ). A 、
2
1 B 、4
1
C 、4
1-
D 、4
9-
14.计算: (1
)21--- (2)
34-+-
(3
24++-++
(4)8
1
214150232-+
-
a
b
o
15.若054=-++-y x x ,求xy 的值.
16.设a 、b 是有理数,且满足(
2
1a +=-
,求b a 的值
17.若10m ++=,求2000
4m n -的值。
实数习题集作业
1.若式子2)4(a --是一个实数,则满足这个条件的a 有( ). A 、0个
B 、1个
C 、4个
D 、无数个
2.已知ABC ∆的三边长为c b a ,,,且b a 和满足04412=+-+-b b a ,则c 的取值范围
为 .
3.若b a ,互为相反数,d c ,互为倒数,则=++333cd b a . 4. 若y=,122--+-x x 则y x 的值为多少
5.已知0)8(652=++++-z y x ,求13+-+z y x 的值.
6.计算
(1))138)(138(-+ (2))83)(31()35(2
-++-
(3)222222513683)4(--++-- (4))625()23(2-+。