苏科版九年级数学下册:《相似三角形》与《锐角三角函数》综合提优训练

合集下载

苏科版九年级数学下册第6章《相似三角形》专题练习

苏科版九年级数学下册第6章《相似三角形》专题练习

《相似三角形》专题练习【小题热身】1.如图,已知∠1=∠2,添加下列条件后,仍无法判定△ABC∽△ADE的是()A.=B.∠B=∠D C.∠C=∠AED D.=2.在正方形网格纸上,每个小格的顶点叫格点,以格点为顶点的三角形叫格点三角形.如图,点A、B、C是4×4网格中的格点(每个小正方形的边长为1),在网格中画出一个与△ABC相似且面积最大的格点△DEF,△DEF的面积为.3.如图所示,已知AB∥CD∥EF,那么下列结论正确的是()A.=B.=C.=D.=4.如图,在△ABC中,点E、D分别为AB与AC边上两个点,请添加一个条件:,使得△ADE∽△ABC.5.如图,在平面直角坐标系中有两点A(6,0)、B(0,8),点C为AB的中点,点D在x轴上,当点D 的坐标为时,由点A、C、D组成的三角形与△AOB相似.6.如图,Rt△ABC中,∠C=90°,AC=4,BC=3,点D是AB边上一点(不与A、B重合),若过点D 的直线截得的三角形与△ABC相似,并且平分△ABC的周长,则AD的长为.7.如图,在矩形ABCD中,AB=12,AD=10,E为AD中点,CF⊥BE,垂足为G,交BC边于点F,则CF的长为.8.如图,Rt△ABC中,∠C=90°,AC=4,BC=2,D、E、F分别为BC、AB、AC上的点,若四边形DEFC为正方形,则它的边长为.9.如图,在矩形ABCD中,M、N分别是边AD、BC的中点,点P、Q在DC边上,且PQ=DC.若AB=16,BC=20,则图中阴影部分的面积是.10.如图,在△ABC中,AH⊥BC于H,正方形DEFG内接于△ABC,点D、E分别在边AB、AC上,点G、F在边BC上.如果BC=20,正方形DEFG的面积为25,那么AH的长是.11.如图:已知矩形ABCD中,AB=2,BC=3,F是CD的中点,一束光线从A点出发,通过BC边反射,恰好落在F点,那么反射点E与C点的距离为.12.如图,△ABC中,AB=6,AC=12,点D、E分别在AB、AC上,其中BD=x,AE=2x.当△ADE 与△ABC相似时,x的值可能是.【典型例题】1.(相似与二次函数)如图,矩形CDEF两边EF、FC的长分别为8和6,现沿EF、FC的中点A、B截去一角成五边形ABCDE,P是线段AB上一动点,试确定AP的长为多少时,矩形PMDN的面积取得最大值.2.(相似与圆)如图,在正方形ABCD中,E是AB上一点,连接DE.过点A作AF⊥DE,垂足为F,⊙O 经过点C、D、F,与AD相交于点G.(1)求证:△AFG∽△DFC;(2)若正方形ABCD的边长为4,AE=1,求⊙O的半径.3.(一线三直角必有相似)(1)如图1,已知AB⊥l,DE⊥l,垂足分别为B、E,且C是l上一点,∠ACD =90°,求证:△ABC∽△CED;(2)如图2,在四边形ABCD中,已知∠ABC=90°,AB=3,BC=4,CD=10,DA=5,求BD 的长.4.(动态问题与相似)如图所示,在矩形ABCD中,AB=12厘米,BC=6厘米,点P沿AB边从点A开始向点B以2厘米/秒的速度移动;点Q沿DA边从点D向点A以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动时间(0≤t≤6).那么:(1)当t为何值时,△QAP为等腰直角三角形?(2)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?5.(相似性质)如图,在Rt△ABC中,∠C=90°,BC=3,CA=4,矩形DEFC的顶点D、E、F都在△ABC的边上.(1)设DE=x,则AD=(用含x的代数式表示);(2)求矩形DEFC的最大面积.6.(一线三直角)如图,G是边长为8的正方形ABCD的边BC上的一点,矩形DEFG的边EF过点A,GD=10.(1)求FG的长;(2)直接写出图中与△BHG相似的所有三角形.7.(圆中相似计算)如图,以△ABC的边AB为直径的⊙O分别交BC、AC于F、G,且G是的中点,过点G作DE⊥BC,垂足为E,交BA的延长线于点D(1)求证:DE是⊙O的切线;(2)若AB=6,BG=4,求BE的长;(3)若AB=6,CE=1.2,请直接写出AD的长.8.(圆中动态问题与相似计算)如图,在边长为8的正方形ABCD中,点O为AD上一动点(4<OA<8),以O为圆心,OA的长为半径的圆交边CD于点M,连接OM,过点M作⊙O的切线交边BC于N.(1)求证:△ODM∽△MCN;(2)设DM=x,OA=R,求R关于x的函数关系式;(3)在动点O逐渐向点D运动(OA逐渐增大)的过程中,△CMN的周长如何变化?说明理由.9.(相似与作图)如图,矩形ABCD中,AB=4,BC=m(m>1),点E是AD边上一定点,且AE=1.(1)当m=3时,AB上存在点F,使△AEF与△BCF相似,求AF的长度.(2)如图②,当m=3.5时.用直尺和圆规在AB上作出所有使△AEF与△BCF相似的点F.(不写作法,保留作图痕迹)(3)对于每一个确定的m的值,AB上存在几个点F,使得△AEF与△BCF相似?10.(遇到比例式问题处理)如图,在△ABC中,AD和BG是△ABC的高,连接GD.(1)求证:△ADC∽△BGC;(2)求证:CG•AB=CB•DG.11.(一线三等角与相似)如图,在等边△ABC中,P为BC上一点,D为AC上一点,且∠APD=60°,BP=1,CD=.(1)求证:△ABP∽△PCD;(2)求△ABC的边长.12.(动态问题中的相似计算)如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P以2mm/s 的速度从A向B移动,(不与B重合),动点Q以4mm/s的速度从B向C移动,(不与C重合),若P、Q同时出发,试问:(1)经过几秒后,△PBQ与△ABC相似.(2)经过几秒后,四边形APQC的面积最小?并求出最小值.13.△ABC,∠A、∠B、∠C的对边分别是a、b、c,一条直线DE与边AC相交于点D,与边AB相交于点E.(1)如图①,若DE将△ABC分成周长相等的两部分,则AD+AE等于多少;(用a、b、c表示)(2)如图②,若AC=3,AB=5,BC=4.DE将△ABC分成周长、面积相等的两部分,求AD;(3)如图③,若DE将△ABC分成周长、面积相等的两部分,且DE∥BC,则a、b、c满足什么关系?【作业】1.如图,△ABB1,△A1B1B2,△A2B2B3是全等的等边三角形,点B,B1,B2,B3在同一条直线上,连接A2B交AB1于点P,交A1B1于点Q,则PB1:QB1的值为.2.如图,l1∥l2∥l3,直线a、b与l1、l2、l3分别交于点A、B、C和点D、E、F,若BC=2AB,AD=2,CF=6,则BE的长为.3.如图,在△ABC中,AB=3,AC=4,BC=6,D是BC上一点,CD=2,过点D的直线l将△ABC分成两部分,使其所分成的三角形与△ABC相似,若直线l与△ABC另一边的交点为点P,则DP=.4.如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC 的长.5.如图,正方形ABCD的边长为12,其内部有一个小正方形EFGH,其中E、F、H分别在BC,CD,AE 上.若BE=9,则小正方形EFGH的边长.6.如图,在矩形ABCD中,E是AD的中点,连接AC、BE,AC与BE交于点F,则△ABF的面积和四边形CDEF的面积的比值是.7.如图,在△ABC和△APQ中,∠P AB=∠QAC,若再增加一个条件就能使△APQ∽△ABC,则这个条件可以是.8.如图,在平面直角坐标系中,点A,B的坐标分别为(0,1)和,若在第四象限存在点C,使△OBC和△OAB相似,则点C的坐标是.9.如图,在△ABC中,∠C=90°,AC=BC=1,P为△ABC内一个动点,∠P AB=∠PBC,则CP的最小值为.10.如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=1,BD=2,则AC 的长.11.如图,A、B、C、D依次为一直线上4个点,BC=2,△BCE为等边三角形,⊙O过A、D、E三点,且∠AOD=120°.设AB=x,CD=y,则y与x的函数关系式为.12.如图,在△ABC中,AB=8cm,BC=16cm,点P从点A开始沿AB向B以2cm/s的速度移动,点Q 从点B开始沿BC向C点以4cm/s的速度移动.如果P,Q分别从A,B同时出发,经过几秒钟△PBQ 与△ABC相似?13.如图,已知等腰△ABC中,AB=AC=2,点D在边BC的反向延长线上,且DB=3,点E在边BC的延长线上,且∠EAC=∠D,设AD=x,BC=y.(1)求线段CE的长;(2)求y关于x的函数解析式,并写出定义域;(3)当AC平分∠BAE时,求线段AD的长.14.如图,已知△ABC中,AB=AC=2,∠A=90°,O为BC的中点,动点E在AB边上移动,动点F 在AC边上移动.(1)点E,F的移动过程中,△OEF是否能成为∠EOF=45°的等腰三角形?若能,求BE的长;若不能,请说明理由;(2)当∠EOF=45°时,设BE=x,CF=y,求y与x之间的函数解析式,并写出x的取值范围.15.如图,AB⊥BC,DC⊥BC,垂足分别为B、C,且AB=8,DC=6,BC=14,BC上是否存在点P使△ABP与△DCP相似?若有,有几个?并求出此时BP的长,若没有,请说明理由.16.如图,AB是⊙O的直径,弦CD⊥AB于点H,点F是上一点,连接AF交CD的延长线于点E.(1)求证:△AFC∽△ACE;(2)若AC=5,DC=6,当点F为的中点时,求AF的值.17.学习《图形的相似》后,我们可以借助探索两个直角三角形全等的条件所获得经验,继续探索两个直角三角形相似的条件.(1)“对与两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,两个直角三角形全等”.类似地你可以得到:“满足,或,两个直角三角形相似”.(2)“满足斜边和一条直角边对应相等的两个直角三角形全等”,类似地你可以得到“满足的两个直角三角形相似”.请结合下列所给图形,写出已知,并完成说理过程.已知:如图,.试说明Rt△ABC∽Rt△A′B′C′.。

(完整word版)九年级数学相似三角形综合练习题及答案

(完整word版)九年级数学相似三角形综合练习题及答案

九年级数学相似三角形综合练习题及答案1填空(本题14 分)(1 )若a=8cm , b=6cm , c=4cm ,贝U a 、b 、c 的第四比例项 d= ; a 、c 的比例中项 x=_。

(2) (2 x):x x:(1 x)。

贝U x= _______________ 。

(3) _______________________________________________________________ 在比例尺为1: 10000的地图上,距离为 3cm 的两地实际距离为 _________________________________ 公里。

(4) _______________________________ 圆的周长与其直径的比为 。

a 5 a b(5 )右,贝V= 。

b 3 b(6) 若 a :b : c=1 : 2: 3, 且 a bc 6,贝U a= ________ , b= ______ , c= _______ 。

ABACBC3CE(7) 如图 1, -- —— --- -,则(1)——(2)若 BD=10cm ,则 AD= cm 。

ADAE DE 2BC ,AB16cm ,则△ ABC 的周长为 (8)若点AEABc是线段AB的黄金分割点,且AC CB ,竺AC2•选择题 (1) 根据 A . 0 B .(2) 若线段bA.- d d C.—c(本题 9分)ab=cd ,共可写出以a 为第四比例项的比例式的个数是(1 C .2 D . 3a 、b 、c 、d 成比例,则下列各式中一定能成立的是(d b bC . DB AB ADEC AC AEBC DB ECECAB ACa3•已知:即3。

求(1)严3;;(2)愛。

(本题10分)4.若x: y:z=2: 7:5, x 2y 3z 6,求的值。

(本题6 分)za c e 25.已知:& d f 3,且2b d 5f 18。

苏科版九年级下册数学相似三角形《图形的相似》提优测试卷(无答案)

苏科版九年级下册数学相似三角形《图形的相似》提优测试卷(无答案)

第6章《图形的相似》提优测试卷(时间:120分钟 满分:130分)一、选择题(每小题3分,共30分) 1.下列四个命题中,假命题是( ) A.有一个锐角相等的两个等腰三角形相似 B.有一个锐角相等的两个直角三角形相似 C.底边和腰对应成比例的两个等腰三角形相似 D.斜边和直角边对应成比例的两个直角三角形相似2.如图,已知C E ∠=∠,则不一定能使ABC ∆∽ADE ∆的条件是( ) A. BAD CAE ∠=∠ B. B D ∠=∠ C.BC AC DE AE = D. AB ACAD AE=3.如图所示,给出下列条件:①ACD ADC ∠=∠; ②ADC ACB ∠=∠; ③AC AB CD BC =; ④AC ABAD AC=. 其中单独能够判定ABC ∆∽ACD ∆的个数为( )A. 1B. 2C. 3D. 44.(乌鲁木齐中考题)如图,在ABC ∆中,点,D E 分别在,AB AC 上,//DE BC ,AD CE =.若:3:2,10AB AC BC ==,则DE 的长为( )A. 3B.4C. 5D. 65.(毕节中考题)如图,ABC ∆中,AE 交BC 于点D ,C E ∠=∠,:3:5AD DE =,8AE =,4BD =,则DC 的长等于( )A. 154B. 125C. 203D. 1746.如图,线段AB 两个端点的坐标分别为(6,6)A ,(8,2)B ,以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,则端点C 的坐标为( ) A. ( 3,3) B. (4,3) C. (3,1) D. ( 4,1) 7.如图,ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果:2:3BE BC =,那么下列各式错误的是( ) A.2BE EC = B. 13EC AD = C. 23EF AE = D. 23BF DF =8.将一副三角板如图叠放,则AOB ∆与DOC ∆的面积比是( )B.12C.13D.149.(南京中考题)如图,在矩形AOBC 中,点A 的坐标是(-2,1),点C 的纵坐标是4,则B 、C 两点的坐标分别是( )A.3(,3)2、2(,4)3-B.3(,3)2、1(,4)2-C.77(,)42、2(,4)3-D.77(,)421(,4)2-10. 如图,四边形ABCD 、CEFG 都是正方形,点G 在线段CD 上,连接,,BG DE DE 和FG 相交于点O ,设,()AB a CG b a b ==>.下列结论:①BCG DCE ∆≅∆;②BG DE ⊥;③DG GO GC CE=;④22()EFO DGO a b S b S ∆∆-⋅=⋅. 其中结论正确的个数是( )A. 4B.3C.2D. 1 二、填空题(每小题3分,共24分)11.(齐齐哈尔中考题)如图,要使ABC ∆与DBA ∆相似,则只需添加一个适当的条件是 .12.如图,李明打网球时,球恰好打过网,且落在离网4 m 的位置上,则网球拍击球的高度h 为 . 13.如图,在ABCD 中,F 是BC 上的一点,直线DF 与AB 的延长线相交于点,//E BP DF ,且与AD 相交于点P ,请从图中找出一组相似的三角形: .14.如图,已知ABC ∆中,AB =8,AC =6,点D 是线段AC 的中点,点E 在线段AB 上,且ADE ∆∽ABC ∆,则AE = .15.(盘锦中考题)如图,四边形ABCD 是矩形,点E 和点F 是矩形ABCD 外两点,AE CF ⊥ 于点5,3,4,,902H AD DC DE EDF ===∠=︒,则DF = .16.如图,在Rt ABC ∆中, 90,3,4BAC AB AC ∠=︒==,点P 为BC 上任意一点,连接PA ,以,PA PC 为邻边作平行四边形PAQC ,连接PQ ,则PQ 的最小值为 .17.如图,在平面直角坐标系中, Rt ABO ∆的顶点O 与原点重合,顶点B 在x 轴上,90ABO ∠=︒,OA 与反比例函数(0)ky k x=≠的图像交于点D ,且2OD AD =,过点D 作x 轴的垂线交x 轴于点C .若ABCD S 四边形=10,则k 的值为 .18.如图,已知正方形ABCD 边长为3,点E 在AB 边上,且BE =1,点,P Q 分别是边,BC CD 上的动点(均不与顶点重合),当四边形AEPQ 的周长取最小时,四边形AEPQ的面积是 . 三、解答题(共76分)19. (6分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点ABC ∆(顶点是网格线的交点).(1)将ABC ∆向上平移3个单位得到111A B C ∆,请画出111A B C ∆; (2)请画一个格点222A B C ∆,使222A B C ∆∽ABC ∆,且相似比不为1.20. (6分)如图,在四边形ABCD 中,E 是AD 上一点,延长CE 到点F ,使.(1) 求证:(2) 用直尺和圆规在AD 上作出一点P ,使△BPC ∽△CDP (保留作图痕迹,不写作法)。

2019-2020学年江苏九年级下三角函数提优训练(选择+填空含答案)

2019-2020学年江苏九年级下三角函数提优训练(选择+填空含答案)

九年级下三角函数提优训练(选择+填空)1.如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上,则cos∠EFG值为()A.B.C.D.2.如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()A.B.1 C.D.3.如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH的顶点G、H都在边AD上,若AB=3,BC=4,则tan∠AFE的值()A.等于B.等于C.等于D.随点E位置的变化而变化4.如图是由边长相同的小正方形组成的网格,A,B,P,Q四点均在正方形网格的格点上,线段AB,PQ相交于点M,则图中∠QMB的正切值是()A.B.1 C.D.25.如图,已知第一象限内的点A在反比例函数y=的图象上,第二象限的点B在反比例函数y=的图象上,且OA⊥OB,tan A=,则k的值为()A.﹣3 B.﹣4 C.﹣6 D.﹣26.如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且FC=2BF,连接AE,EF.若AB=2,AD=3,则cos∠AEF的值是.7.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于.8.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=.9.如图,在矩形ABCD中,AB=6,BC=10,将矩形ABCD沿BE折叠,点A落在A'处,若EA'的延长线恰好过点C,则sin∠ABE的值为.10.如图,在菱形ABCD中,AB=2,∠B是锐角,AE⊥BC于点E,M是AB的中点,连结MD,ME.若∠EMD=90°,则cos B的值为.11.如图,∠AOB是放置在正方形网格中的一个角,则cos∠AOB的值是.12.网格中的每个小正方形的边长都是1,△ABC每个顶点都在网格的交点处,则sin A =.13.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM 上,BE=DB,作EF⊥DE,并截取EF=DE,连接AF并延长交射线BM于点C,设BE=x,BC=y,则y关于x的函数解析式为.14.如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m的竹竿AC斜靠在石坝旁,量出杆长1m处的D点离地面的高度DE=0.6m,又量得杆底与坝脚的距离AB=3m,则石坝的坡度为()A.B.3 C.D.415.如图,在距离铁轨200米的B处,观察由南宁开往百色的“和谐号”动车,当动车车头在A处时,恰好位于B处的北偏东60°方向上;10秒钟后,动车车头到达C处,恰好位于B处的西北方向上,则这时段动车的平均速度是()米/秒.A.20(+1)B.20(﹣1)C.200 D.30016.(2017•深圳)如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD 的长度为20m,DE的长为10m,则树AB的高度是()m.A.20B.30 C.30D.4017.一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinα•cosβ+cosα•sinβ;sin(α﹣β)=sinα•cosβ﹣cosα•sinβ.例如sin90°=sin(60°+30°)=sin60°•cos30°+cos60°•sin30°=×+×=1.类似地,可以求得sin15°的值是.18.如图,点D为△ABC的AB边上的中点,点E为AD的中点,△ADC为正三角形,给出下列结论,①CB=2CE,②tan∠B=,③∠ECD=∠DCB,④若AC=2,点P是AB上一动点,点P到AC、BC边的距离分别为d1,d2,则d12+d22的最小值是3.其中正确的结论是(填写正确结论的番号).19.四边形ABCD中,BD是对角线,∠ABC=90°,tan∠ABD=,AB=20,BC=10,AD=13,则线段CD=.20.如图,在△ABC中,AC=6,BC=10,tanC=,点D是AC边上的动点(不与点C重合),过D作DE⊥BC,垂足为E,点F是BD的中点,连接EF,设CD=x,△DEF的面积为S,则S与x之间的函数关系式为.21.已知△ABC中,AB=10,AC=2,∠B=30°,则△ABC的面积等于.22.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=.23.(2018•德州)如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则∠BAC的正弦值是.参考答案与试题解析1.如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD 的中点E处,折痕为FG,点F、G分别在边AB、AD上,则cos∠EFG值为()A.B.C.D.【分析】作GN⊥AB于N,作EM⊥AD于M,连接BE,BD.在Rt△DME,Rt△GME,Rt△AGN,Rt△EFB中,根据勾股定理可求DM,ME,AN,EF的长,即可求FN的长,即可得cos∠EFG值.【解答】解:如图:作GN⊥AB于N,作EM⊥AD于M,连接BE,BD∵四边形ABCD是菱形,AB=2∴CD=AD=AB=2,AB∥DC∵AB∥CD∴∠A=∠MDC=60°∵E是CD中点∴DE=1∵ME⊥AD,∠DMC=60°∴∠MED=30°,且ME⊥AD∴DM=,ME=DM=∵折叠∴AG=GE,∠AFG=∠EFG在Rt△GME中,GE2=GM2+ME2.∴GE2=(2﹣GE+)2+∴GE=在Rt△AGN中,∠A=60°,GN⊥AB∴AG=2AN∴AN=∴GN=∵BC=CD=2,∠C=60°∴△BCD是等边三角形∵E点是CD中点∴BE⊥CD,DE=1,∠BDC=60°∴BE=∵AB∥DC∴∠ABE=90°在Rt△EFB中,EF2=BE2+BF2.∴EF2=3+(2﹣EF)2.∴EF=∴AF=∵NF=AF﹣AN∴NF=在Rt△GNF中,GF==∴cos∠EFG=cos∠GFN==故选:C.【点评】本题考查了折叠问题,菱形的性质,勾股定理,添加恰当的辅助线构造直角三角形是本题的关键.2.如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()A.B.1 C.D.【分析】连接BC,由网格求出AB,BC,AC的长,利用勾股定理的逆定理得到△ABC为等腰直角三角形,即可求出所求.【解答】解:连接BC,由网格可得AB=BC=,AC=,即AB2+BC2=AC2,∴△ABC为等腰直角三角形,∴∠BAC=45°,则tan∠BAC=1,故选:B.【点评】此题考查了锐角三角函数的定义,解直角三角形,以及勾股定理,熟练掌握勾股定理是解本题的关键.3.如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH的顶点G、H都在边AD上,若AB=3,BC=4,则tan∠AFE的值()A.等于B.等于C.等于D.随点E位置的变化而变化【分析】根据题意推知EF∥AD,由该平行线的性质推知△AEH∽△ACD,结合该相似三角形的对应边成比例和锐角三角函数的定义解答.【解答】解:∵EH∥CD,∴△AEH∽△ACD,∴==.设EH=3x,AH=4x,∴HG=GF=3x,∵EF∥AD,∴∠AFE=∠FAG,∴tan∠AFE=tan∠FAG===.故选:A.【点评】考查了正方形的性质,矩形的性质以及解直角三角形,此题将求∠AFE的正切值转化为求∠FAG的正切值来解答的.4.如图是由边长相同的小正方形组成的网格,A,B,P,Q四点均在正方形网格的格点上,线段AB,PQ相交于点M,则图中∠QMB的正切值是()A.B.1 C.D.2【分析】根据题意平移AB使A点与P点重合,进而得出,△QPB′是直角三角形,再利用tan∠QMB=tan∠P=,进而求出答案.【解答】解:如图所示:平移AB使A点与P点重合,连接B′Q,可得∠QMB=∠P,∵PB′=2,PQ=2,B′Q=4,∴PB′2+QB′2=PQ2,∴△QPB′是直角三角形,∴tan∠QMB=tan∠P===2.故选:D.【点评】此题主要考查了勾股定理以及锐角三角函数关系,正确得出△QPB′是直角三角形是解题关键.5.如图,已知第一象限内的点A在反比例函数y=的图象上,第二象限的点B在反比例函数y=的图象上,且OA⊥OB,tanA=,则k的值为()A.﹣3 B.﹣4 C.﹣6 D.﹣2【分析】作BC⊥x轴于C,AD⊥x轴于D,如图,利用反比例函数系数的机会意义得到S △AOD=1,再根据正切的意义得到tanA==,则OB=OA,接着证明Rt△AOD∽Rt△OBC,利用相似三角形的性质得S△OBC=2S△AOD=2,所以•|k|=2,然后根据反比例函数的性质确定k的值.【解答】解:作BC⊥x轴于C,AD⊥x轴于D,如图,则S△AOD=×2=1,在Rt△AOB中,tanA==,∴OB=2OA,∵∠AOD+∠BOC=90°,∠AOD+∠OAD=90°,∴∠BOC=∠OAD,∴Rt△AOD∽Rt△OBC,∴=()2=2,∴S△OBC=2S△AOD=2,∴•|k|=2,而k<0,∴k=﹣4.故选:B.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了相似三角形的判定与性质.6.如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且FC=2BF,连接AE,EF.若AB=2,AD=3,则cos∠AEF的值是.【分析】接AF,由矩形的性质得出∠B=∠C=90°,CD=AB=2,BC=AD=3,证出AB =FC,BF=CE,由SAS证明△ABF≌△FCE,得出∠BAF=∠CFE,AF=FE,证△AEF 是等腰直角三角形,得出∠AEF=45°,即可得出答案.【解答】解:连接AF,如图所示:∵四边形ABCD是矩形,∴∠B=∠C=90°,CD=AB=2,BC=AD=3,∵FC=2BF,∴BF=1,FC=2,∴AB=FC,∵E是CD的中点,∴CE=CD=1,∴BF=CE,在△ABF和△FCE中,,∴△ABF≌△FCE(SAS),∴∠BAF=∠CFE,AF=FE,∵∠BAF+∠AFB=90°,∴∠CFE+∠AFB=90°,∴∠AFE=180°﹣90°=90°,∴△AEF是等腰直角三角形,∴∠AEF=45°,∴cos∠AEF=;故答案为:.【点评】本题考查了矩形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、三角函数等知识;熟练掌握矩形的性质,证明三角形全等是解决问题的关键.7.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于3.【分析】根据平移的性质和锐角三角函数以及勾股定理,通过转化的数学思想可以求得tan ∠BOD的值,本题得以解决.【解答】解:方法一:平移CD到C′D′交AB于O′,如右图所示,则∠BO′D′=∠BOD,∴tan∠BOD=tan∠BO′D′,设每个小正方形的边长为a,则O′B=,O′D′=,BD′=3a,作BE⊥O′D′于点E,则BE=,∴O′E==,∴tanBO′E=,∴tan∠BOD=3,故答案为:3.方法二:连接AM、NL,在△CAH中,AC=AH,则AM⊥CH,同理,在△MNH中,NM=NH,则NL⊥MH,∴∠AMO=∠NLO=90°,∵∠AOM=∠NOL,∴△AOM∽△NOL,∴,设图中每个小正方形的边长为a,则AM=2a,NL=a,∴=2,∴,∴,∵NL=LM,∴,∴tan∠BOD=tan∠NOL==3,故答案为:3.方法三:连接AE、EF,如右图所示,则AE∥CD,∴∠FAE=∠BOD,设每个小正方形的边长为a,则AE=,AF=,EF=a,∵,∴△FAE是直角三角形,∠FEA=90°,∴tan∠FAE=,即tan∠BOD=3,故答案为:3.【点评】本题考查解直角三角形,解答本题的关键是明确题意,作出合适的辅助线,利用勾股定理和等积法解答.8.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=2.【分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求得tan∠BOF的值,继而求得答案.【解答】解:如图,连接BE,∵四边形BCEK是正方形,∴KF=CF=CK,BF=BE,CK=BE,BE⊥CK,∴BF=CF,根据题意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:2,∴KO=OF=CF=BF,在Rt△OBF中,tan∠BOF==2,∵∠AOD=∠BOF,∴tan∠AOD=2.故答案为:2【点评】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.9.如图,在矩形ABCD中,AB=6,BC=10,将矩形ABCD沿BE折叠,点A落在A'处,若EA'的延长线恰好过点C,则sin∠ABE的值为.【分析】先利用勾股定理求出A'C,进而利用勾股定理建立方程求出AE,即可求出BE,最后用三角函数即可得出结论.【解答】解:由折叠知,A'E=AE,A'B=AB=6,∠BA'E=90°,∴∠BA'C=90°,在Rt△A'CB中,A'C==8,设AE=x,则A'E=x,∴DE=10﹣x,CE=A'C+A'E=8+x,在Rt△CDE中,根据勾股定理得,(10﹣x)2+36=(8+x)2,∴x=2,∴AE=2,在Rt△ABE中,根据勾股定理得,BE==2,∴sin∠ABE==,故答案为:.【点评】此题主要考查了折叠的性质,勾股定理,锐角三角函数,充分利用勾股定理求出线段AE是解本题的关键.10.如图,在菱形ABCD中,AB=2,∠B是锐角,AE⊥BC于点E,M是AB的中点,连结MD,ME.若∠EMD=90°,则cosB的值为.【分析】延长DM交CB的延长线于点H.首先证明DE=EH,设BE=x,利用勾股定理构建方程求出x即可解决问题.【解答】解:延长DM交CB的延长线于点H.∵四边形ABCD是菱形,∴AB=BC=AD=2,AD∥CH,∴∠ADM=∠H,∵AM=BM,∠AMD=∠HMB,∴△ADM≌△BHM,∴AD=HB=2,∵EM⊥DH,∴EH=ED,设BE=x,∵AE⊥BC,∴AE⊥AD,∴∠AEB=∠EAD=90°∵AE2=AB2﹣BE2=DE2﹣AD2,∴22﹣x2=(2+x)2﹣22,∴x=﹣1或﹣﹣1(舍弃),∴cosB==,故答案为.【点评】本题考查菱形的性质、勾股定理、线段的垂直平分线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.11.如图,∠AOB是放置在正方形网格中的一个角,则cos∠AOB的值是.【分析】首先连接AB,由勾股定理易求得OA2=12+32=10,AB2=12+32=10,OB2=22+42=20,然后由勾股定理的逆定理,可证得△AOB是等腰直角三角形,继而可求得cos∠AOB的值.【解答】解:连接AB,∵OA2=12+32=10,AB2=12+32=10,OB2=22+42=20,∴OA2+AB2=OB2,OA=AB,∴△AOB是等腰直角三角形,即∠OAB=90°,∴∠AOB=45°,∴cos∠AOB=cos45°=.故答案为:.【点评】此题考查了锐角三角函数的定义、勾股定理以及勾股定理的逆定理.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.12.网格中的每个小正方形的边长都是1,△ABC每个顶点都在网格的交点处,则sinA=.【分析】根据各边长得知△ABC为等腰三角形,作出BC、AB边的高AD及CE,根据面积相等求出CE,根据正弦是角的对边比斜边,可得答案.【解答】解:如图,作AD⊥BC于D,CE⊥AB于E,由勾股定理得AB=AC=2,BC=2,AD=3,可以得知△ABC是等腰三角形,由面积相等可得,BC•AD=AB•CE,即CE==,sinA===,故答案为:.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.13.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM 上,BE=DB,作EF⊥DE,并截取EF=DE,连接AF并延长交射线BM于点C,设BE=x,BC=y,则y关于x的函数解析式为y=(0<x≤2).【分析】作FM⊥BC于M.由△DBE≌△EMF,推出FM=BE=x,EM=BD=2BE=2x,由FM∥AB,推出=,即=,由此即可解决问题.【解答】解:作FM⊥BC于M.∵∠DBE=∠DEF=∠EMF=90°,∴∠DEB+∠BDE=90°,∠DEB+∠FEM=90°,∴∠BDE=∠FEM.在△DBE和△EMF中,,∴△DBE≌△EMF,∴FM=BE=x,EM=BD=2BE=2x,∵FM∥AB,∴=,∴=,∴y=(0<x≤2).【点评】本题考查全等三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是灵活应用所学知识解决问题,属于中考常考题型.14.【分析】先过C作CF⊥AB于F,根据DE∥CF,可得=,进而得出CF=3,根据勾股定理可得AF的长,根据CF和BF的长可得石坝的坡度.【解答】解:如图,过C作CF⊥AB于F,则DE∥CF,∴=,即=,解得CF=3,∴Rt△ACF中,AF==4,又∵AB=3,∴BF=4﹣3=1,∴石坝的坡度为==3,故选:B.【点评】本题主要考查了坡度问题,在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.15.【分析】作BD⊥AC于点D,在Rt△ABD中利用三角函数求得AD的长,在Rt△BCD 中,利用三角函数求得CD的长,则AC即可求得,进而求得速度.【解答】解:作BD⊥AC于点D.∵在Rt△ABD中,∠ABD=60°,∴AD=BD•tan∠ABD=200(米),同理,CD=BD=200(米).则AC=200+200(米).则平均速度是=20(+1)米/秒.故选:A.【点评】此题考查了解直角三角形及勾股定理的应用,用到的知识点是方向角,关键是根据题意画出图形,作出辅助线,构造直角三角形,“化斜为直”是解三角形的基本思路,常需作垂线(高),原则上不破坏特殊角.16.【分析】先根据CD=20米,DE=10m得出∠DCE=30°,故可得出∠DCB=90°,再由∠BDF=30°可知∠DBE=60°,由DF∥AE可得出∠BGF=∠BCA=60°,故∠GBF=30°,所以∠DBC=30°,再由锐角三角函数的定义即可得出结论.【解答】解:在Rt△CDE中,∵CD=20m,DE=10m,∴sin∠DCE==,∴∠DCE=30°.∵∠ACB=60°,DF∥AE,∴∠BGF=60°∴∠ABC=30°,∠DCB=90°.∵∠BDF=30°,∴∠DBF=60°,∴∠DBC=30°,∴BC===20m,∴AB=BC•sin60°=20×=30m.故选:B.方法二:可以证明△DGC≌△BGF,所以BF=DC=20,所以AB=20+10=30,故选:B.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.25.【分析】把15°化为60°﹣45°,则可利用sin(α﹣β)=sinα•cosβ﹣cosα•sinβ和特殊角的三角函数值计算出sin15°的值.【解答】解:sin15°=sin(60°﹣45°)=sin60°•cos45°﹣cos60°•sin45°=•﹣•=.故答案为.【点评】本题考查了特殊角的三角函数值:应用中要熟记特殊角的三角函数值,一是按值的变化规律去记,正弦逐渐增大,余弦逐渐减小,正切逐渐增大;二是按特殊直角三角形中各边特殊值规律去记.也考查了阅读理解能力.26.【分析】由题意可得△BCE是含有30°的直角三角形,根据含有30°的直角三角形的性质可判断①②③,易证四边形PMCN是矩形,可得d12+d22=MN2=CP 2,根据垂线段最短,可得CP的值即可求d12+d22的最小值,即可判断④.【解答】解:∵D是AB中点∴AD=BD∵△ACD是等边三角形,E是AD中点∴AD=CD,∠ADC=60°=∠ACD,CE⊥AB,∠DCE=30°∴CD=BD∴∠B=∠DCB=30°,且∠DCE=30°,CE⊥AB∴∠ECD=∠DCB,BC=2CE,tan∠B=故①③正确,②错误∵∠DCB=30°,∠ACD=60°∴∠ACB=90°若AC=2,点P是AB上一动点,点P到AC、BC边的距离分别为d1,d2,∴四边形PMCN是矩形∴MN=CP∵d12+d22=MN2=CP2∴当CP为最小值,d12+d22的值最小∴根据垂线段最短,则当CP⊥AB时,d12+d22的值最小此时:∠CAB=60°,AC=2,CP⊥AB∴CP=∴d12+d22=MN2=CP2=3即d12+d22的最小值为3故④正确故答案为①③④【点评】本题考查了解直角三角形,等边三角形的性质和判定,利用垂线段最短求d12+d22的最小值是本题的关键.27.【分析】作AH⊥BD于H,CG⊥BD于G,根据正切的定义分别求出AH、BH,根据勾股定理求出HD,得到BD,根据勾股定理计算即可.【解答】解:当∠ADB为锐角时,作AH⊥BD于H,CG⊥BD于G,∵tan∠ABD=,∴=,设AH=3x,则BH=4x,由勾股定理得,(3x)2+(4x)2=202,解得,x=4,则AH=12,BH=16,在Rt△AHD中,HD==5,∴BD=BH+HD=21,∵∠ABD+∠CBD=90°,∠BCG+∠CBD=90°,∴∠ABD=∠BCG,∴=,又BC=10,∴BG=6,CG=8,∴DG=BD﹣BG=15,∴CD==17,当∠ADB为钝角时,CD′==,故答案为:17或.【点评】本题考查的是勾股定理、锐角三角函数的定义,掌握解直角三角形的一般步骤、理解锐角三角函数的定义是解题的关键.28.【分析】可在直角三角形CED中,根据DE、CE的长,求出△BED的面积即可解决问题.【解答】解:(1)在Rt△CDE中,tanC=,CD=x∴DE=x,CE=x,∴BE=10﹣x,∴S△BED=×(10﹣x)•x=﹣x2+3x.∵DF=BF,∴S=S△BED=x2,故答案为S=x2.【点评】本题考查解直角三角形,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.29.【分析】作AD⊥BC交BC(或BC延长线)于点D,分AB、AC位于AD异侧和同侧两种情况,先在Rt△ABD中求得AD、BD的值,再在Rt△ACD中利用勾股定理求得CD的长,继而就两种情况分别求出BC的长,根据三角形的面积公式求解可得.【解答】解:作AD⊥BC交BC(或BC延长线)于点D,①如图1,当AB、AC位于AD异侧时,在Rt△ABD中,∵∠B=30°,AB=10,∴AD=ABsinB=5,BD=ABcosB=5,在Rt△ACD中,∵AC=2,∴CD===,则BC=BD+CD=6,∴S△ABC=•BC•AD=×6×5=15;②如图2,当AB、AC在AD的同侧时,由①知,BD=5,CD=,则BC=BD﹣CD=4,∴S△ABC=•BC•AD=×4×5=10.综上,△ABC的面积是15或10,故答案为15或10.【点评】本题主要考查解直角三角形,解题的关键是熟练掌握三角函数的运用、分类讨论思想的运算及勾股定理.30.【分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求得tan∠BOF的值,继而求得答案.【解答】解:如图,连接BE,∵四边形BCEK是正方形,∴KF=CF=CK,BF=BE,CK=BE,BE⊥CK,∴BF=CF,根据题意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:2,∴KO=OF=CF=BF,在Rt△OBF中,tan∠BOF==2,∵∠AOD=∠BOF,∴tan∠AOD=2.故答案为:2【点评】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.31.【分析】先根据勾股定理的逆定理判断出△ABC的形状,再由锐角三角函数的定义即可得出结论.【解答】解:∵AB2=32+42=25、AC2=22+42=20、BC2=12+22=5,∴AC2+BC2=AB2,∴△ABC为直角三角形,且∠ACB=90°,则sin∠BAC==,故答案为:.【点评】本题考查的是勾股定理的逆定理以及锐角三角函数,熟知在一个三角形中,如果两条边长的平方之和等于第三边长的平方,那么这个三角形是直角三角形是解答此题的关键.。

苏科版九年级数学下第六章《相似三角形》教学质量检测试题(含答案)

苏科版九年级数学下第六章《相似三角形》教学质量检测试题(含答案)


A.AB 2=BC ·BD B. AB 2=AC · BD
C.AB · AD=BD · BC D. AB · AD=AC · CD
5.已知△ ABC 在直角坐标系中的位置如图所示,以 O 位似中心,把△ ABC 放大到 2 倍得到△ A /B /C/,那么
A /的坐标为(

A. ( -8, -4) B.( -8, 4) C.(8, -4)
其影长为 1.2 米,那么这颗大树高约
米.
第 14 题
第 16 题
第 17 题
第 18 题
16. 如图,在函数 y1
k1 (x 0) 和 y2 x
k2 (x x
0) 的图像上,分别有 A 、B 两点,若 AB// x 轴,交 y 轴
1
9
于 C 点,且 OA ⊥OB, S△AOC= , S△BOC= ,则 AB 的长度 =
F 是 GE 的中点;④
AF
AB FB
2 AB ;⑤ S△ABC =5S△BDF,其中正确结
3
论的序号是
.
三、解答题: (共 86 分)
19.(本题 8 分)如图, DE//BC ,DF//AC ,AD=4cm ,BD=8cm ,DE=5cm ,求线段 BF 的长 .
20.(本题 8 分)如图,在矩形 ABCD 中, AB=10cm , AD=20cm ,点 P、Q 分别同 时从 A 、B 两点出发,沿 AB 、BC 向 B 、C 运动,已知点 P 的运动速度是 1cm/s,Q 点的运动速度是 2cm/s,当 P 点运动几秒时△ PBQ 与△ ACD 相似?
.
2
2
17. 如图,△ ABC是斜边 AB 的长为 3 的等腰直角三角形,在△ ABC内作第 1 个内接正方形 A1B1D1E1(D1、 E1

第六章 图形的相似提优练习 2022-2023学年苏科版数学九年级下册

第六章 图形的相似提优练习 2022-2023学年苏科版数学九年级下册

DCBA九年级数学下册提优练习第六章 图形的相似一、选择题1.两个相似三角形的最短边分别为5cm 和3cm ,它们的周长之差为12cm ,那么大三角形的周长为( )A .14cmB .16cmC .18cmD .30cm2.如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,CD ⊥AB 于点D .则△BCD 与△ABC 的周长之比为( )A .1︰2B .1︰3C .1︰4D .1︰5第2题 第3题 第4题 第5题 3.如图,已知△ADE 与△ABC 的相似比为1∶2,则△ADE 与△ABC 的面积比为( )A . 1∶2B . 1∶4C . 2∶1D . 4∶14.如图,将矩形ABCD 的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH ,EH=12cm ,EF=16cm ,则边AD 的长为( )A. 12cmB. 16cmC. 20cmD. 28cm5.如图,正方形ABCD 的对角线AC 与BD 相交于点O ,∠ACB 的平分线交AB ,BD 于M ,N 两点.若AM=2,则线段ON 的长为( )A.22B.23 C. 1 D.26 6.如图是用杠杆撬石头的示意图,C 是支点,当用力压杠杆的A 端时,杠杆绕C 点转动,另一端向上翘起,石头就被撬动,现有一块石头,要使其滚动,杠杆的B 端必须向上翘起10cm ,已知杠杆的动力臂与阻力臂之比为5:1,要使这块石头滚动,至少要将杠杆的A 端向下压( ) A .100cm B .60cm C .50cm D .10cm7.如图,身高为1.6m 的某学生想测量一棵大树的高度,她沿着树影BA 由B 向A 走去,当走到C 点时,她的影子顶点正好与树的影子顶端重合,测得BC =3.2m ,CA =0.8m ,则树的高度为( )A .4.8mB .6.4mC .8mD .10m第6题 第7题 第8题 8.按如下方法将△ABC 的三边缩小为原来的21,如图,任取一点O ,连接AO 、BO 、CO ,并取它们的中点D 、E 、F ,得到△DEF ,则下列说法正确的有( )A DEBC①△ABC 与△DEF 是位似形;②△ABC 与△DEF 是相似图形;③△ABC 与△DEF 的周长比为2:1;④△ABC 与△DEF 的面积比为4:1A .1个B .2个C .3个D .4个 二、填空题9.如图,在△ABC 中,DE ∥BC ,BF 平分∠ABC ,交DE 的延长线于点F ,若AD=1,BD=2,BC=4,则EF=_________.10.如图,在△ABC 中,∠BAC=60°,∠ABC=90°,直线l 1∥l 2∥l 3,l 1与l 2之间的距离是1,l 2与l 3之间的距离是2,且l 1,l 2,l 3分别过点A ,B ,C ,则边AC 的长为_________.第9题 第10题 第11题11. 如图,Rt ABC △中,90ACB ∠=°,直线EF BD ∥,交AB 于点E ,交AC 于点G ,交AD 于点F ,若13AEG EBCG S S =△四边形,则CFAD= .12.如图,点M 是△ABC 内一点,过点M 分别作直线平行于△ABC 的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是4,9和49.则△ABC 的面积是 .13.如图,在Rt △ABC 中,∠ABC=90°,BA=BC ,点D 是AB 的中点,连接CD ,过点B 作BG ⊥CD ,分别交CD ,CA 于点E ,F ,与过点A 且垂直于AB 的直线相交于点G ,连接DF.给出以下四个结论:①FBFGAB AG =;②点F 是GE 的中点;③AF=32AB ;④S △ABC =5S △BDF .其中正确的结论序号是_______.第12题 第13题 第14题14.一天,小青在校园内发现:旁边一颗树在阳光下的影子和她本人的影子在同一直线上,树顶的影子和她头顶的影子恰好落在地面的同一点,同时还发现她站立于树影的中点(如图所示).如果小青的峰高为1.65米,由此可推断出树高是___米.三、解答题15.如图,在△ABC 中,D 是AB 上一点,DE ∥BC ,交AC 于点E ,△ADE 与四边形DBCE 的面积的比为1:3,求ABAD的值.16.如图,在□ABCD 中,E 是BC 上的3等分点,AE 交BD 于点F ,求:(1)DFBF的值. (2)△BEF 与△DAF 的周长的比、面积的比.17.如图,□ABCD 中,∠DBC =45°,DE ⊥BC 于E ,BF ⊥CD 于F ,DE 、BF 相交于H ,BF 、AD 的延长线相交于G ,试说明:(1)AB =BH ;(2)△ABG ∽△CED ;(3)AB 2=AG·HE18.如图所示,身高1.6米的小明站在距路灯底部O 点10米的点A 处,他的身高(线段AB )在路灯下的影响子为线段AM ,已知路灯灯杆OQ 垂直于路面. (1)在OQ 上画出表示路灯灯泡位置的点P ;(2)小明沿AO 方向前进到点C ,请画出此时表示小明影子的线段CN ; (3)若AM=2.5米,求路灯灯泡P 到地面的距离.19.如图,以AB 为直径的⊙O 经过△ABC 的顶点C ,过点O 作OD ∥BC 交⊙O 于点D ,交AC 于点F ,连接BD交AC于点G,连接CD,在OD的延长线上取一点E,连接CE,使∠DEC=∠BDC.(1)求证:EC是⊙O的切线;(2)若⊙O的半径是3,DG•DB=9,求CE的长.20.已知,矩形ABCD,点E是AD上一点,将矩形沿BE折叠,点A恰好落在BD上点F处.(1)如图1,若AB=3,AD=4,求AE的长;(2)如图2,若点F恰好是BD的中点,点M是BD上一点,过点M作MN∥BE交AD于点N,连接EM,若MN平分∠EMD,求证:DN•DE=DM•BM.21.【探索发现】(1)如图1,是一张直角三角形纸片,∠B=90°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为______________.【拓展应用】(2)如图2,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC 上,顶点Q、M在边BC上,求出矩形PQMN面积的最大值为_________(用含a、h的代数式表示);【灵活应用】(3)如图3,有一块“缺角矩形”ABCDE,AB=28,BC=36,AE=18,CD=14,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.22.在图1至图3中,直线MN 与线段AB 相交于点O ,∠1 = ∠2 = 45°.(1)如图1,若AO = OB ,请写出AO 与BD 的数量关系和位置关系;(2)将图1中的MN 绕点O 顺时针旋转得到图2,其中AO = OB .求证:AC = BD ,AC ⊥ BD ; (3)将图2中的OB 拉长为AO 的k 倍得到图3,求ACBD的值.图2AD O BC 21MN图1AD BM N12图3AD O BC21MNO23.阅读理解:如图①,在四边形ABCD的边AB上任取一点E(点E不与点A,B重合),分别连接ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,那么我们就把点E叫四边形ABCD 的边AB上的“相似点”;如果这三个三角形都相似,那么我们就把点E叫四边形ABCD的AB上的“强相似点”.解决问题:(1)如图①,∠A=∠B=∠DEC=45°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由.(2)如图②,在矩形ABCD中,A,B,C,D四点均在正方形网格(网格中每个小正方形的边长均为1)的格点(即每个小正方形的顶点)上,试在图中画出矩形ABCD的边AB上的强相似点.(3)如图③,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处,若点E恰好是四边形ABCM 的边AB上的一个强相似点,试探究AB与BC的数量关系.。

2020苏科版九年级数学下册《相似三角形的应用》同步练习

2020苏科版九年级数学下册《相似三角形的应用》同步练习

B A CC ’[【文库独家】《相似三角形的应用》初三 班 姓名 学号一、[复习]1、相似三角形的性质:相似三角形的对应 、对应 、对应 、对应 及对应 、的比都等于 。

2、相似三角形的判定:相似三角形的判定定理一:如果一个三角形的两个角分别与另一个三角形的两个角 ,那么这两个三角形相似.相似三角形的判定定理二:如果一个三角形的两条边与另一个三角形的两条边 ,并且 相等,那么这两个三角形相似。

相似三角形的判定定理三:如果一个三角形的三条边和另一个三角形的三条边 ,那么这两个三角形相似。

3、对于四条线段a 、b 、c 、d ,如果dc b a =(或a ∶b =c ∶d ),那么这四条线段叫做 线段,简称比例线段。

★比例式的几种变形式是等价式子( a ≠0、b ≠0、c ≠0、d ≠0 )。

基本比例式 等积式 横比式dc b a = 变形式bb a ±= 图1 4、比例式变形是代数的运算问题,平行是几何的重要内容。

比例与几何的联系是:如图1,在△ABC 中, 如果D E∥BC, 那么 。

反过来,在△ABC 中, 如果DB AD =EC AE (或AD AB =AEAC ), 那么 。

二、[相似的实际应用]1、在同一时刻物体的高度与它的影长成正比例.在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的高度是多少米?分析:太阳光是平行光线,所有物体高度线、阴影水平线与光线可构成相似直角三角形。

2、古代一位数学家想出了一种测量金字塔高度的方法: 如图所示,为了测量金字塔的高度OB ,先竖一根已知长度的木棒O ′B ′,比较棒子的影长A ′B ′与金字塔的影长AB ,即可近似算出金字塔的高度OB .如果O ′B ′=1,A ′B ′=2,AB =274,求金字塔的高度OB .1.8 3 60 A ’[B ’[3、为了估算河的宽度,我们可以在河对岸选定一个目标作为点A ,再在河的这一边选定点B 和C ,使AB ⊥BC ,然后,再选点E ,使EC ⊥BC ,用视线确定BC 和AE 的交点D .此时如果测得BD =120米,DC =60米,EC =50米,求两岸间的大致距离AB .4、如图,小明在打网球时,使球恰好能打过网,而且落在离网4米的位置上,求球拍击球的高度h .三、[综合练习]1、①在比例尺为1∶5000000的地图上,量得甲、乙两地的距离是25厘米,则两地的实际距离是 千米。

苏科版九年级下册 第七章 锐角三角函数单元提高卷(含答案)

苏科版九年级下册 第七章 锐角三角函数单元提高卷(含答案)

第七章 锐角三角函数 单元提高卷一、选择题(每小题3分,共24分)1.如图1,在Rt △ABC 中,∠ACB =Rt ∠,BC =1,AB =2,则下列结论正确的是 ( )A . sin A =B . tanA =12C . cos B =D . tanB =2.已知∠A 是锐角,且sin A =,那么∠A 等于 ( )A . 30°B . 45°C . 60°D . 75°3.已知a 为锐角,则sin cos m a a =+的值 ( ) A . m >l B . m =1 C . m <1 D . m ≥14= ( )A . 1B . 1C .1- D . 1 5.如图2,先锋村准备在坡角为a 的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的 距离AB 为 ( )A . 5cos aB .5cos a C . 5sin a D .5sin a6.已知Rt △ABC 中,∠C =90°,tanA =43,BC =8,则AC 等于 ( ) A . 6 B .323C . 10D . 12 7.如图3,已知⊙O 的半径为5cm ,弦AB 的长为8cm ,P 是AB 延长线上一点.BP =2cm ,则tan ∠OP A 等于 ( )A .32 B . 23C . 2D . 128.直角三角形纸片的两直角边长分别为6,8,现将△ABC 如图4那样折叠,使点A 与点B 重合,折痕为DE ,则tan ∠CBE 的值是 ( )A . 247 B . C . 724D .13二、填空题(每小题3分,共24分)9. 在Rt △ABC 中,∠ACB =90°,5sin 13B =,则cos B = .10. 在△ABC 中,若2sin (cos )02A B -=,则∠C = 度. 11.Rt △ABC 中,∠C =90°,若tanB =512,6a =,则b = .12.在△ABC 中,若∠A =30°,∠B =45°,AC =BC = .13. 某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为5米,则这个坡面的坡度为 .14. 如图5,在坡形屋顶的设计图中,AB =AC ,屋顶的宽度BC 为10米,坡角a 为30°,则坡形屋顶的高度h 为 米. 1.732,结果保留三位有效数字)15. 如图6所示,小华同学在距离某建筑物6米的点A 处测得广告牌B 点、C 点的仰角分别为52°和35°,则广告牌的高度BC 为 米(精确到0.1米).(sin 35°≈0.57,cos 35°≈0.82,tan 35°≈0.70;sin 52°≈0.79,cos 52°≈0.62,tan 52°≈1.28) 16·如图7,Rt △ABC 中,∠ACB =90°,AC =4cm ,AB =5cm ,点D 是AB 的中点,则cos ∠ACD = .三、解答题(本大题共52分)17.(4分),计算:22sin 30cos 4560tan 45︒+︒︒⋅︒18.(每小题4分,共8分)由下列条件解直角三角形:在Rt△ABC中,∠C=90°:(1)已知c=20,∠A=45°;=12,∠B=60°.(2)已知a c19.(8分)如图8,△ABC内接于圆O,若圆的半径是2,AB=3,求sinC.20.(8分)如图9,河流两岸a,b互相平行,C,D是河岸a上间隔50 m的两根电线杆.某人在河岸b上的A处测得∠DAB=30°,然后沿河岸走了100 m到达B处,测得∠CBF=60°,求河流的宽度CF的值.(结果精确到个位)21.(8分)如图10,在某广场上空飘着一只气球P,A,B是地面上相距90米的两点,它们分别在气球的正西和正东,测得仰角∠P AB=45°,仰角∠PBA=30°,求气球P的高度.(精确到0.1 1.732)22.(8分)如图11,斜坡AC的坡度(坡比)为1AC=10米.坡顶有一旗杆BC,旗杆顶端B点与A点有一条彩带AB相连,AB=14米.试求旗杆BC的高度.23.(8分)在学习实践科学发展观的活动中,某单位在如图12所示的办公楼靠街的墙面上垂挂一长为30米的宣传条幅AE,张明同学站在离办公楼的地面C处测得条幅顶端A 的仰角为50°,测得条幅底端E的仰角为30°.问张明同学是在离该单位办公楼水平距离多远的地方进行测量的?(精确到整数米)(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20,sin30°=0.50,cos30°≈0.87,tan30°≈0.58)参考答案1.1~8.DCABBADC9.1213 10.90° 11.5212.2 13.1 14.2.8915.3.5 16.45 17.3 ;18.(1) ∠B =45°,a =b =(2) ∠A =30°, a =4,b =c =8; 19.3420.43 m 21.32.9米; 22.6米; 23.48米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《相似三角形》与《锐角三角函数》综合提优训练1、下列两个图形:①两个等腰三角形;②两个直角三角形;③两个正方形;④两个矩形;⑤两个菱形;⑥两个正五边形. 其中一定相似的有( ) A.2组 B.3组 C.4组 D.5组2、(1)如果234x y z==,求3x y z y -+=_____________ (2)已知x :y =3:5,y :z =2:3,则zy x zy x +-++2的值为3、应中共中央总书记胡锦涛同志的邀请,中国国民党主席连战先生、亲民党主席宋楚瑜先生分别从台湾来大陆参观访问,先后来到西安,都参观了新建成的“大唐芙蓉园”,该园占地面积约为800000m 2,若按比例尺1:2000缩小后,其面积大约相当于( )A.一个篮球场的面积B.一张乒乓球台台面的面积C.《陕西日报》的一个版面的面积D.《数学》课本封面的面积4、美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.某女士身高165 cm ,下半身长x 与身高l 的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为( ) A .4 cm B .6 cm C .8 cm D .10 cm 5、 如图,已知D 、E 分别是ABC ∆的AB 、 AC 边上的点,,DE BC //且1ADEDBCE SS :=:8,四边形 那么:AE AC 等于( )A .1 : 9B .1 : 3C .1 : 8D .1 : 26、如图,△ABC 的各个顶点都在正方形的格点上,则sinA 的值为 .7、在Rt △ABC 中,∠C =90º,AB =10,AC =8,则sin A 的值是( ) A .45B .35C .34 D .43. 8、若3tan (a+10°)=1,则锐角a 的读数为( )A .20°B .30°C .40°D .50°9、如果△ABC 中,sinA=cosB=2,则下列最确切的结论是( ) A. △ABC 是直角三角形 B. △ABC 是等腰三角形 C. △ABC 是等腰直角三角形 D. △ABC 是锐角三角形10、直角三角形纸片的两直角边长分别为6,8,现将△ABC 如图那样折叠,使点A 与点B 重合,折痕为DE ,则tan ∠CBE 的值是( )11、 如图,四边形ABCD 、CEFG 都是正方形,点G 在线段CD 上,连接,,BG DE DE 和FG 相交于点O ,设,()AB a CG b a b ==>.下列结论:①BCG DCE ∆≅∆;②BG DE ⊥;③DG GOGC CE=;④22()EFO DGO a b S b S ∆∆-⋅=⋅.其中结论正确的个数是( ) A. 4 B.3 C.2 D. 112、水管的外部需要包扎,包扎时用带子缠绕在管道外部.若要使带子全部包住管道且不重叠(不考虑管道两端的情况),需计算带子的缠绕角度α(α指缠绕中将部分带子拉成图中所示的平面ABCD 时的∠ABC ,其中AB 为管道侧面母线的一部分).若带子宽度为1,水管直径为2,则α的余弦值为 .13、在斜坡的顶部有一铁塔AB ,B 是CD 的中点,CD 是水平的,在阳光的照射下,塔影DE 留在坡面上.已知铁塔底座宽CD=12m ,塔影长DE=18m ,小明和小华的身高都是1.6m ,同一时刻,小明站在点E 处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m 和1m ,那么塔高AB 为( ) A .24m B .22m C .20m D .18m14、如图,△ABC 的三个顶点坐标分别为A (-2,4)、B (-3,1)、C (-1,1),以坐标原点O 为位似中心,相似比为2,在第二象限内将△ABC 放大,放大后得到△A ′B ′C ′. (1)画出放大后的△A ′B ′C ′,并写出点A ′、B ′、C ′的坐标.(点A 、B 、C 的对应点为A ′、B ′、C ′)(2)求△A ′B ′C ′的面积.15、一块直角三角形木板,一直角边是1.5米,另一直角边长是2米,要把它加工成面积最大的正方形桌面,甲、乙二人的加式方法分别如左图和右图所示,请运用所学知识说明谁的加工方法符合要求.16、如图所示,一幢楼房AB 背后有一台阶CD ,台阶每层高2.0米,且AC =2.17米,设太阳光线与水平地面的夹角为α.当︒=60α时,测得楼房在地面上的影长AE =10米,现有一只小猫睡在台阶的MN 这层上晒太阳.(3取73.1)(1)求楼房的高度约为多少米?(2)过了一会儿,当︒=45α时,问小猫能否还晒到太阳?请说明理由.17、图①是太阳能热水器装置的示意图,利用玻璃吸热管可以把太阳能转化为热能,玻璃吸热管与太阳光线垂直时,吸收太阳能的效果最好,假设某用户要求根据本地区冬至正午时刻太阳光线与地面水平线的夹角(θ)确定玻璃吸热管的倾斜角(太光线与玻璃吸热管垂直),请完成以下计算:① ② ③如图②,AB BC ⊥,垂足为点B ,EA AB ⊥垂足为点A ,//CD AB ,10CD =cm , 120DE =cm ,FG DE ⊥,垂足为点G .(1)若3750'θ∠=︒,则AB 的长约为 cm.(参考数据: sin3750'0.61︒≈,cos3750'0.79︒≈,tan3750'0.78︒≈)(2)若30FG =cm ,60θ∠=︒,求CF 的长.18、如图,在直角坐标系中,Rt △OAB 的直角顶点A 在x 轴上,OA =4,AB =3.动点M 从点A 出发,以每秒1个单位长度的速度,沿AO 向终点O 移动;同时点N 从点O 出发,以每秒1.25个单位长度的速度,沿OB 向终点B 移动.当两个动点运动了x 秒(0<x <4)时,解答下列问题: (1)求点N 的坐标(用含x 的代数式表示);(2)设△OMN 的面积是S ,求S 与x 之间的函数表达式;(3)在两个动点运动过程中,是否存在某一时刻,使△OMN 是直角三角形?若存在,求出x 的值;若不存在,请说明理由.19、阅读:如图1把两块全等的含45°的直角三角板ABC 和DEF 叠放在一起,使三角板DEF 的锐角顶点D 与三角板ABC 的斜边中点O 重合,把三角板ABC 固定不动,让三角板DEF 绕点D 旋转,两边分别与线段AB 、BC 相交于点P 、Q,易说明△APD ∽△CDQ.猜想(1):如图2,将含30°的三角板DEF (其中∠EDF=30°)的锐角顶点D 与等腰三角形ABC (其中∠ABC = 120°)的底边中点O 重合,两边分别与线段AB 、BC 相交于点P 、Q .写出图中的相似三角形 (直接填在横线上);验证(2):其它条件不变,将三角板DEF 旋转至两边分别与线段AB 的延长线、边BC 相交于点P 、Q .上述结论还成立吗?请你在图3上补全图形,并说明理由.连结PQ ,△APD 与△DPQ 是否相似?为什么?探究(3):根据(1)(2)的解答过程,你能将两三角板改为一个更为一般的条件,使得(1)20、从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC 中,CD 为角平分线,∠A=40°,∠B=60°,求证:CD 为△ABC 的完美分割线. (2)在△ABC 中,∠A=48°,CD 是△ABC 的完美分割线,且△ACD 为等腰三角形,求∠ACB 的度数. (3)如图2,△ABC 中,AC=2,BC=,CD 是△ABC 的完美分割线,且△ACD 是以CD 为底边的等腰三角形,求完美分割线CD 的长.BE P AC Q F D(O)图1图2D(O) B CFE P Q A 图3AC B21、如图(1),点C 将线段AB 分成两部分,如果AC :AB=BC :AC ,那么称点C 为线段AB 的黄金分割点。

某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l 将一个面积为S 的图形分成两部分,这两部分的面积分别为、,如果,那么称直线l 为该图形的黄金分割线。

(1)研究小组猜想:在△ABC 中,若点D 为AB 边上的黄金分割点,如图4(2),则直线CD 是△ABC 的黄金分割线。

你认为对吗?为什么?(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?(3)研究小组在进一步探究中发现:过点C 任作一条直线交AB 于点E ,再过点D 作直线DF ∥CE ,交AC 于点F ,1S 2S 121S :S S :S ACB图1A D B图2CAD B 图3CFEFCBDE A图4连结EF ,如图4(3),则直线EF 也是△ABC 的黄金分割线。

请你说明理由。

(4)如图4(4),点E 是平行四边形ABCD 的边AB 的黄金分割点,过点E 作EF ∥AD ,交DC 于点F ,显然直线EF 是平行四边形ABCD 的黄金分割线,请你画一条平行四边形ABCD 的黄金分割线,使它不经过平行四边形ABCD 各边的黄金分割点。

22、△ABC 是一块等边三角形的废铁片,利用其剪裁一个正方形DEFG ,使正方形的一条边DE 落在BC 上,顶点F 、G 分别落在AC 、AB 上. Ⅰ.证明:△BDG ≌△CEF ;ABCDEFG 图 (1)Ⅱ. 探究:怎样在铁片上准确地画出正方形.小聪和小明各给出了一种想法,请你在Ⅱ....a .和Ⅱ..b .的两个问题中选择一个你喜欢的问题解答................... .如果两题都.....解,只以Ⅱ.....a .的解答记分...... Ⅱa . 小聪想:要画出正方形DEFG ,只要能计算出正方形的边长就能求出BD 和CE 的长,从而确定D 点和E点,再画正方形DEFG 就容易了.设△ABC 的边长为2 ,请你帮小聪求出正方形的边长(结果用含根号的式子表示,不要求分母有理化) .Ⅱb . 小明想:不求正方形的边长也能画出正方形. 具体作法是: ①在AB 边上任取一点G ’,如图作正方形G ’D ’E ’F ’;②连结BF ’并延长交AC 于F ;③作FE ∥F ’E ’交BC 于E ,FG ∥F ′G ′交AB 于G ,GD ∥G ’D ’交BC 于D ,则四边形DEFG 即为所求.你认为小明的作法正确吗?说明理由.ABCD E FG 图 (3)G ′ F ′E ′D ′ ABCDEFG 图 (2)QPDE F C B AQP D E F CB A23、如图1,一副直角三角板满足AB =BC ,AC =DE ,∠ABC =∠DEF =90°,∠EDF =30°【操作】将三角板DEF 的直角顶点E 放置于三角板ABC 的斜边AC 上,再将三角板....DEF ...绕点..E .旋转..,并使边DE 与边AB 交于点P ,边EF 与边BC 于点Q【探究一】在旋转过程中,(1)如图2,当CE 1EA=时,EP 与EQ 满足怎样的数量关系?并给出证明. (2)如图3,当CE 2EA =时EP 与EQ 满足怎样的数量关系?,并说明理由. (3)根据你对(1)、(2)的探究结果,试写出当CE EA=m 时,EP 与EQ 满足的数量关系式为_________,其中m 的取值范围是_______(直接写出结论,不必证明) 【探究二】若,AC =30cm ,连续PQ ,设△EPQ 的面积为S(cm 2),在旋转过程中:(1)S 是否存在最大值或最小值?若存在,求出最大值或最小值,若不存在,说明理由.(2)随着S 取不同的值,对应△EPQ 的个数有哪些变化?不出相应S 值的取值范围.(图1) (图2) (图3)F C(E)A(D)。

相关文档
最新文档