中科院力学所科技成果——低成本高纯度纳豆激酶的生产技术

中科院力学所科技成果——低成本高纯度纳豆激酶的生产技术
中科院力学所科技成果——低成本高纯度纳豆激酶的生产技术

中科院力学所科技成果——低成本高纯度纳豆激酶

的生产技术

技术介绍及特点

以由黄豆或鹰嘴豆等发酵得到的粗品纳豆激酶作为原料,通过批量结晶纯化的方法获得高纯度纳豆激酶,具有的技术特点如下:(1)工艺简单

在粗品纳豆激酶溶液中通过加入多种环境友好的试剂,在室温条件下经搅拌、静置生长一段时间(2-5天)后,粗品纳豆激酶中的杂质留在溶液中,溶液中的固体为纳豆激酶晶体。简单固/液分离后即可得到高纯度纳豆激酶。高纯度纳豆激酶生产工艺适宜于工业化生产。

(2)产品纯度高

纳豆激酶晶体纯度不低于80%。

实验室制备的10ml级纳豆激酶晶体溶液(左图)

纳豆激酶晶体照片(右图)

(3)产品成本低

公司单价(元/g)

大和公司(日本):84

和光纯药公司(日本):130

燕京啤酒(中国):124

我们制备的高纯纳豆激酶:40

备注:其他公司的产品非高纯纳豆激酶。

应用领域及前景分析

应用领域:特膳食品、功能性食品、保健品等。

前景分析:国内预制食品产业达到1万亿。

特膳食品属于功能性预制食品,目前正处于市场的起步阶段,纳豆激酶特膳食品在预制食品应用市场上是个空白,因此将有巨大的市场空间。

知识产权情况

结晶纯化工艺目前作为商业秘密,未申请专利。检索国内外文献,未能检索到相关的纯化工艺报道,也未能检索到高纯纳豆激酶的工业化生产的报道。

2020-2021年中国科学院大学(中科院)计算数学考研招生情况、分数线、参考书目、经验指导

一、中国科学院数学与系统科学研究院简介 中国科学院数学与系统科学研究院由中科院数学研究所、应用数学研究所、系统科学研究所及计算数学与科学工程计算研究所四个研究所整合而成,此外还拥有科学与工程计算国家重点实验室、中科院管理决策与信息系统重点实验室、中科院系统控制重点实验室、中科院数学机械化重点实验室、华罗庚数学重点实验室、随机复杂结构与数据科学重点实验室,以及中科院晨兴数学中心和中科院预测科学研究中心等。2010年11月成立国家数学与交叉科学中心,旨在从国家层面搭建一个数学与其它学科交叉合作的高水平研究平台。数学与系统科学研究院拥有完整的学科布局,研究领域涵盖了数学与系统科学的主要研究方向。共有16个硕士点和13个博士点(二级学科),分布在经济学、数学、系统科学、统计学、计算机科学与技术、管理科学与工程六个一级学科中,可以在此范围内招收和培养硕士与博士研究生。在2006年全国学科评估中,我院数学学科的整体评估得分为本学科的最高分数。数学与系统科学研究院硕士招生类别为硕士研究生、硕博连读生和专业学位硕士研究生。2019年共计划招收122名。 二、中国科学院大学计算数学专业招生情况、考试科目

三、中国科学院大学计算数学专业分数线 2018年硕士研究生招生复试分数线 2017年硕士研究生招生复试分数线 四、中国科学院大学计算数学专业考研参考书目 616数学分析 现行(公开发行)综合性大学(师范大学)数学系用数学分析教程。 801高等代数 [1] 北京大学编《高等代数》,高等教育出版社,1978年3月第1版,2003年7月第3版,2003年9月第2次印刷. [2] 复旦大学蒋尔雄等编《线性代数》,人民教育出版社,1988. [3] 张禾瑞,郝鈵新,《高等代数》,高等教育出版社, 1997. 五、中国科学院大学计算数学专业复试原则 在中国科学院数学与系统科学研究院招生工作小组领导下,按研究所成立招收硕士研究生复试小组,设组长1人、秘书1人。 复试总成绩按百分制计算,其中专业知识成绩占60%,英语听力及口语测试成绩占20%,综合素质成绩占20%。 在面试环节,每位考生有5分钟自述,考查内容主要包括专业知识、外语(口语)水平

中科院新材料领域科技成果转化项目

中科院新材料领域科技成果转化项目 (第一期) 1.绿色环保型无机硅酸盐内外墙涂料 一、项目背景 与有机涂料相比,无机硅酸盐涂料具有良好的透气性、抗污染性、耐水、耐碱、耐污染、耐候、绿色环保等综合性能,是符合环保要求的高科技换代产品。无机硅酸盐是最普遍的无机涂料粘合剂,具有较强的粘合力、成膜能力、耐高温、耐老化、原料来源丰富、无污染、成本低廉等特点。 二、项目简介 绿色环保无机硅酸盐涂料是指以硅酸盐类化合物作为粘结剂,加入各种颜料、填料、助剂、固化剂配制而成的涂料。 技术特点: 1.本项目通过对传统的无机硅酸盐涂料进行杂化改性,克服了传统无机硅酸盐内外墙涂料的涂抹性脆易开裂、使用后期也容易粉化的弱点,同时引入高“防污性”这一特种功能。 2.本项目不含有机溶剂等有害挥发物质,在生产和使用期间,无臭、五毒、无过敏性物质,对生态环境无危害。 应用范围:适用各种混凝土、腻子、天然石材、砖墙等矿物机制表面。

三、市场前景 无机硅酸盐涂料在国内的使用量虽然不到5%,但是它的高附加值以及具有的特殊功能十分引人注目。随着国家对环保的重视,无机硅酸盐涂料大部分取代有机涂料将势在必然的,市场前景十分广阔。 四、项目单位 中科院广州化学所 2.新型混凝土高效减水剂

一、项目背景 随着混凝土技术不断向高工作性、高强度、高耐久性和多功能性的方向发展,混凝土的配制已越来越离不开高效减水剂,虽然我国混凝土高效减水剂在经历了几十年的发展后,目前品种基本齐全,已经可以生产的高效减水剂有改性木质素磺酸盐系、萘系、三聚氰胺系、氨基磺酸盐系、脂肪族系和聚羧酸系等。然而不同用途的混凝土对外加剂的要求是多方面的,如何将高效减水剂与各种功能性的外加剂组分有机地结合起来,集几种单组分各自功能于一身,或起到多倍于单组分功能的多功能、系列化外加剂,仍然是混凝土外加剂行业工作者的一大历史任务,有待我们进一步研究。 二、项目简介 该项目采用大分子反应的新型合成路线,合成出带有聚氧乙烯醚侧链的聚羧酸高效减水剂,该减水剂具有超高的分散性能和优良的保坍性能,符合集中搅拌商品混凝土的发展需要,能达到降耗省工、高效的效果。 三、市场前景 主要用途:可用于配制高强混凝土、泵送混凝土、自流平混凝土。 应用效果:该减水剂应用于高强度混凝土的配制,在掺量为0.2%时(相对固含量计),减水率最高可达36%,各龄期抗压强度明显提高,3d、28d抗压强度比分别为207%、

中国科学院力学研究所岗位管理实施办法

中国科学院力学研究所岗位管理实施办法 (力发人教字〔2007〕134号) 第一章总则 第一条根据中国科学院《关于印发〈中国科学院岗位管理实施办法〉的通知》(科发人教字〔2007〕207号)的有关规定,为实现我所人力资源管理的科学化、规范化、制度化,结合我所科技发展的规划,制定本办法。 第二条围绕我所科技发展规划的要求,遵循按需设岗、职数控制、结构合理、动态优化、管理规范的原则,按照院核定的岗位总量和结构比例科学设置各类岗位。 第三条本办法适用于我所在岗人员。所级领导干部按照干部人事管理权限的有关规定执行。 第二章岗位类别与岗位等级 第四条我所设置创新岗位和项目聘用两种岗位,分别包括科技、支撑和管理三类岗位。 第五条科技岗位是指各实验室(研究部)从事基础研究和战略高技术研究工作,具有相应专业技术水平和能力要求的工作岗位。我所科技岗位包括自然科学研究系列、工程技术系列专业技术岗位。 科技岗位执行自然科学研究系列或工程技术系列,等级设置按照《中国科学院岗位管理实施办法》规定(见附表1)。 第六条支撑岗位是指为我所科技工作提供技术支撑和辅助性工作的岗位,主要设置在实验平台技术支撑、实验室(研究部)学术与行政助理、网络与图书信息保障、学会期刊出版等岗位。 支撑岗位主要执行专业技术系列中的工程技术系列、实验技术系列、图书资料和出版系列等专业技术岗位,也包括工勤技能系列岗位。 对兼有管理职责要求的支撑岗位,确因工作需要,也可执行职员系列。 支撑岗位的等级设置按照《中国科学院岗位管理实施办法》规定(见附

表1)。 第七条管理岗位是指职能部门承担领导职责或管理职责的工作岗位。管理岗位主要执行职员系列,等级设置按照《中国科学院岗位管理实施办法》规定(见附表1)。 对兼有专业技术职责要求的科技管理岗位,根据工作需要,可设置为相应的专业技术岗位。会计、审计等国家有职业资格要求的岗位,设置相应的专业技术岗位。 第八条项目聘用岗位系列的设置与等级同上述创新岗位,但原则上,不设置正高级专业技术岗位和五级及以上职员岗位。 第三章岗位结构比例 第九条创新岗位中科技、支撑与管理三类岗位的宏观结构比例为70%、20%、10%。 第十条创新科技岗位(含执行专业技术系列的管理岗位)中,高级科技岗位(专业技术一至七级岗位)的比例占科技岗位总数的70%,正高级岗位(专业技术一至四级岗位)不超过高级科技岗位总数的40%。其中:正高级科技岗位中,专业技术一级岗位为国家专设的特级岗位,由国家实行总量控制和管理,专业技术二级、三级、四级岗位之间的宏观结构比例为2:4:4; 副高级科技岗位中,专业技术五级、六级、七级岗位之间的结构比例为3:4:3; 中级科技岗位中,专业技术八级、九级、十级岗位之间的结构比例为4:4:2; 初级科技岗位中,专业技术十一级、十二级岗位之间的结构比例为8:2。 第十一条创新支撑岗位中,高级支撑岗位(专业技术三至七级岗位)不超过支撑岗位总数的50%,正高级支撑岗位(专业技术三至四级岗位)不超

2017年中科院数学分析考研试题

中国科学院大学 2017年招收攻读硕士学位研究生入学统一考试试题科目名称:数学分析 考生须知: 1.本试卷满分为150分,全部考试时间总计180分钟; 2.所有答案必须写在答题纸上,写在试题纸上或草稿纸上一律无效。 ———————————————————————————————————————— 1.(10分)计算极限lim x !1 x 32 (p 2+x 2p 1+x +p x ):2.(10分)已知a n +1(a n +1)=1;a 0=0,证明数列的极限存在,并且求出极限值. 3.(15分)f (x )三次连续可微,令u (x;y;z )=f (xyz ),求 (t )=@3u @x@y@z 的具体表达式,其中t =xyz . 4.(15分)求Z dx 1+x 4 :5.(15分)已知f (x )在[0;1]上二阶连续可微,并且j f (x )j ?a ,j f 00(x )j ?b ,证明f 0(x )? 2a +b 2 .6.(15分)已知f (x )有界且可微,假设lim x !1f 0(x )存在,求证lim x !1 f 0(x )=0.7.(15分)求二重积分“ D j x 2+y 2 1j dxdy ,其中D =f (x;y )j 0?x ?1;0?y ?1g . 8.(15分)已知a n =n X k =1 ln (k +1),证明1X n =11a n 发散.9.(15分)已知n 为整数,a 为常数,I n (a )=Z 10dx 1+nx a .(1)试讨论a 对敛散性的影响; (2)当a 在使积分收敛的情况下,求lim n !1 I n (a ).10.(15分)在[a;b ]上(0

中国科学院科技成果鉴定实施办法

中国科学院科技成果鉴定实施办法 中国科学院科技成果鉴定实施办法 总则 第一条实事求是地评价科技成果是管理工作的一项重要内容。为贯彻执行“中华人民共和国国家科学技术委员会科学技术成果鉴定办法”,正确评价科技成果,促进科技成果的推广应用,加强科技成果管理,特制定本办法。 第二条本办法所指的科技成果包括: 一、阐明自然现象、特征、规律及其内在联系的,在学术上具有新见解并对科学技术发展具有指导意义的科学理论成果,包括基础研究理论成果和应用基础研究理论成果。 二、解决科学实验和生产建设中科学技术问题的具有新颖性、先进性和实用价值的应用技术成果,包括新产品、新技术、新工艺、新材抖、新设计和生物、矿物新品种等。 三、推动决策科学化和管理现代化,对促进科学技术、经济与社会的协调发展起重大作用的科技情报和软件科学方面的研究成果。 第三条科学理论成果的评价应当实行百家争呜的方针,以是否在国内外学术刊物或学术会议上公开发表,得到学术界的公认为准,-般不组织鉴定。 应用技术成果的评价,应当根据其实施后的经济、社会效益,通过市场机制来进行鉴别、评价,凡得到社会的公认并转入商品化的,-般可以不组织鉴定。 第四条执行国家和院科研计划项目所的科技成果;申报国家和院(省、部委)级科技奖励的成果,及根据国家有关规定应当进行鉴定的其他科技成果应按照本办法进行鉴定和评价,鉴定报告供有关部门参考。 鉴定形式 第五条科技成果鉴定可以采取以下形式: -、检测鉴定由国家级、省(部委)级专业检测机构按照国家标准、行业标准或有关技术指标进行检验、测试和评价,并作出结论,必要时可聘请少数同行专家参与进行咨询、评议。 二、验收鉴定由验收单位(或其委托、指定的单位)按照计划任务书或所规定验收标准和方法进行测试和评价,必要时,验收单位可视具体情况遨请少数同行专家参与验收。

中科院力学所科技成果——高速列车系列技术

中科院力学所科技成果——高速列车系列技术2008年科技部与原铁道部签订了两部联合行动计划即《中国高速列车自主创新行动计划》,启动了国家支撑计划重大项目“高速列车关键技术研究及装备研制”,目标是研制最高运行时速380公里的新一代高速列车。在此背景下,初步形成了目前的高速列车空气动力学科研团队。 团队核心成员主要围绕高速列车气动性能和气动噪声评估、气动优化设计、动模型气动实验技术、列车结构静/动强度评估和设计、气动对车辆运行安全性和舒适性影响等开展研究。涉及空气动力学、结构动力学、车辆动力学、噪声工程、实验技术等多学科系统耦合问题。该团队参与了我国已研制和在研的所有高速列车气动性能评估和气动定型设计,具有较强的团队精神、科研攻关能力,对我国高速列车设计技术提升和高铁产业的发展起到了不可替代的作用。 技术介绍及特点 在国家科技支撑计划重大项目“中国高速列车关键技术研究及装备研制”的资助下,中国科学院力学研究所高速列车团队形成了较完备的高速列车空气动力学设计技术。建立了优化设计方法和动模型实验平台,形成了我国高速列车空气动力学研究体系。其主要特点有: 1、基于压缩空气加速、磁涡流非接触制动、实验快速恢复等发明技术,研制了世界上规模最大、实验速度最高的双向运行高速列车动模型实验平台。同时,研制了具有弹性隔振支撑、加减速段限位和实验段自动切换的车载六分量测力天平,填补了动模型气动力测量的

技术空白。利用该平台,已为我国多种高速列车研制提供了气动实验支撑数据。 2、发展了多目标优化设计方法,构建了高速列车气动优化设计平台。以气动阻力、尾车升力和远场气动噪声为设计目标,通过优化,得到了性能更优的标准动车组气动方案。大西线线路考核试验表明,中国标准动车组具有更加优良的气动性能。 3、本项目发展的高速列车气动优化设计技术,已用于我国CRH380系列、中国标准动车组、更高速度等级高速列车、城际列车等研制,为中国高速铁路发展做出了突出贡献。参与“京沪高速铁路工程”项目获2015年国家科学技术进步特等奖。主持“高速列车空气动力学优化设计及评估技术”项目分别获2016年中国力学科技进步一等奖和2014年第五届中国侨界创新成果贡献奖。参与“设计时速380公里高速动车组技术研发及应用”项目获2012年铁道科技进步特等奖。 应用领域 1、高速列车的气动特性评估 2、高速列车动模型试验 3、高速列车外形优化设计 技术成熟度及应用案例 1、CRH380系列高速列车气动定型设计 针对新一代CRH380A高速列车研制,完成了多种头型方案无横风和不同强度横风运行场景下的气动性能和气动噪声评估;完成了单

科学与工程计算国家重点实验室(中科院数学与系统科学研究所)

科学与工程计算国家重点实验室 简介 中国科学院科学与工程计算国家重点实验室(简称LSEC)是在已故著名数学家、中国计算数学的奠基人和开拓者冯康院士的倡导、并亲自筹备和组织下,由原中科院计算中心从事计算数学研究的部分课题组成的。实验室筹建于1990年,1993年10月经中科院验收后正式投入运行,1994年向国内外开放,1995年9月和 2005年3月两次通过国家验收。 实验室主要开展科学与工程计算中具有重要意义的基础理论研究,解决科学与工程领域中的重大计算问题,着重研究计算方法的构造、理论分析及实现。研究内容包括:动力系统与数值方法,研究各类保结构算法的理论、算法的构造和数值试验;有限元边界元方法,针对具有应用背景的椭圆边值问题及其它相关问题,提出适合于这些问题的有限元边界元新型高性能计算方法;非线性最优化,主要研究求解非线性规划的新算法以及算法的收敛性;计算流体力学,研究非定常不可压N-S方程和可压缩流的计算方法;并行计算方法和科学计算可视化;非均匀多孔介质中渗流问题的多尺度计算方法。 实验室主任是陈志明研究员。实验室学术委员会主任是中国工程院院士崔俊芝。 实验室建设以来在动力系统几何算法,非线性优化,有限元边界元,数理方程反问题,计算流体力学,并行算法,科学计算可视化等方面取得了大量的研究成果,十分突出的是关于哈密尔顿系统的辛几何算法的研究。其成果荣获“国家自然科学一等奖”。实验室在设备研制方面也取得了显著的成绩。 实验室现有科研人员19人,中科院院士2人(石钟慈、林群),中国工程院院士1人(崔俊芝),其中研究员16人,此外,实验室还获得多项其它重要奖项,其中石钟慈院士在 2000年获“何梁何利科学与技术进奖”,林群院士获2001年获捷克科学院“数学科学成就荣誉奖”、2004年获“何梁何利科学与技术进奖”。实验室十分重视队伍建设和人才培养工作,尤其注重青年学术骨干的培养和引进。目前通过中科院“百人计划”已引进3位年轻的学科带头人,其中实验室主任陈志明研究员被国家科技部任命为973计划项目“高性能科学计算研究”首席科学家,一批优秀青年学术骨干脱颖而出,他们在各自的研究领域取得了可喜的成果,并因此获得了荣誉。例如,袁亚湘研究员曾获1995年首届“冯康科学计算奖”、1996年度“中国青年科学家奖”、“国家杰出青年科学基金”、1998年度“全国十大杰出青年”称号;2005年度“北京市科学技术一等奖”;张林波研究员曾获1995年度“中科院青年科学家二等奖”、1997年度“中科院优秀青年”奖、2000年度“国家科技进步奖二等奖”;白中治研究员获得1998年度“中科院自然科学三等奖”、1999年度“中科院青年科学家二等奖”、“中科院优秀青年”称号、2005年度“国家杰出青年科学基金”;许学军研究员获2000年度“钟家庆数学奖”;陈志明研究员获2000年度“国家杰出青年科学基金”、2001年度“第四届冯康科学计算奖”、2003年度“第七届中科院杰出青年”称号、2004年度“新世纪百千万人才工程国家级人选”、2005年度“海外青年学者合作研究基金”;周爱辉研究员获2004年度“国家杰出青年科学基金”。

中国科学院流固耦合系统力学重点实验室

中国科学院流固耦合系统力学 重点实验室 Key Laboratory for Mechanics in Fluid Solid Coupling Systems Institute of Mechanics, Chinese Academy of Sciences 季报 2019年第1期(总第17期) 目录 中科院流固耦合系统力学重点实验室现场评估工作顺利完成 (2) 中科院流固耦合系统力学重点实验室召开2019年室务会 (3) 中国航空学会空气动力学分会飞行载荷专业工作会在扬州召开 (6) 圆柱阵列波浪力幅值的波动现象和预报公式 (8) 轻质金属点阵圆柱壳结构制备与力学性能研究进展 (9) 力学所提出一种大幅提升3D打印点阵结构力学性能的新方法 (11) 雾化稠油掺稀降粘技术研究进展 (12) 南海天然气水合物试采安全评价研究进展 (14) 油气水多相流量计研究进展 (15) 空化致板间液滴界面稳定性研究获得多个奖项 (16) 空泡与柔性膜的流固耦合研究获得2019度中国力学大会优秀墙报奖. 18

中科院流固耦合系统力学重点实验室现场评估工作顺利完成 7月15日,中科院前沿科学与教育局、中科院重点实验室现场评估专家组一行14人莅临中科院力学所,对依托力学所建设的流固耦合系统力学重点实验室进行现场评估。专家组组长顾逸东院士主持了评估会议并宣布了现场评估的议程安排。力学所所长秦伟,党委书记、副所长刘桂菊,副所长魏宇杰,副所长尹明及流固耦合系统力学重点实验室学术委员会主任、实验室主任参加会议。 实验室主任黄晨光做实验室主任工作报告,围绕发展定位与研究方向、科研任务与代表性成果、队伍建设与人才培养、开放交流与运行管理等方面,向专家组汇报了评估期内的发展成果和工作成效。杨国伟研究员、王展研究员分别做“高速列车气动设计与流固耦合动力学特性研究”和“极端海洋环境及其与工程结构的流固耦合理论”代表性成果报告。专家组肯定了实验室取得的成绩以及工作亮点,并就汇报和自评估报告中的存疑事项进行了交流。 现场评估专家组还查看了高速列车动模型试验平台、海洋流固土耦合实验室、多相流体力学实验室、冲击与耦合效应实验室的科研仪器建设、大型科研仪器设备使用共享等情况,同时,参观了实验室的展板窗口。在此基础上,专家组召开会议,根据现场考核情况对实验室进行打分,并初步形成了评估意见。 经过努力,实验室顺利完成了此次中科院重点实验室现场评估工作,并在评估中充分展现了自身的优势和特色,最终取得良好的评估成绩。 在国家科技创新基地优化整合的背景下,实验室将积极适应新形势和新要求,进一步加强实验室建设和运行管理工作,全面提升科研平台建设水平和运行效率,为加快科技创新提供良好的条件支撑。 (流固耦合系统力学重点实验室供稿)

中国科学院力学研究所研发成功等离子体生活垃圾气化发电技术

中国科学院力学研究所研发成功等离子体生活垃圾气化发电技术 我国生活垃圾处理方式主要是填埋和焚烧。填埋不仅侵占大量土地,还污染地下水,是不得已而为之的选择。尽管如此,对于土地资源紧张的地区已没有多少场地可供填埋使用。焚烧法虽然减容比高,并能回收能量,但却因二噁英等污染问题遭到公众强烈反对,急需发展新一代的绿色环保、节能降耗的替代焚烧技术。 等离子体是物质第四态,具有许多异于固态、液态和气态的独特的物理化学性质,如温度和能量密度都很高、可导电和发光、化学性质活泼并能加强化学反应等,环保性能优良。通过电弧放电产生高达7000 C的等离子体,将垃圾加热至很高的温度,从而迅速有效地摧毁废物。可燃的有机成分充分裂解气化,转化成可燃性气体,可以用于能源回收,一般称为“合成气”(主要成分是CO+H )。不可 2 燃的无机成分经等离子体高温处理后成为无害的渣体。 采用等离子体处理垃圾是目前减容效果最显著、无害化最彻底、资源化程度最高的绿色环保技术。与焚烧法相比,等离子体技术最突出的优点有: (1)处理温度高:有害物质摧毁更彻底,二噁英前驱体被彻底破坏分解; (2)可采用还原性气氛或部分氧化性气氛,采用电能作为外加热源,二次污染物排放比焚烧低2-3个数量级,裂解底渣是无害的; (3)合成气流量约为焚烧烟气量的5-10%,易于净化,后处理设备尺寸大大减小,节约了投资成本; (4)能源回收效率高,将筛上物制成合成气,后续利用气体发动机发电,发电效率可高达39%,而焚烧法采用蒸汽轮机,发电效率很难超过22%; (5)等离子体系统可快速启动与停机,等离子体核心工艺灵活,可根据不同的处理目的搭配不同的配套系统; (6)整套设备紧凑,占地小,经济效益好。

中科院数学分析考研

读书破万卷下笔如有神 中科院研究生院硕士研究生入学考试 《数学分析》考试大纲 本《数学分析》考试大纲适用于中国科学院研究生院数学和系统科学等学科各专业硕士研究生入学考试。数学分析是一门具有公共性质的重要的数学基础课程,由分析基础、一元微分学和积分学、级数、多元微分学和积分学等部分组成。要求考生能准确理解基本概念,熟练掌握各种运算和基本的计算、论证技巧,具有综合运用所学知识分析和解决问题的能力。 一、考试基本要求 要求考生比较系统地理解数学分析的基本概念和基本理论,掌握数学分析的基本思想和方法。要求考生具有抽象思维能力、逻辑推理能力、运算能力和综合运用所学的知识分析问题和解决问题的能力。 二、考试方法和考试时间 数学分析考试采用闭卷笔试形式,试卷满分为150分,考试时间为180分钟。 三、考试内容和考试要求 (一)考试内容 1. 分析基础 (1) 实数概念、确界 (2)函数概念 (3) 序列极限与函数极限 (4) 无穷大与无穷小 (5)上极限与下极限 (6) 连续概念及基本性质,一致连续性 (7)收敛原理 2. 一元微分学 (1) 导数概念及几何意义 (2) 求导公式求导法则 (3) 高阶导数 (4) 微分 (5) 微分中值定理 (6) L'Hospital法则 (7) Taylor公式 (8) 应用导数研究函数 一元积分学3. 读书破万卷下笔如有神 (1) 不定积分法与可积函数类 (2) 定积分的概念、性质与计算 (3) 定积分的应用

(4) 广义积分 4. 级数 (1) 数项级数的敛散判别与性质 (2) 函数项级数与一致收敛性 (3) 幂级数 (4) Fourier级数 5. 多元微分学 (1) 欧氏空间 (2) 多元函数的极限 (3) 多元连续函数 (4) 偏导数与微分 (5) 隐函数定理 (6) Taylor公式 (7) 多元微分学的几何应用 (8) 多元函数的极值 6. 多元积分学 (1) 重积分的概念与性质 (2)重积分的计算 (3)二重、三重广义积分 (4)含参变量的正常积分和广义积分 (5)曲线积分与Green公式 (6)曲面积分 (7)Gauss公式、Stokes公式及线积分与路径无关 (8)场论初步 (二)考试要求 1.分析基础 (1)了解实数公理,理解上确界和下确界的意义。掌握绝对值不等式及平均值不等式。 (2)熟练掌握函数概念(如定义域、值域、反函数等)。 (3)掌握序列极限的意义、性质(特别,单调序列的极限存在性定理)和运算??N方法。法则,熟练掌握求序列极限的 (4)掌握函数极限的意义、性质和运算法则(自变量趋于有限数和趋于无限两???方法,了解广义极限和单侧极限种情形),熟练掌握求函数极限的的意义。 (5)熟练掌握求序列极限和函数极限的常用方法(如初等变形、变量代换、两边夹法则等),掌握由递推公式给出的序列求极限的基本技巧,以及应用Stolz公式求序列极限的方法。 (6)理解无穷大量和无穷小量的意义,了解同阶和高(低)阶无穷大(小)量的意义。 (7)了解上极限和下极限的意义和性质。 理解函数两类间断点的熟练掌握函数在一点及在一个区间上连续的概念,(8). 读书破万卷下笔如有神 意义,掌握初等函数的连续性,理解区间套定理和介值定理。理解一致连续和不一致连续的概念。 (9)掌握序列收敛的充分必要条件及函数极限(当自变量趋于有限数及趋于无穷两种情形)存在的充分必要条件。 2.一元微分学 (1)掌握导数的概念和几何意义,了解单侧导数的意义,解依据定义求函 数在给定点的导数。

中国科学院杰出科技成就奖(个人)

中国科学院杰出科技成就奖(个人) 推荐书 推荐单位或专家姓名: 联系人:联系电话: 专业评审组: 重大成果类型:A B C (在对应类型 画√) 年月日

《中国科学院杰出科技成就奖(个人)推荐书》填写说明 推荐单位(或推荐专家)必须详实、准确、客观地填写《中国科学院杰出科技成就奖(个人)推荐书》。 一、封面要求 1、推荐单位应填写单位名称、联系人及电话、拟推荐专业评审组和重大成果类型,并加盖单位公章。 2、推荐专家应填写姓名、联系人及电话、拟推荐专业评审组和重大成果类型。 3、专业评审组:按照4个专业评审组负责评审的范围选择某一专业评审组。4个专业评审组分别挂靠院基础科学局(评审范围:数学、物理(含核物理)、核科学技术、化学、纳米科技、天文学和空间科学、力学、大科学工程)、生命科学与生物技术局(评审范围:生物学、生物技术、生物医学与医药、农业生物学、环境生物学)、资源环境科学与技术局(评审范围:地球科学、农业项目、国土资源与利用、遥感、大气海洋、生态环境)和高技术研究与发展局(评审范围:信息科技、先进制造、材料科学、化工过程、先进能源、工程科学、交通、空间技术、光电科学、专用项目)。 4、重大成果类型:A(在基础研究或应用基础研究中做出前人尚未发现或者尚未阐明、得到国内外同行公认的重大科学发现或重大技术发明);B(在关键技术创新与集成或高技术产业化中,为我国经济建设、国家安全、社会可持续发展或科学技术进步做出重大贡献并创造显著经济效益或显著社会效益);C(在基础性、公益性科技活动中,做出重大贡献并创造显著社会效益)。 二、推荐意见 1、推荐单位(或推荐专家)应推荐院属单位近五年来在科技创新活动中做出重大成果(即亮点科技成就)的个人。 如单位推荐,只填写“一、推荐单位意见”,并加盖单位公章;如专家推荐,只填写“二、推荐专家意见”,每位专家应单独填写推荐意见、工作单位、专业技术职务和专业领域,并亲笔签名。 2、根据不同类型的重大成果,按下述要求撰写推荐意见: A、基础研究或应用基础研究重大成果:应重点叙述重大科学发现或重大技术发明的科学技术贡献、论文论著情况、知识产权情况和国内外公开发行的科技书刊中的引用和评价情况; B、关键技术创新与集成或高技术产业化重大成果:应重点叙述主要技术创新成就、满足国家战略需求与应用情况和经济效益或社会效益情况; C、基础性、公益性科技活动重大成果:应重点叙述主要科技工作的基础积累、对科技进步的推动作用和社会效益。 三、装订要求 《推荐书》按A4格式打印、竖装,左边为装订边,宽度不小于25毫米,正文内容所用字型为4号字。

中科院半导体所科技成果——基于TDLAS技术的气体传感器

中科院半导体所科技成果——基于TDLAS技术的气体 传感器 项目成熟阶段生长期 项目来源公益行业(气象)专项资金 成果简介基于可调谐二极管激光器吸收光谱技术(TDLAS)的气体传感器,是结合光电子学,光谱学,以及微弱信号处理等高新技术的气体传感器系统。该设备与传统的气体传感器装置(电化学法,气象色谱法,吸附法)相比具有更高的灵敏度,更精确的测量数据,更快的响应速度,以及在线实时测量等特点。 通过内建程序及显示屏,可以实时显示当前的待测气体浓度,以及各测量量随时间变化的曲线。标准的RS232通信接口可以方便的向上位机传输实时测量数据。通过光纤和电缆的延伸,可以进行远端在

线测试。通过可更换的气室选择,完成不同环境下的测试任务。并且我们可以根据客户的要求进行定制气体(H2O、NO、CH4、HF)的测试。 技术特点 基于可调谐二极管激光吸收光谱技术,通过向待测气体发射特定波长的激光,并对穿过气体的激光信号进行解调,分析气体的组分和浓度。利用光吸收技术进行气体浓度测试,不会对气体组分造成影响,并且响应速度很快,可以进行实时监测及数据采集。通过延长的光纤和电缆,可以将传感器深入到人身无法达到的地方及环境,进行远程测试。 专利情况 多项专利技术申请中,其中已授权1项。 市场分析

根据我们目前的调研情况,目前能够很容易检测的气体包括H2O、NH3、NO、HF、HBr、HI、CH4,其中H2O和HF的检测灵敏度可以高达100个ppb,是目前同类型传感器中灵敏度最高的检测手段。上述气体都是化工生产、气象监测、特种气体测量(如SF6中的水汽测量、矿井的瓦斯监测等),因此该类传感器具有非常广阔的应用前景。另外,目前国家在环境监控非常重视,其中一些危险气体的检测缺乏体积小、灵敏度高、响应时间快的传感器技术,因此该技术还能在国家安全和环境控制方面发挥重要的作用。 合作方式技术入股 产业化所需条件 企业提供厂房、基础建设、资金、可靠性试验设备、人员配合。

流体力学-中国科学院海洋研究所研究生部

中科院海洋研究所硕士研究生入学考试 《流体力学》考试大纲 本流体力学考试大纲适用于中国科学院研究生院力学专业的硕士研究生入学考试。流体力学是现代力学的重要分支,是许多学科专业的基础理论课程,本科目的考试内容主要包括流体的物理性质、流体运动学、动力学和静力学,无粘不可压缩、可压缩流动,粘性不可压缩流动及湍流、流体波动和漩涡理论等方面。要求考生对其基本概念有较深入的了解,能够熟练地掌握基本方程的推导,并具有综合运用所学知识分析问题和解决问题的能力。 一、考试内容: (一)流体的物理性质 固液气体的宏观性质与微观结构,连续介质假设及其适用条件,流体的物理性质(粘性、可压缩性与热膨胀性、输运性质、表面张力与毛细现象) ,质量力与表面力。 (二)流体运动学 流体运动的描述(拉格朗日描述与欧拉描述及其间的联系、物质导数与随体导数、迹线、流线及脉线),流场中的速度分解,涡量,涡量场,涡线、涡管、涡通量,涡管强度及守恒定理。 (三)流体动力学 连续性方程(雷诺输运定理),动量方程(流体的受力、应力张量),能量方程(热力学定律),本构关系,状态方程,流体力学方程组及定解条件,正交曲线坐标系,量纲分析与流动相似理论,流体力学中的无量纲量及其物理意义、相似原理的应用。 (四)流体静力学 控制方程,液体静力学规律,自由面的形状,非惯性坐标系中的静止液体。 (五)无粘流动的一般理论 无粘流动的控制方程,Bernoulli方程,Bernoulli方程和动量定理的应用。 (六)无粘不可压缩流体的无旋流动 控制方程及定解条件,势函数及无旋流动的性质,平面定常无旋流动(流函数、源汇、点涡、偶极子、镜像法、保角变换),无旋轴对称流动,非定常无旋流动。 (七)液体表面波 控制方程(小振幅水波) 及定解条件,平面单色波,水波的色散和群速度,水波的能量及其传输,速度与压力场特性,表面张力波及分层流体的重力内波,非线性水波理论。 (八)旋涡运动 涡量动力学方程和涡量的产生,涡量场(空间特性、时间特性),典型的涡模型。 (九)粘性不可压缩流动 控制方程及定解条件,定常的平行剪切流动(Couette流动、Poiseuille流动等),非定常的平行剪切流动(Stokes第一和第二问题、管道流动的起动问题),圆对称的平面粘性流动(圆柱Couette流及其起动过程),小雷诺数粘性流动。 (十)层流边界层和湍流 边界层的概念,层流边界层方程(Blasius平板边界层),边界层的分离,湍流的发生,层流到湍流的转捩,雷诺方程和雷诺应力。 (十一)无粘可压缩流动 声速和马赫数,膨胀波、弱压缩波的形成及其特点,一维等熵流(定常和非定常),激波(正激波和斜激波),拉瓦尔喷管流动的特征。 二、考试要求:

中科院力学所——便携式大气压空气冷等离子体发生器

中科院力学所——便携式大气压空气冷等离子体发生器 中国科学院力学研究所应用等离子体力学课题组隶属于高温气体动力学国家重点实验室。课题组已有近五十年历史。多年来积累了直流等离子体射流产生技术、高频热等离子体射流、大气压非平衡等离子体、交流等离子体射流产生技术,以及多弧离子镀、中频对靶磁控溅射、射频感应等离子体镀膜等技术。在等离子体状态控制和参数诊断方面有长期的工作经验和知识积累。在等离子体材料工艺应用方面开展了大量的低气压/大气压等离子体喷涂、金属表面改性、熔敷、熔凝、镀膜等研究。近年来课题组的主要研究方向集中在等离子体流动稳定性、先进空间电推进、空天高焓流动地面模拟、大气压空气冷等离子体发生器设计等领域。 便携式等离子体发生器 技术介绍及特点 等离子体是物质除固态、液态和气态之外的第四态,按照温度的不同,可以分为高温等离子体和低温等离子体,低温等离子体又分为热等离子体和冷等离子体;按照粒子温度分布的不同可以分为热平衡

等离子体和非热平衡等离子体。大气压冷等离子体以其温度低、无需复杂昂贵真空系统以及活性物质丰富等特征,近年来广泛应用于皮肤治疗、口腔医学、食品工程、材料改性、纳米合成和环境工程等领域,其主要活性物质包括活性氧和活性氮基团、激发态和亚稳态粒子、电场、带电粒子、紫外线及热量等。近些年来,人们根据应用需求的不同,广泛设计了丰富多样的大气压冷等离子体射流发生器。这些射流发生器主要以昂贵的稀有气体作为激发气源,同时等离子体工作离不开体积庞大的气源和电源设备。如何借助自然界条件,充分发挥空气优势,实现大气压空气冷等离子体射流的应用值得我们探讨。我们设计了一款便携式空气冷等离子体发生器,摆脱传统大体积的电源和气源设备,既可以在空气种激发,也可以在水下激发。该便携式空气等离子体射流发生器设计使得大气压冷等离子体从实验室迈向市场走近人类生活成为可能。 应用领域 杀菌消毒:伤口愈合、口腔治疗、医用工具消毒、家居卫生、水果保鲜;

计算机科学数学理论

计算机自从其诞生之日起,它的主要任务就是进行各种各样的科学计算。文档处理,数据处理,图像处理,硬件设计,软件设计等等,都可以抽象为两大类:数值计算与非数值计算。作为研究计算机科学技术的人员,我们大都对计算数学对整个计算机科学的重要性有一些了解。但是数学对我们这些专业的研究和应用人员究竟有多大的用处呢?我们先来看一下下面的一个流程图: 上图揭示了利用计算机解决科学计算的步骤,实际问题转换为程序,要经过一个对问题抽象的过程,建立起完善的数学模型,只有这样,我们才能建立一个设计良好的程序。从中我们不难看出计算数学理论对用计算机解决问题的重要性。下面我们将逐步展开对这个问题的讨论。 计算机科学的数学理论体系是相当庞杂的,笔者不敢随意划分,参考计算机科学理论的学科体系,我们谈及的问题主要涉及:数值计算,离散数学,数论,计算理论四大方向。 [一]数值计算(Numerical Computation)主要包括数值分析学、数学分析学、线性代数、计算几何学、概率论与数理统计学。 数值分析学又常被称为计算方法学,是计算理论数学非常重要的一个分支,主要研究数值型计算。研究的内容中首先要谈谈数值计算的误差分析,误差是衡量我们的计算有效与否的标准,我们的算法解决问题如果在误差允许的范围内,则算法是有效的,否则就是一个无效的问题求解。另外就是数值逼近,它研究关于如何使用容易数值计算的函数来近似地代替任意函数的方法与过程。感觉应用比较广的不得不提切雪比夫逼近和平方逼近了。笔者曾经尝试过的就是通过最佳平方逼近进行曲线的拟合,开发工具可以选择VC++或者Matlab。插值函数是另外一个非常重要的方面,现代的计算机程序控制加工机械零件,根据设计可给出零件外形曲线的某些型值点,加工时走刀方向及步数,就要通过插值函数计算零件外形曲线及其他点函数值。至于方程求根、线性方程组求解,一般的计算性程序设计问题都会多多少少的涉及一些,我们这里就不赘述了。关于数值分析学的一个学习误区就是仅仅学习理论知识,而很难和程序设计结合起来,实际上通过上面的论述,大家已经能够初步地认识到这个学科是应当与程序设计紧密联系才能够体现它的重要性的。关于理论的学习,推荐华中科技大学李庆扬老师的《数值分析》。然而理论学习毕竟是个过程,最终的目标还是要用于程序设计解决实际的计算问题,向这个方向努力的书籍还是挺多的,这里推荐大家高等教育出版社(CHEP)和施普林格出版社(Springer)联合出版的《计算方法(Computational Methods)》,华中理工大学数学系写的(现华中科技大学),这方面华科大做的工作在国内应算是比较多的,而个人认为以这本最好,至少程序设计方面涉及了:任意数学函数的求值,方程求根,线性方程组求解,插值方法,数值积分,场微分方程数值求解。 数学分析学很多学校在近些年已经替代高等数学被安排到了本科教学当中。原因是很简单的,高等数学虽然也是非常有用的工程数学,介绍的问题方法也被广泛的应用,但是正如大家所知道的,高等数学不太严格的说,基本上就是偏向于计算的数学分析,当然省去了数学分析非常看重的推理证明,然而我们认为这一部分正是我们最需要的。这对我们培养良好的分析能力和推理能力极有帮助。我的软件工程学导师北工大数理学院的王仪华先生就曾经教导过我们,数学系的学生到软件企业中大多作软件设计与分析工作,

计算数学研究方向

计算数学研究方向 网上摘抄:计算数学研究方向及网上资料 计算数学目的为物理学和工程学作计算。主要研究方向包括: 数值泛函分析;连续计算复杂性理论;数值偏微与有限元;非线性数值代数及复动力系统; 非线性方程组的数值解法;数值逼近论;计算机模拟与信息处理等;工程问题数学建模与计算等等。 目前发展最好的方向已经与应用数学的CAGD 方向合二为一。现在最热的方向应该是微分方程的数值求解、数值代数和流形学习,数值计算名校:西安交通大学、北京大学、大连理工大学 从计算数学的字面来看,应该与计算机有密切的联系,也强调了实践对于计算数学的重要性。 也许Parlett 教授的一段话能最好地说明这个问题: How could someone as brilliant as von Neumann think hard about a subject as mundane as triangular factoriz-ation of an invertible matrix and not perceive that, with suitable pivoting, the results are impressively

good Partial answers can be suggested-lack of hands-on experience, concentration on the inverse rather than on the solution of Ax = b -but I do not find them adequate. Why did Wilkinson keep the QR algorithm as a backup to a Laguerre-based method for the unsymmetric eigenproblem for at least two years after the appearance of QR Why did more than 20 years pass before the properties of the Lanczos algorithm were understood I believe that the explanation must involve the impediments to comprehension of the effects of finite-precision arithmetic. ( 引自既然是计算数学专业的学生,就不能对自己领域内的专家不有所了解。早些年华人在计算数学领域里面占有一席之地是因为冯康院士独立于西方,创立了有限元方法,而后又提出辛算法。这里只是列出几位比较年轻的华人计算数学专家,因为他们代表了当前计算数学的研究热点,也反映华人对计算数学的发展的贡献。 侯一钊(加州理工) 研究方向:计算流体力学、多尺度计算与模拟、多相流 鄂维南(Princeton 大学) 北京大学长江学者,研究方向:多尺度计算与模拟 包刚(Michigan 州立大学) 吉林大学长江学者,研究方向:光学与电磁场中的计算等 金石(Wisconsin 大学)

中国科学院杰出科技成就奖条例

中国科学院杰出科技成就奖条例 第一章总则 第一条为奖励在科技创新活动中做出重大成果的个人和集体,推动我国科学技术事业的发展,设立中国科学院杰出科技成就奖(以下简称院杰出科技成就奖)并制定本条例。 第二条院杰出科技成就奖不分等级,每年评选一次,每次授奖总数不超过10个。 第三条院杰出科技成就奖评审与授予坚持公开、公平、公正的原则,接受社会监督。 第四条院杰出科技成就奖评审的组织管理工作由中国科学院发展规划局负责,并以中国科学院科学技术奖励工作办公室(以下简称院奖励办)名义开展工作。 第二章奖励范围与评审标准 第五条院杰出科技成就奖授予院属单位在科技创新活动中做出重大成果的个人或集体,集体包括突出贡献者等主要完成人员。 第六条获得院杰出科技成就奖的个人或集体应做出符合下列标准之一的、近五年内完成或显示影响的重大成果: (一)解决重大科学问题。主要是解决本领域公认的重大科学问题,解决经济社会发展、国家安全中的关键科学问题。 (二)开辟新方向。主要是提出新的理论主张或认知框架,发现新现象或重要物质体系并提出新的理论解释,发展一种新方法使理论假设得到检验,发明新的仪器从而开辟新的研究领域。 (三)突破关键核心技术。重点是突破产业共性关键技术、新兴产业关键技术、国防安全重大关键技术和开辟新的应用领域的变革性技术。 (四)形成系统解决方案。重点是有核心技术突破,并集成多种技术、形成用户公认的先进系统级解决方案。创造性建设和高效运行国际一流水平的重大科技基础设施,并为重大科学发现或关键技术突破提供不可或缺的研究手段。 (五)重大社会经济效益。重点是在转移转化科技活动中,开发、应用、推广科技成果,形成新标准、新产业、规模化应用示范等,并创造显著经济社会效益。

相关文档
最新文档