北京市人民大学附属中学2017-2018学年高二下学期周末练习数学试题3.9+PDF版缺答案
北京市中国人民大学附属中学2018学年高二下学期期末考

数学(文)练习试卷第Ⅰ卷一、选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知集合{0,1},{|02}A B x R x ==∈<<,则AB =A .{}0B .{}1C .{}0,1D .(0,1)2、已知命题:0,23x p x ∃>=,则命题p 的否定是A .:0,23x p x ⌝∀<≠B .:0,23x p x ⌝∀≥≠C .:0,23x p x ⌝∃≥≠D .:0,23x p x ⌝∃<≠3、如果1122log log x y <,那么A .1y x <<B .1x y <<C .1x y <<D .1y x <<4、“0x >”是“12x x+≥”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也必要条件5、函数2xy =的大致图象是6、要得到函数sin(2)3y x π=+的图象,只要把函数sin 2y x =的图象 A .向左平移3π个单位 B .向右平移3π个单位 C .向左平移6π个单位 D .向右平移6π个单位 7、若()x f x e =,则0(1)(1)lim x f x f x∆→+∆-=∆ A .e B .e - C .2e D .2e -8、已知函数()f x 是定义在R 上的奇函数,且在区间(0,)+∞上单调,(2)0(1)f f >>,则函数()f x 的零点个数为A .0B .1C .2D .3第Ⅱ卷二、填空题:本大题共6小题,每小题5分,共30分,把答案填在答题卷的横线上。
.9、函数()f x =的定义域为 10、幂函数()f x 的图象过点1(2,)4,则()f x =11、已知函数()3log ,02,0x x x f x x >⎧=⎨≤⎩,则1[()]9f f = 12、如图,直线l 是曲线()y f x =在4x =处的切线,则()4f '=13、若函数()321f x x x mx =+++是R 上的单调函数,则实数m 的取值范围是14、设函数()2,1log ,1x a x f x x x ⎧-≤⎪=⎨>⎪⎩, (1)如果()13f =,那么实数a =(2)如果函数()2y f x =-有且仅有两个零点,那么实数a 的取值范围是三、解答题:本大题共6小题,满分80分,解答应写出文字说明、证明过程或演算步骤15、(本小题满分12分)已知命题:p 方程210x mx -+=有实数解,命题:q 指数函数()(1)x f x m =-是增函数,若p 或q为真命题,求实数m 的取值范围。
2018北京人大附中高二(下)期末数学(理)

1 / 32018北京人大附中高二(下)期末数 学(理)2018年7月6日制卷人:于金华 杨良庆 审卷人:梁丽平说明:本练习共三道大题20道小题,共4页,满分150分,考试时间120分钟。
一、选择题 (本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸的相应位置.)1.10(e 2)d xx x +⎰等于( )(A )1 (B )e 1- (C )e (D )e 1+2.已知(13)n x +的展开式中含有2x 项的系数是54,则n =( )(A )3 (B )4 (C )5 (D )6 3.函数()y f x =的导函数()y f x '=的图象如右图所示,则()y f x =的 图象可能是( )4.已知从A 口袋中摸出一个球是红球的概率为14,从B 口袋中摸出一个球是红球的概率为15,现从两个口袋中各摸出一个球,那么这两个球至少有一个不是红球的概率是( )(A )120 (B )1920 (C )35 (D )7205.下列极坐标方程中,对应的曲线为右图的是( ) (A )65cos ρθ=+ (B )65sin ρθ=+ (C )65cos ρθ=- (D )65sin ρθ=-6.已知随机变量i ξ满足(1)i i P p ξ==,(0)1i i P p ξ==-,1,2i =.若12102p p <<<,则( )(A )12()()E E ξξ<,12()()D D ξξ< (B )12()()E E ξξ<,12()()D D ξξ>(C )12()()E E ξξ>,12()()D D ξξ< (D )12()()E E ξξ>,12()()D D ξξ>7.集合230123{|222}P x x a a a a ==+⨯+⨯+⨯,其中{0,1},0,1,2,3i a i ∈=.则集合P 中元素的个数及所有元素之和分别是( ) (A )16,120 (B )8,120 (C )16,60 (D )8,608.设函数32,e,ln ,e x x x y a x x ⎧-+<⎪=⎨≥⎪⎩的图象上存在两点,P Q ,使得POQ △是以O 为直角顶点的直角三角形(其中O 为坐标原点),且斜边的中点恰好在y 轴上,则实数a 的取值范围是( )(A )1(0,]e 1+ (B )1(,]e 1-∞+ (C )1[+)e 1∞+, (D )R二、填空题(本大题共6小题,每小题5分,共30分.请把结果填在答题纸的相应位置.)9.已知复数12i1iz +=+,其中i 是虚数单位,则z 的模是________. 10.圆12cos 12sin x y θθ=-+⎧⎨=+⎩(θ为参数)被x 轴截得的弦长为________.11.现有5名教师要带3个兴趣小组外出学习考察,要求每个兴趣小组的带队教师至多2人,则不同的带队方案有________种.(用数字作答) 12.观察下列一组等式x O2 / 31+2=3 2+3+4+5=14 3+4+5+6+7+8=33 4+5+6+7+8+9+10+11=60……照此规律,第n 个等式的右端为________.13.已知函数22,0,()ln(1),0.x x x f x x x ⎧-+≤⎪=⎨+>⎪⎩ 若|()|f x ax ≥恒成立,则a 的取值范围是________.14.给定集合{1,2,3,,}n A n =⋅⋅⋅,映射:n n f A A →,若f 满足:① 当,,n i j A i j ∈≠时,()()f i f j ≠;② 任取n m A ∈,若2m ≥,则有{(1),(2),,()}m f f f m ∈⋅⋅⋅.则称映射f 为n n A A →是一个“优映射”.例如:用表1表示的映射33:f A A →是一个优映射. 表1 表2(1)已知表2表示的映射44:f A A →是一个优映射,请把表2补充完整(只需填出一个满足条件的映射); (2)若映射1010:f A A →是“优映射”,且方程()f i i =的解恰有6个,则这样的“优映射”的个数是________.三、解答题 (本大题共6小题,共80分,解答应写出文字说明证明过程或演算步骤.) 15.(本小题13分)甲、乙两人进行射击比赛,各射击4局,每局射击10次,射击命中目标得1分,未命中目标得0分.两人4局的得分情况如下:甲 6 6 9 9乙79xy(Ⅰ)若从甲的4局比赛中,随机选取2局,求这2局的得分恰好相等的概率;(Ⅱ)如果7x y ==,从甲、乙两人的4局比赛中随机各选取1局,记这2局的得分和为X ,求X 的分布列和数学期望;(Ⅲ)在4局比赛中,若甲、乙两人的平均得分相同,且乙的发挥更稳定,写出x 的所有可能取值.(结论不要求证明) 16.(本小题13分)已知数列{}n a 中,11a =,且12()2nn n a a n a *+=∈+N .(Ⅰ)求234,,a a a 的值;(Ⅱ)试猜想这个数列的通项公式,并用数学归纳法证明. 17.(本小题13分)已知函数32()4f x ax bx x =++的极小值为8-,其导函数()y f x '=的图象经过点(2,0)-,如图所示. (Ⅰ)求()f x 的解析式;(Ⅱ)若函数()y f x k =-在区间[3,2]-上有两个不同的零点,求实数k 的取值范围.i1 2 3 ()f i231i1 2 3 4 ()f i3yxO -23 / 318.(本小题13分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元,在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. (Ⅰ)求X 的分布列;(Ⅱ)若要求()0.5P X n ≤≥,确定n 的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个? 19.(本小题14分)已知函数e ()(ln )()xf x a x x a x=--∈R .(Ⅰ)当1a =时,试求()f x 在(1,(1))f 处的切线方程; (Ⅱ)当0a ≤时,试求()f x 的单调区间;(Ⅲ)若存在12(0,1),(0,1)x x ∈∈,使得12()()f x f x =,试求a 的取值范围.20.(本小题14分)对于项数为m 的有穷数列{}n a ,令12max{,,,}(1,2,,)k k b a a a k m =⋅⋅⋅=⋅⋅⋅,即k b 为12,a a ,…k a 中的最大值, 称数列{}n b 为{}n a 的上界数列, 如1, 3, 2, 5的上界数列是1, 3, 3, 5.(Ⅰ)若各项均为正整数的数列{}n a 的上界数列为2, 4, 4, 5, 写出所有的{}n a ;(Ⅱ)设{}n b 是{}n a 的上界数列, 满足1k m k a b C -++=(C 为常数,1,2,,k m =⋅⋅⋅),求证:k k b a =;(Ⅲ)若各项为正整数的数列{}n a 的项数5m =, 其上界数列{}n b 满足11b =, 510b =, 求满足条件的数列{}n a 和{}n b 的个数.频数40208 9 10 11 更换的易损零件数。
2017-2018学年第二学期7月北京人大附中高二数学期末复习试题(理科)

人大附中 2017~2018 学年度第二学期期末高二年级数学(理)练习2018年7月6日说明:本练习共三道大题20 道小题,共 4 页,满分 150 分,考试时间120 分钟。
一、选择题(本大题共8 小题,每题 5 分,共 40 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的,请将正确答案填涂在答题纸的相应地点.)11. (e x 2 x)dx 等于()(A)1( B) e 1(C)e( D) e 12.已知(13x)n的睁开式中含有x2项的系数是54,则n()(A)3(B)4(C) 5(D)63.函数 y f ( x) 的导函数 y f ( x) 的图象如右图所示,则y f ( x) 的图象可能是()4.已知从 A 口袋中摸出一个球是红球的概率为1,从 B 口袋中摸出一个球是红球的概率为41 ,现从两个口袋中各摸出一个球,那么这两个球起码有一个不是红球的概率是()5(A)1(B)19(C)3(D)7 20205205.以下极坐标方程中,对应的曲线为右图的是()O x ( A) 6 5cos (B)6 5sin(C)6 5cos (D)6 5sin6.已知随机变量i知足 P( i 1)p i , P(i 0) 1 p i , i1,2 .若 0p1 p21,则()2(A) E( 1)E( 2), D( 1) D( 2)(B) E( 1)E( 2),D( 1) D( 2)(C) E( 1)E( 2), D( 1) D( 2)(D) E( 1)E( 2), D( 1) D( 2)7.会合 P{ x | x a0a1 2 a222a323 } ,此中a i{0,1}, i0,1, 2,3 .则会合 P 中元素的个数及全部元素之和分别是()( A) 16, 120( B) 8, 120(C) 16, 60(D)8, 608.设函数y x3x2 , x e,的图象上存在两点 P, Q ,使得△ POQ 是以O为直角极点的直角a ln x,x e三角形 (此中 O为坐标原点 ),且斜边的中点恰幸亏 y 轴上 ,则实数 a 的取值范围是()( A) (0,1](B)( ,1](C) [1, +)(D)Re1e1e1二、填空题 (本大题共 6 小题,每题 5 分,共 30 分.请把结果填在答题纸的相应地点.)9.已知复数z 12i ,此中i是虚数位,z的模是________.1 ix12cos( 参数 )被 x 截得的弦 ________.10.1 2siny11.有 5 名教要 3 个趣小出门学观察,要求每个趣小的教至多2人,不一样的方案有________种.(用数字作答)12.察以下一等式1+2=32+3+4+5=143+4+5+6+7+8=334+5+6+7+8+9+10+11=60⋯⋯照此律,第n 个等式的右端 ________.13.已知函数 f ( x)x2 2 x,x0,ax 恒建立, a 的取范是 ________.ln( x1),x若 | f (x)|0.14.定会合A n{1, 2, 3,, n } ,映照 f: A n A n,若 f足:①当 i , j A n , i j , f (i ) f ( j ) ;②任取 m A n,若m 2 ,有m{ f (1), f (2), ,f (m)} .称映照 fA A 是一个“ 映照”.比如:用表 1 表示的映照 f : A A 是一个n n33映照.表 1表 2i123i1234f (i )231 f (i )3( 1)已知表 2 表示的映照 f : A4A4是一个映照,把表 2 充完好(只要填出一个足条件的映照);( 2)若映照 f : A A是“ 映照”,且方程 f (i )i 的解恰有 6 个,的“ 映照”1010的个数是 ________.三、解答(本大共 6 小,共 80 分,解答写出文字明明程或演算步.)15.(本小 13 分)甲、乙两人行射比,各射 4 局,每局射10 次,射命中目得 1 分,未命中目得 0 分.两人 4 局的得分状况以下:甲6699乙79x y(Ⅰ)若从甲的 4 局比中,随机取 2 局,求 2 局的得分恰巧相等的概率;(Ⅱ)假如 x y7 ,从甲、乙两人的 4 局比中随机各取 1 局,2 局的得分和X ,求 X 的散布列和数学希望;(Ⅲ)在 4 局比中,若甲、乙两人的均匀得分同样,且乙的更定,写出x 的全部可能取.(不要求明)16.(本小13 分)已知数列 { a n } 中, a11,且a n 12an ( n N ) .2 a n(Ⅰ)求 a2 , a3 , a4的值;(Ⅱ)试猜想这个数列的通项公式,并用数学概括法证明.17.(本小题 13 分)已知函数 f ( x) ax3bx24x 的极小值为8 ,其导函数 y f ( x) 的图象经过点( 2, 0),以下图.y(Ⅰ)求 f ( x) 的分析式;(Ⅱ)若函数y f ( x) k 在区间 [ 3, 2] 上有两个不一样的零点,务实数 k 的取值范围.-2O x 18.(本小题13 分)某企业计划购置 2 台机器,该种机器使用三年后即被裁减.机器有一易损部件,在购进机器时,能够额外购置这类部件作为备件,每个200 元,在机器使用时期,假如备件不足再购置,则每个 500 元.现需决议在购置机器时应同时购置几个易损部件,为此收集并整理了100台这类机器在三年使用期内改换的易损部件数,得下边柱状图:频数402011 改换的易损部件数8910以这 100 台机器改换的易损部件数的频次取代 1 台机器改换的易损部件数发生的概率,记 X 表示2台机器三年内共需改换的易损部件数,n 表示购置 2 台机器的同时购置的易损部件数.(Ⅰ)求 X 的散布列;(Ⅱ)若要求 P( X n )0.5 ,确立 n 的最小值;(Ⅲ)以购置易损部件所需花费的希望值为决议依照,在n 19与 n 20 之中选其一,应选用哪个?19.(本小题14 分)已知函数 f ( x)e x a(x ln x) (a R ) .x(Ⅰ)当 a (Ⅱ)当 a (Ⅲ)若存在1 , 求 f ( x) 在 (1, f (1)) 的切 方程; 0 , 求f ( x) 的 区 ;x 1 (0,1), x 2 (0,1) ,使得 f (x 1 ) f ( x 2 ) , 求 a 的取 范 .20.(本小14 分)于 数m 的有 数列 { a n } ,令 b kmax{ a 1 , a 2 , , a k } (k 1, 2, , m) ,即 b ka 1 , a 2 ,⋯a k 中的最大 , 称数列 {b n }{ a n } 的上界数列 , 如 1, 3, 2, 5 的上界数列是 1, 3, 3, 5.(Ⅰ)若各 均 正整数的数列{ a n } 的上界数列2, 4, 4, 5, 写出全部的 { a n } ;(Ⅱ) { b n } 是 { a n } 的上界数列 , 足 a kb m k 1 C ( C 常数 , k1, 2, , m ), 求 : b ka k ;(Ⅲ)若各 正整数的数列{ a n } 的 数 m 5 , 其上界数列 {b n } 足 b 1 1, b 5 10 , 求 足条件的数列 { a n } 和 { b n } 的个数.。
北京市人大附中2017-2018学年第二学期高二周末数学练习word无答案3.9

北京市人大附中2017-2018 学年第二学期高二周末数学练习word 无答案 3.9人大附·高二·周末练习二一、选择题1.已知函数y x33x c 的图象与x 恰有两个公共点,则()A. 420B. 390C. 450D. 4802.设函数f (x)在R上可导,其导函数为f (x),且函数y (1 x) f ( x)的图象如下图,则以下结论中必定建立的是()A.函数 f ( x)有极大值 f (2) 和极小值 f (1)B.函数 f ( x)有极大值 f ( 2) 和极小值 f (1)C.函数 f (x)有极大值 f (2) 和极小值 f ( 2)D.函数 f (x)有极大值 f ( 2) 和极小值 f (2)3.已知某函数y f (x) 的导函数 f (x ) 的图象如下图,则原函数的图象可能是()4.函数f (x)ax3bx2cx d 的图象如下图,x1x2,则有()A. a0,b0,c0, d0B. a0,b0,c0, d0C.a0,b0,c0,d0D. a0,b0,c0,d05.已知y f ( x) 是 R 上的可导函数,关于随意的正实数t ,都有函数 g (x) f ( x t) f ( x) 在其定义域内为减函数,则函数y f (x) 的图象可能为以下图中()6.定义在R上的函数 f ( x) 知足 f (4) 1 , f ( x) 为 f (x ) 的导函数,已知 y f (x ) 的图象如图所示,若两个正数 a , b 知足 f (2a b) 1 ,则b 1的取值范围是()a 1A. (1,1)B. ( ,1) (5,+) C. (1,5) D. ( ,3)53337.设f (x)是函数 f ( x)的导函数,将y f ( x) 和 y f (x) 的图象画在同一个直角坐标系中,不可能正确的选项是()8.函数y x2sin x 的图象大概是()2二、填空题9.函数y x33x21在 x处获得极小值.10.若f (x)ax3bx2cx d (a 0) 在 R 上为小强数学增函数,则 a ,b ,c 的关系式为.11.已知可导函数y f ( x) 知足 f (x 2) f ( x) ,函数 y f (x) 的图象在点(1, f (1)) 处的切线方程为 y 2x 1,则 f (1),函数y f (x) 的图象在点( 3, f ( 3)) 处的切线方程为.12.已知二次函数f (x )、一次函数g ( x)分别为f ( x)、g (x )的导函数,它们在同一坐标系下的图象如下图:①若 f (1) 1 ,则 f ( 1);②设 h( x) h( x) g( x) ,则 h( 1) , h(0) , h(1) 的大小关系为.ln x, x0,D 是由 x 轴和曲线 y f ( x ) 及曲线在点(1,0) 处的切线所围成13.设函数 f ( x)2x1, x 0,的关闭地区,则 z x2y在 D 上的最大值为.14. 定义方程 f (x ) f ( x) 的实数根 x0叫做函数 f (x) 的“新驻点”,假如函数g (x) x ,h(x) ln( x 1), (x)cos x( x (2 , )) 的“新驻点”分别为,,,那么,,的大小关系是.三、解答题15.已知向量a( x2 , x 1) ,b (1 x, t) ,若函数 f (x) a b 在区间 ( 1,1) 上是增函数,求t的取值范围 .16.已知函数 f ( x)x3ax2bx c 在 x 2与 x 1 时都获得极值. 3(I )求a,b的值与 f (x)的单一区间;(II )若对x [1, 2]不等式 f (x) c 2恒建立,求 c 的取值范围.17.已知函数 f ( x)1bx cx d ,此中 a ,b ,c 是以 d 为公差的等差数列,且 a0 ,d 0 . ax323设 x 为 f ( x) 的极小值点,在[12b, 0]上, f ( x) 在 x处获得最大值,在x处获得最小值,将0a12点 (x0 , f ( x0 )) , ( x1, f ( x1 )) , ( x2 , f(x2)) 挨次记为A,B,C.(I )求x0的值;(II )若ABC有一边平行于x 轴,且面积为 2 3 ,求a,d的值.。
2017-2018学年北京市人大附中高二(下)期末数学试卷(文科)(解析版)

2017-2018学年北京市人大附中高二(下)期末数学试卷(文科)一、选择题(共8道小题,每道小题5分,共40分.请将正确答案填涂在答题卡上.)1.(5分)设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4}B.{1,2,3}C.{2,3,4}D.{1,3,4} 2.(5分)设复数z=i⋅(1+i)(其中i是虚数单位),则复数z对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)执行如图所示的程序框图,若输入的a值为1,则输出的k值为()A.1B.2C.3D.44.(5分)下列函数中,既是奇函数又在(0,+∞)单调递增的是()A.y=e x+e﹣x B.y=ln(|x|+1)C.D.5.(5分)命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是()A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数6.(5分)已知lga+lgb=0,则lg(a+b)的最小值为()A.lg 2B.2 C.﹣lg 2D.27.(5分)设U为全集,A,B是集合,则“存在集合C使得A⊆C,B⊆∁U C”是“A∩B=∅”的()A.充分而不必要的条件B.必要而不充分的条件C.充要条件D.既不充分也不必要条件8.(5分)已知函数f(x)=﹣k(+lnx),若x=2是函数f(x)的唯一一个极值点,则实数k的取值范围为()A.(﹣∞,e]B.[0,e]C.(﹣∞,e)D.[0,e)二、填空题(共6道小题,每道小题5分,共30分.请将正确答案填在答题卡上.)9.(5分)若函数f(x)满足f()=log2x,则f(2)=.10.(5分)设定义在R上的函数f(x)满足f(x)=f(x+2);且当0≤x<1时,f(x)=2x﹣1,则=.11.(5分)若实数x,y满足约束条件,则x﹣2y的最大值为.12.(5分)若f(x)=x sin x+cos x,则f(﹣3),f(),f(2)的大小关系为.13.(5分)已知,若对任意x1∈[0,2],存在x2∈[1,2],使得f(x1)≥g(x2),则实数m的取值范围是.14.(5分)设函数f(x)=a x+b x﹣c x,其中c>a>0,c>b>0.若a,b,c是△ABC的三条边长,则下列结论正确的是.(写出所有正确结论的序号)①∀x∈(﹣∞,1),f(x)>0;②∃x∈R,使a x,b x,c x不能构成一个三角形的三条边长;③若△ABC为钝角三角形,则∃x∈(1,2),使f(x)=0.三、解答题(共6道小题,共80分.解答应写出必要的文字说明,证明过程或演算步骤.)15.(12分)已知集合A={x|3≤3x≤27},B={x|log2x>1}.(Ⅰ)求A∩B,A∪B;(Ⅱ)已知非空集合C={x|1<x≤a},若C⊆A,求实数a的取值范围.16.(12分)设t∈R,已知命题p:函数f(x)=x2﹣2tx+1有零点;命题q:∀x∈[1,+∞),.(1)当t=1时,判断命题q的真假;(2)若p∨q为假命题,求t的取值范围.17.(13分)已知函数f(x)=,x∈R,其中a>0.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数f(x)(x∈(﹣2,0))的图象与直线y=a有两个不同交点,求a的取值范围.18.(13分)某经销商计划销售一款新型的空气净化器,经市场凋研发现以下规律:当每台净化器的利润为x(单位:元,x>0)时,销售量q(x)(单位:百台)与x的关系满足:若x不超过20,则q(x)=;若x大于或等于180,则销售为零;当20≤x≤180时.q(x)=a﹣b(a,b为实常数).(1)求函数q(x)的表达式;(2)当x为多少时,总利润(单位:元)取得最大值,并求出该最大值.19.(15分)已知函数f(x)=e x﹣mx(m为常数).(Ⅰ)若曲线y=f(x)在点(0,f(0))的切线斜率为﹣1,求实数m的值;(Ⅱ)求函数f(x)的极值;(Ⅲ)证明:当x>0时,e x>x2.20.(15分)已知函数f(x)=ax﹣lnx,x∈(0,e],g(x)=,其中e是自然对数的底数,a∈R.(Ⅰ)当a=1时,求f(x)的单调区间;(Ⅱ)设函数F(x)=x2⋅g(x)﹣f(x)﹣lnx+a,①求函数F(x)在区间[1,e]上的最大值;②求证:a>1是函数F(x)有两个零点的充分条件.2017-2018学年北京市人大附中高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题(共8道小题,每道小题5分,共40分.请将正确答案填涂在答题卡上.)1.(5分)设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4}B.{1,2,3}C.{2,3,4}D.{1,3,4}【解答】解:∵A={1,2,3},B={2,3,4},∴A∪B={1,2,3,4}故选:A.2.(5分)设复数z=i⋅(1+i)(其中i是虚数单位),则复数z对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:复数Z=i(1+i)=i+i2=﹣1+i,在复平面内对应点为(﹣1,1),在第二象限,故选:B.3.(5分)执行如图所示的程序框图,若输入的a值为1,则输出的k值为()A.1B.2C.3D.4【解答】解:若输入的a值为1,则k=0,b=1,a=,不满足退出循环的条件,故k =1;a=﹣2,不满足退出循环的条件,故k=2;a=1,满足退出循环的条件,故输出的k值为2,故选:B.4.(5分)下列函数中,既是奇函数又在(0,+∞)单调递增的是()A.y=e x+e﹣x B.y=ln(|x|+1)C.D.【解答】解:对于A、B选项为偶函数,排除,C选项是奇函数,但在(0,+∞)上不是单调递增函数.故选:D.5.(5分)命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是()A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数【解答】解:若命题为“若p则q”,命题的逆否命题为“若非q,则非p”,所以原命题的逆否命题是“若x+y不是偶数,则x与y不都是偶数”故选:C.6.(5分)已知lga+lgb=0,则lg(a+b)的最小值为()A.lg 2B.2 C.﹣lg 2D.2【解答】解:由lg a+lg b=0,可知a>0,b>0,则lg(ab)=0,即ab=1.所以a+b≥2 =2,当且仅当a=b=1 时取等号,所以lg(a+b)≥lg 2.故lg(a+b)的最小值为lg 2.故选:A.7.(5分)设U为全集,A,B是集合,则“存在集合C使得A⊆C,B⊆∁U C”是“A∩B=∅”的()A.充分而不必要的条件B.必要而不充分的条件C.充要条件D.既不充分也不必要条件【解答】解:由题意A⊆C,则∁U C⊆∁U A,当B⊆∁U C,可得“A∩B=∅”;若“A∩B=∅”能推出存在集合C使得A⊆C,B⊆∁U C,∴U为全集,A,B是集合,则“存在集合C使得A⊆C,B⊆∁U C”是“A∩B=∅”的充分必要的条件.故选:C.8.(5分)已知函数f(x)=﹣k(+lnx),若x=2是函数f(x)的唯一一个极值点,则实数k的取值范围为()A.(﹣∞,e]B.[0,e]C.(﹣∞,e)D.[0,e)【解答】解:∵函数f(x)=﹣k(+lnx),∴函数f(x)的定义域是(0,+∞)∴f′(x)=﹣k(﹣+)=∵x=2是函数f(x)的唯一一个极值点∴x=2是导函数f′(x)=0的唯一根.∴e x﹣kx=0在(0,+∞)无变号零点,令g(x)=e x﹣kxg′(x)=e x﹣k①k≤0时,g′(x)>0恒成立.g(x)在(0,+∞)时单调递增的g(x)的最小值为g(0)=1,g(x)=0无解②k>0时,g′(x)=0有解为:x=lnk0<x<lnk时,g′(x)<0,g(x)单调递减lnk<x时,g′(x)>0,g(x)单调递增∴g(x)的最小值为g(lnk)=k﹣klnk∴k﹣klnk>0∴k<e,由y=e x和y=ex图象,它们切于(1,e),综上所述,k≤e.故选:A.二、填空题(共6道小题,每道小题5分,共30分.请将正确答案填在答题卡上.)9.(5分)若函数f(x)满足f()=log2x,则f(2)=0.【解答】解:∵函数f(x)满足f()=log2x,∴令x=1,得:f(2)=log21=0.故答案为:0.10.(5分)设定义在R上的函数f(x)满足f(x)=f(x+2);且当0≤x<1时,f(x)=2x﹣1,则=0.【解答】解:∵定义在R上的函数f(x)满足f(x)=f(x+2),当0≤x<1时,f(x)=2x﹣1,∴=2×=0.故答案为:0.11.(5分)若实数x,y满足约束条件,则x﹣2y的最大值为﹣1.【解答】解:画出可行域如图中阴影部分所示,令z=x﹣2y,由,解得A(1,1).可知z=x﹣2y在点A(1,1)处取得最大值﹣1.故答案为:﹣1.12.(5分)若f(x)=x sin x+cos x,则f(﹣3),f(),f(2)的大小关系为f()>f(2)>f(﹣3)..【解答】解:由f(﹣x)=f(x)知,函数f(x)为偶函数,因此f(﹣3)=f(3).又f′(x)=sin x+x cos x﹣sin x=x cos x,当x∈(0,)时,f′(x)>0,x∈(,π)时,f′(x)<0,∴f(x)在区间(,π)上是减函数,∴f()>f(2)>f(3)=f(﹣3),故答案为:f()>f(2)>f(﹣3).13.(5分)已知,若对任意x1∈[0,2],存在x2∈[1,2],使得f(x1)≥g(x2),则实数m的取值范围是m.【解答】解:若对任意x1∈[0,2],存在x2∈[1,2],使得f(x1)≥g(x2)成立成立只需f(x)min≥g(x)min,∵x1∈[0,2],f(x)=x2∈[0,4],即f(x)min=0x2∈[1,2],g(x)=∈[,]∴g(x)min=∴0∴m故答案为:m14.(5分)设函数f(x)=a x+b x﹣c x,其中c>a>0,c>b>0.若a,b,c是△ABC的三条边长,则下列结论正确的是①②③.(写出所有正确结论的序号)①∀x∈(﹣∞,1),f(x)>0;②∃x∈R,使a x,b x,c x不能构成一个三角形的三条边长;③若△ABC为钝角三角形,则∃x∈(1,2),使f(x)=0.【解答】解:①∵a,b,c是△ABC的三条边长,∴a+b>c,∵c>a>0,c>b>0,∴,当x∈(﹣∞,1)时,f(x)=a x+b x﹣c x=,∴①正确.②令a=2,b=3,c=4,则a.b.c可以构成三角形,但a2=4,b2=9,c2=16却不能构成三角形,∴②正确.③∵c>a>0,c>b>0,若△ABC为钝角三角形,∴a2+b2﹣c2<0,∵f(1)=a+b﹣c>0,f(2)=a2+b2﹣c2<0,∴根据根的存在性定理可知在区间(1,2)上存在零点,即∃x∈(1,2),使f(x)=0,∴③正确.故答案为:①②③.三、解答题(共6道小题,共80分.解答应写出必要的文字说明,证明过程或演算步骤.)15.(12分)已知集合A={x|3≤3x≤27},B={x|log2x>1}.(Ⅰ)求A∩B,A∪B;(Ⅱ)已知非空集合C={x|1<x≤a},若C⊆A,求实数a的取值范围.【解答】解:(Ⅰ)集合A={x|3≤3x≤27}={x|1≤x≤3}﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)B={x|log2x>1}={x|x>2}﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)∴A∩B={x|2<x≤3}﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)A∪B={x|x≥1}.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)(Ⅱ)∵非空集合C={x|1<x≤a},∴a>1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)又C⊆A={x|1≤x≤3},所以a≤3.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)综上得a的取值范围是1<a≤3.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(14分)16.(12分)设t∈R,已知命题p:函数f(x)=x2﹣2tx+1有零点;命题q:∀x∈[1,+∞),.(1)当t=1时,判断命题q的真假;(2)若p∨q为假命题,求t的取值范围.【解答】解:(1)当t=1时,,在[1,+∞)上恒成立,∴命题q为真命题.(2)若p∨q为假命题,则p,q都是假命题.当p为假命题时,△=(﹣2t)2﹣4<0,解得﹣1<t<1;当q为真命题时,,即4t2﹣1≥0,解得t≤﹣或,由此得到,当q 为假命题时,,∴t 的取值范围是.17.(13分)已知函数f(x )=,x∈R,其中a>0.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数f(x)(x∈(﹣2,0))的图象与直线y=a有两个不同交点,求a的取值范围.【解答】解:(Ⅰ)f′(x)=x2+(1﹣a)x﹣a=(x+1)(x﹣a).……………………1′由f′(x)=0,得x1=﹣1,x2=a>0.……………………2′当x变化时,f′(x),f(x)的变化情况如表:……………………3′故函数f(x)的单调递增区间是(﹣∞,﹣1),(a,+∞);单调递减区间是(﹣1,a).……………………6′(Ⅱ)令g(x)=f(x)﹣a,x∈(﹣2,0),则函数g(x)在区间(﹣2,0)内有两个不同的零点,……………………8′由(Ⅰ)知g(x)在区间(﹣2,﹣1)内单调递增,在区间(﹣1,0)内单调递减,从而……………………11′解得0<a<.所以a的取值范围是(0,)……………………13′18.(13分)某经销商计划销售一款新型的空气净化器,经市场凋研发现以下规律:当每台净化器的利润为x(单位:元,x>0)时,销售量q(x)(单位:百台)与x的关系满足:若x不超过20,则q(x)=;若x大于或等于180,则销售为零;当20≤x≤180时.q(x)=a﹣b(a,b为实常数).(1)求函数q(x)的表达式;(2)当x为多少时,总利润(单位:元)取得最大值,并求出该最大值.【解答】解:(1)由x=20和x=180时可以解得a,b∴a=90,b=3∴q(x)=(2)设总利润为W(x)则W(x)=①当x∈(0,20]时,W(x)=1260﹣为单调递增,最大值为1200,此时x=20②当x∈[20,180]时,W(x)=90x﹣3x,(W(x))′=90﹣此时x∈[20,80]时,W(x)单调递增.x∈[80,180]时,W(x)单调递减∴在x=80时取得最大为2400综上所述:x=80时,总利润最大为2400元.19.(15分)已知函数f(x)=e x﹣mx(m为常数).(Ⅰ)若曲线y=f(x)在点(0,f(0))的切线斜率为﹣1,求实数m的值;(Ⅱ)求函数f(x)的极值;(Ⅲ)证明:当x>0时,e x>x2.【解答】解:(Ⅰ)∵函数f(x)=e x﹣mx(m为常数),∴f′(x)=e x﹣m,(m∈R),∴f′(0)=1﹣m,∵曲线y=f(x)在点(0,f(0))的切线斜率为﹣1,∴f′(0)=1﹣m=﹣1,解得m=2.(Ⅱ)∵f′(x)=e x﹣m,(m∈R),函数f(x)定义域为(﹣∞,+∞),当m≤0时,f′(x)>0,函数f(x)在(﹣∞,+∞)上单调递增,此时没有极值;当m>0时,令f′(x)=0,解得x=lnm,则随着x的变化,f′(x),f(x)变化如下表:由上表知函数f(x)在(lnm,+∞)上单调递增,在(﹣∞,lnm)上单调递减,则在x=lnm处取得极小值f(lnm)=e lnm﹣mlnm=m(1﹣lnm),无极大值.证明:(Ⅲ)设函数g(x)=e x﹣x2,则g′(x)=e x﹣2x,由(Ⅱ)知m=2时,g′(x)=f(x)≥f(ln2),∵f(ln2)=2(1﹣ln2)>0,∴g′(x)>0恒成立,即函数g(x)在R上递增,∵g(0)=1,∴当x>0时,g(x)>g(0)>0,∴e x>x2.20.(15分)已知函数f(x)=ax﹣lnx,x∈(0,e],g(x)=,其中e是自然对数的底数,a∈R.(Ⅰ)当a=1时,求f(x)的单调区间;(Ⅱ)设函数F(x)=x2⋅g(x)﹣f(x)﹣lnx+a,①求函数F(x)在区间[1,e]上的最大值;②求证:a>1是函数F(x)有两个零点的充分条件.【解答】解:(Ⅰ)∵f(x)=x﹣lnx,f′(x)=1﹣……………………1′∴当0<x<1时,f′(x)<0,此时f(x)单调递减;当1<x<e时,f′(x)>0,此时f(x)单调递增.∴f(x)的单调增区间为(1,e),单调减区间为(0,1).……………………3′(Ⅱ)F(x)=xlnx﹣ax+a,①F′(x)=lnx+1﹣a,令F′(x)=0,得x=e a﹣1,……………………5′所以在区间(0,e a﹣1)上,F′(x)<0,F(x)单调递减,在区间(e a﹣1,+∞)上,F′(x)>0,F(x)单调递增.(ⅰ)当e a﹣1≤1,即0<a≤1时,在区间[1,e]上,F(x)单调递增,所以F(x)最大值为F(e)=e+a﹣ae;……………………6′(ⅱ)当e a﹣1≥e,即a≥2时,在区间[1,e]上,F(x)单调递减,所以F(x)最大值为F(1)=0.……………………7′(ⅲ)当1<e a﹣1<e,即1<a<2时,F(x)的最大值为F(e)和F(1)中较大者:令F(e)﹣F(1)=e+a﹣ae>0,解得a<,所以当1<a<时,F(x)最大值为F(e)=e+a﹣ae,当≤a<2时,F(x)最大值为F(1)=0,综上所述,当0<a<时,F(x)最大值为F(e)=e+a﹣ae,当a≥时,F(x)最大值为F(1)=0.……………………10′②“函数F(x)有两个零点”等价于“方程xlnx﹣ax+a=0两个根”,由于x>0,也等价于“函数G(x)=有两个零点”.…11′则G′(x)=,0时,令G′(x)>0得x>a,令G′(x)<0得x<a,即函数G(x)的单调递增区间为(a,+∞),单调递减区间为(0,a),因此,G(x)min=G(a)=lna﹣a+1≤0..……………………13′又G(1)=0,当a>1时,由于G(a)<0,G(ea)=>0,故函数G(x)有两个零点所以a>1是函数F(x)有两个零点的充分条件.……………………14′。
2017-2018年北京市人大附中高二(下)期中数学试卷(文科)和答案

2017-2018学年北京市人大附中高二(下)期中数学试卷(文科)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸相应的位置上)1.(5分)复数3+4i的共轭复数是()A.3﹣4i B.3+4i C.﹣3+4i D.﹣3﹣4i 2.(5分)如图是《集合》的知识结构图,如果要加入“列举法”,则应该接在()A.“集合的概念”的后面B.“集合的表示”的后面C.“基本关系”的后面D.“基本运算”的后面3.(5分)用反证法证明命题:“如果a>b>0,那么|a|>|b|”时,假设的内容应是()A.|a|=|b|B.|a|<|b|C.|a|≤|b|D.|a|>|b|且|a|=|b|4.(5分)下列结论正确的个数是()①回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法;②为了研究吸烟与患肺病是否有关,在吸烟与患肺病这两个分类变量的计算中,x2的观测值为x2=7.469大于6.635,故我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;③在线性回归分析中,相关系数为r,|r|≤1,并且|r|越接近1,线性相关程度越强.A.0B.1C.2D.35.(5分)函数f(x)的定义域为(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极值点()A.1个B.2个C.3个D.4个6.(5分)类比平面几何中的勾股定理:若直角三角形ABC中的两边AB,AC互相垂直,则三角形三边长之间满足关系:AB2+AC2=BC2,若三棱锥A﹣BCD的三个侧面ABC、ACD、ADB所在平面两两互相垂直,其三个侧面面积分别为S1,S2,S3,则三棱锥的三个侧面积与底面BCD的面积S之间满足的关系为()A.B.C.D.7.(5分)为解决四个村庄用电问题,政府投资在已建电厂与这四个村庄之间架设输电线路,现已知这四个村庄及电厂之间的距离如图所示(距离单位:公里)则能把电力输送到这四个村庄的输电线路的最短总长度应该是()A.19.5B.20.5C.21.5D.25.58.(5分)设函数f(x)定义如表,数列{x n}满足x1=5,,则x2017的值为()A.1B.3C.5D.6二、填空题(本大题共6小题,每小题5分,共30分.请把结果填在答题纸相应的位置)9.(5分)复数z=1﹣i(i是虚数单位)在复平面上对应的点位于第象限.10.(5分)经调查某地若干户家庭的年收入x(万元)和年饮食支出y(万元)具有线性相关关系,并得到y关于x的线性回归直线方和:,由回归直线方程预测,家庭年收入为2万元时,年饮食支出大约为万元.11.(5分)甲、乙、丙三位同学被问到是否正确的回答对A,B,C三个问题,甲说:我回答对的问题比乙多,但没有回答对B;乙说:我没回答对C;丙说:我们三人都同时答对一个题;由此可判断乙答对的题为.12.(5分)阅读图所示的程序框图,运行相应的程序,输出的结果是.13.(5分)a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…则a9+b9=.14.(5分)若集合M满足:∀x,y∈M,都有x+y∈M,xy∈M,则称集合M是封闭的.显然,整数集Z,有理数集Q,都是封闭的.在上述定义下,(1)复数集C封闭的(填“是”或“否”);(2)若Q⊊F⊆C,集合F是封闭,则满足条件的一个F可以是(只写一个).三、解答题(本大题共3小题,共30分,解答应写出文字说明证明过程或演算步骤,请将答案写在答题纸相应的位置上)15.(8分)已知复数z1=2+4i,z2=a+i(a∈R),z1=z2•(1+i),求|z2|.16.(12分)设函数,且曲线y=f(x)在点(2,f(2))处的切线的斜率为0.(1)求a的值;(2)求函数f(x)的单调区间;(3)求函数f(x)在区间上的最小值.17.(10分)对于无穷数列{a n}与{b n},记集合,集合,若同时满足条件:①数列{a n},{b n}均单调递增;②A ∩B=∅且A∪B=N*,则称数列{a n}与{b n}是“好友数列”.(1)若a n=2n,,判断数列{a n}与{b n}是否为“好友数列”,并说明理由;(2)若数列{a n}与{b n}是“好友数列”,{a n}为等差数列且a16=36,求数列{a n}与{b n}的通项公式.一、选择题(本题共3小题,每小题6分,共18分.请把答案填在答题纸相应的位置上)18.(6分)=()A.﹣1B.1C.i D.﹣i19.(6分)类比等比数列的定义,定义等积数列为:若数列从第二项起,每一项与前一项的乘积为一个不变的非零常数,则称数列为等积数列,这个常数叫做该数列的公积.若一个等积数列的首项为2,公积为6,则数列的通项公式为()A.B.C.D.20.(6分)已知函数f(x)=sinx+e x,今f1(x)=f′(x),f2(x)=f′1(x),f3(x)=f′2(x),…,f n+1(x)=f′n(x),(n∈N*)则f2017(x)=()A.sinx+e x B.cosx+e x C.﹣sinx+e x D.﹣cosx+e x二、填空题(本题共3小题,每小题6分,共18分.请把答案填在答题纸相应的位置上)21.(6分)设z∈C,|z|=1,则|z﹣(1+i)|的最大值是.22.(6分)设函数f(x)在R上可导,其导函数为f'(x),且函数y=(1﹣x)f'(x)的图象如下图所示,则函数f(x)的极大值点为x=.23.(6分)等差数列中,a3+a4=4,a5+a7=6.(1)数列的通项公式为a n=.(2)设,其中[x]表示不超过x的最大整数,如[0.9]=0,[2.6]=2.则数列{b n}的前8项和为.三、解答题(本题共1小题,满分14分.请把解答过程写在答题纸相应的位置上)24.(14分)已知函数,且f′(﹣1)=0.(1)试用含a的代数式表示b;(2)a≤1时,求函数f(x)的单调区间;(3)令a=﹣1,并且设方程f(x)=m有三个不等的实数根,求实数m的取值范围.2017-2018学年北京市人大附中高二(下)期中数学试卷(文科)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸相应的位置上)1.(5分)复数3+4i的共轭复数是()A.3﹣4i B.3+4i C.﹣3+4i D.﹣3﹣4i【解答】解:根据题意可得:复数为3+4i,所以结合共轭复数的定义可得:复数3+4i的共轭复数是3﹣4i.故选:A.2.(5分)如图是《集合》的知识结构图,如果要加入“列举法”,则应该接在()A.“集合的概念”的后面B.“集合的表示”的后面C.“基本关系”的后面D.“基本运算”的后面【解答】解:列举法是集合表示法的一种,在知识结构图中,列举法应该放在集合的表示后面,即它的下位,由此知应选B.故选:B.3.(5分)用反证法证明命题:“如果a>b>0,那么|a|>|b|”时,假设的内容应是()A.|a|=|b|B.|a|<|b|C.|a|≤|b|D.|a|>|b|且|a|=|b|【解答】解:由于结论|a|>|b|的否定为:|a|≤|b|,用反证法证明命题时,要首先假设结论的否定成立,故应假设:|a|≤|b|,由此推出矛盾.故选:C.4.(5分)下列结论正确的个数是()①回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法;②为了研究吸烟与患肺病是否有关,在吸烟与患肺病这两个分类变量的计算中,x2的观测值为x2=7.469大于6.635,故我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;③在线性回归分析中,相关系数为r,|r|≤1,并且|r|越接近1,线性相关程度越强.A.0B.1C.2D.3【解答】解:①,回归分析是对具有相关关系的两个变量进行统计分析的一种方法,不是对具有函数关系的变量进行分析,故①正确;②,x2的观测值为x2=7.469大于6.635,故我们有99%的把握认为吸烟与患肺病有关系,但不表示在100个吸烟的人中必有99人患有肺病,故②不正确;③,在线性回归分析中,相关系数为r满足|r|越接近1,线性相关程度越强,正确.∴正确结论的个数是2个.故选:C.5.(5分)函数f(x)的定义域为(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极值点()A.1个B.2个C.3个D.4个【解答】解:从f′(x)的图象可知f(x)在(a,b)内从左到右的单调性依次为增→减→增→减,根据极值点的定义可知,导函数在某点处值为0,左右两侧异号的点为极值点,由图可知,在(a,b)内只有3个极值点.故选:C.6.(5分)类比平面几何中的勾股定理:若直角三角形ABC中的两边AB,AC互相垂直,则三角形三边长之间满足关系:AB2+AC2=BC2,若三棱锥A﹣BCD的三个侧面ABC、ACD、ADB所在平面两两互相垂直,其三个侧面面积分别为S1,S2,S3,则三棱锥的三个侧面积与底面BCD的面积S之间满足的关系为()A.B.C.D.【解答】解:由边对应着面,边长对应着面积,由类比可得.故选:A.7.(5分)为解决四个村庄用电问题,政府投资在已建电厂与这四个村庄之间架设输电线路,现已知这四个村庄及电厂之间的距离如图所示(距离单位:公里)则能把电力输送到这四个村庄的输电线路的最短总长度应该是()A.19.5B.20.5C.21.5D.25.5【解答】解:如图,最短总长度应该是:电厂到A,再从A到B、D,然后从D 到C,所以能把电力输送到这四个村庄的输电线路的最短总长度应该是5+4+6+5.5=20.5km.故选:B.8.(5分)设函数f(x)定义如表,数列{x n}满足x1=5,,则x2017的值为()A.1B.3C.5D.6【解答】解:∵数列{x n}满足x1=5,,∴由表得:x2=f(5)=6,x3=f(6)=3,x4=f(3)=1,x5=f(1)=4,x6=f(4)=2,x7=f(2)=5,x8=f(5)=6,∴数列{x n}是以6为周期的周期数列,∵2017=336×6+1,∴x2017=x1=5.故选:C.二、填空题(本大题共6小题,每小题5分,共30分.请把结果填在答题纸相应的位置)9.(5分)复数z=1﹣i(i是虚数单位)在复平面上对应的点位于第四象限.【解答】解:∵复数z=1﹣i在复平面上对应的点的坐标为(1,﹣1),∴复数z=1﹣i(i是虚数单位)在复平面上对应的点位于第四象限.故答案为:四.10.(5分)经调查某地若干户家庭的年收入x(万元)和年饮食支出y(万元)具有线性相关关系,并得到y关于x的线性回归直线方和:,由回归直线方程预测,家庭年收入为2万元时,年饮食支出大约为0.7万元.【解答】解:根据线性回归直线方程,计算x=2时,=0.2×2+0.3=0.7,即预测家庭年收入为2万元时,年饮食支出大约为0.7万元.故答案为:0.7.11.(5分)甲、乙、丙三位同学被问到是否正确的回答对A,B,C三个问题,甲说:我回答对的问题比乙多,但没有回答对B;乙说:我没回答对C;丙说:我们三人都同时答对一个题;由此可判断乙答对的题为A.【解答】解:由乙说:我没回答对C,则乙可能答对A或B,但甲说:我回答对的问题比乙多,但没有回答对B,则乙只能是答对A,B中的任一个,再由丙说:我们三人都同时答对一个题,则由此可判断乙答对的题为A.故答案为:A.12.(5分)阅读图所示的程序框图,运行相应的程序,输出的结果是4.【解答】解:程序在运行过程中各变量变化的如下表示:S n 是否继续循环循环前 2 1/第一圈﹣1 2 是第二圈 3 是第三圈 2 4 否故最后输出的n值为4故答案为:413.(5分)a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…则a9+b9=76.【解答】解:观察可得各式的值构成数列1,3,4,7,11,…,其规律为从第三项起,每项等于其前相邻两项的和,所求值为数列中的第9项.继续写出此数列为1,3,4,7,11,18,29,47,76,123,…,第9项为76,即a9+b9=76,.故答案为:76;14.(5分)若集合M满足:∀x,y∈M,都有x+y∈M,xy∈M,则称集合M是封闭的.显然,整数集Z,有理数集Q,都是封闭的.在上述定义下,(1)复数集C是封闭的(填“是”或“否”);(2)若Q⊊F⊆C,集合F是封闭,则满足条件的一个F可以是R(只写一个).【解答】解:(1)根据题意,对于复数集,由复数的运算法则,若x,y∈C,则x+y∈C,xy∈C,则复数C是封闭的,(2)若Q⊊F⊆C,集合F是封闭,则实数集R符合,则满足条件的一个F可以是R;故答案为:(1)是,(2)R.三、解答题(本大题共3小题,共30分,解答应写出文字说明证明过程或演算步骤,请将答案写在答题纸相应的位置上)15.(8分)已知复数z1=2+4i,z2=a+i(a∈R),z1=z2•(1+i),求|z2|.【解答】解:∵z1=2+4i,z2=a+i(a∈R),由z1=z2•(1+i),得2+4i=(a+i)(1+i)=(a﹣1)+(a+1)i.∴,即a=3.∴|z2|=|3+i|=.16.(12分)设函数,且曲线y=f(x)在点(2,f(2))处的切线的斜率为0.(1)求a的值;(2)求函数f(x)的单调区间;(3)求函数f(x)在区间上的最小值.【解答】解:(1)函数的导数为:f′(x)=3x﹣,曲线y=f(x)在点(2,f(2))处的切线的斜率为0.可得6﹣=0,解得a=4;(2)f(x)=x2﹣12lnx,导数为f′(x)=3x﹣=,由f′(x)>0,可得x>2;由f′(x)<0,可得0<x<2;即f(x)的增区间为(2,+∞).减区间为(0,2);(3)由(2)可得函数f(x)的极小值为f(2)=6﹣12ln2,且2∈[,e],可得f(x)的最小值为6﹣12ln2.17.(10分)对于无穷数列{a n}与{b n},记集合,集合,若同时满足条件:①数列{a n},{b n}均单调递增;②A ∩B=∅且A∪B=N*,则称数列{a n}与{b n}是“好友数列”.(1)若a n=2n,,判断数列{a n}与{b n}是否为“好友数列”,并说明理由;(2)若数列{a n}与{b n}是“好友数列”,{a n}为等差数列且a16=36,求数列{a n}与{b n}的通项公式.【解答】解:(1)数列{a n}与{b n}不为“好友数列”.由a n=2n,,可得集合A为正偶数集,集合B中不含1,3,虽然满足①数列{a n},{b n}均单调递增;②A∩B=∅但A∪B≠N*,则数列{a n}与{b n}不为“好友数列”;(2)设数列{a n}的公差为d的等差数列,由a16=36,即有a1+15d=36,由题意可得36﹣15d≥1,解得d=1或2,若d=1,则a1=21,a n=n+20,b n=n(1≤n≤20),与无穷数列{a n}与{b n}矛盾,舍去;若d=2,则a1=6,a n=2n+4,b n=,综上可得a n=2n+4,b n=,n∈N*.一、选择题(本题共3小题,每小题6分,共18分.请把答案填在答题纸相应的位置上)18.(6分)=()A.﹣1B.1C.i D.﹣i【解答】解:∵,∴=i8=(i4)2=1.故选:B.19.(6分)类比等比数列的定义,定义等积数列为:若数列从第二项起,每一项与前一项的乘积为一个不变的非零常数,则称数列为等积数列,这个常数叫做该数列的公积.若一个等积数列的首项为2,公积为6,则数列的通项公式为()A.B.C.D.【解答】解:由题意可得,a n a n+1=6,∵a1=2∴a2=3,a3=2,a4=3,…,∴a n=,(k∈N*).故选:A.20.(6分)已知函数f(x)=sinx+e x,今f1(x)=f′(x),f2(x)=f′1(x),f3(x)=f′2(x),…,f n+1(x)=f′n(x),(n∈N*)则f2017(x)=()A.sinx+e x B.cosx+e x C.﹣sinx+e x D.﹣cosx+e x【解答】∵f(x)=sinx+e x,∴,,,,∴f n(x)=f n(x),+4,故选:B.二、填空题(本题共3小题,每小题6分,共18分.请把答案填在答题纸相应的位置上)21.(6分)设z∈C,|z|=1,则|z﹣(1+i)|的最大值是1+.【解答】解:由题意可知,复数z的轨迹为单位圆,如图,|z﹣(1+i)|的几何意义为单位圆上的动点到定点P的距离,由图可知,|z﹣(1+i)|的最大值为|AP|=1+.故答案为:1+.22.(6分)设函数f(x)在R上可导,其导函数为f'(x),且函数y=(1﹣x)f'(x)的图象如下图所示,则函数f(x)的极大值点为x=﹣2.【解答】解:由函数的图象可知,f′(﹣2)=0,f′(1)=0,f′(2)=0,并且当x<﹣2时,f′(x)>0;当﹣2<x<1,f′(x)<0;当1<x<2时,f′(x)<0;x>2时,f′(x)>0,即f(x)在(﹣∞,﹣2)上单调递增,在(﹣2,1)上单调递减,在(1,2)递减,在(2,+∞)递增,所以f(x)在x=﹣2处取得极大值,在x=2处取得极小值,x=1不为极值点,故答案为:﹣2.23.(6分)等差数列中,a3+a4=4,a5+a7=6.(1)数列的通项公式为a n=+.(2)设,其中[x]表示不超过x的最大整数,如[0.9]=0,[2.6]=2.则数列{b n}的前8项和为16.【解答】解:(1)∵等差数列中,a3+a4=4,a5+a7=6.∴,解得a1=1,d=,∴a n=1+(n﹣1)×=+.故答案为:+.(2)∵,∴数列{b n}的前8项和为:S8=[]+[]+[]+[]+[]+[]+[]+[]=1+1+1+2+2+3+3+3=16.故答案为:16.三、解答题(本题共1小题,满分14分.请把解答过程写在答题纸相应的位置上)24.(14分)已知函数,且f′(﹣1)=0.(1)试用含a的代数式表示b;(2)a≤1时,求函数f(x)的单调区间;(3)令a=﹣1,并且设方程f(x)=m有三个不等的实数根,求实数m的取值范围.【解答】解:(1)函数,导数为f′(x)=x2+2ax+b,f′(﹣1)=0,即为1﹣2a+b=0,可得b=2a﹣1;(2)a≤1时,f(x)=x3+ax2+(2a﹣1)x导数为f′(x)=x2+2ax+2a﹣1=(x+1)(x+2a﹣1),当a=1时,f′(x)=(x+1)2≥0,f(x)在R上递增;当a<1时,1﹣2a>﹣1,可得f(x)在(﹣1,1﹣2a)递减;在(﹣∞,﹣1),(1﹣2a,+∞)递增;(3)a=﹣1,f(x)=x3﹣x2﹣3x,导数为f′(x)=x2﹣2x﹣3=(x﹣3)(x+1),f(x)在(﹣1,3)递减,在(﹣∞,﹣1),(3,+∞)递增;可得f(x)的极小值为f(3)=﹣27,极大值为f(﹣1)=,方程f(x)=m有三个不等的实数根,可得﹣27<m<,即m的取值范围是(﹣27,).。
2017-2018学年北京市人大附中高二(下)期中数学试卷(文科)

2017-2018学年北京市人大附中高二(下)期中数学试卷(文科)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸相应的位置上)1.(5分)复数3+4i的共轭复数是()A.3﹣4i B.3+4i C.﹣3+4i D.﹣3﹣4i2.(5分)如图是《集合》的知识结构图,如果要加入“列举法”,则应该接在()A.“集合的概念”的后面B.“集合的表示”的后面C.“基本关系”的后面D.“基本运算”的后面3.(5分)用反证法证明命题:“如果a>b>0,那么|a|>|b|”时,假设的内容应是()A.|a|=|b|B.|a|<|b|C.|a|≤|b| D.|a|>|b|且|a|=|b|4.(5分)下列结论正确的个数是()①回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法;②为了研究吸烟与患肺病是否有关,在吸烟与患肺病这两个分类变量的计算中,x2的观测值为x2=7.469大于6.635,故我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;③在线性回归分析中,相关系数为r,|r|≤1,并且|r|越接近1,线性相关程度越强.A.0 B.1 C.2 D.35.(5分)函数f(x)的定义域为(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极值点()A.1个B.2个C.3个D.4个6.(5分)类比平面几何中的勾股定理:若直角三角形ABC中的两边AB,AC互相垂直,则三角形三边长之间满足关系:AB2+AC2=BC2,若三棱锥A﹣BCD的三个侧面ABC、ACD、ADB所在平面两两互相垂直,其三个侧面面积分别为S1,S2,S3,则三棱锥的三个侧面积与底面BCD的面积S之间满足的关系为()A.B.C.D.7.(5分)为解决四个村庄用电问题,政府投资在已建电厂与这四个村庄之间架设输电线路,现已知这四个村庄及电厂之间的距离如图所示(距离单位:公里)则能把电力输送到这四个村庄的输电线路的最短总长度应该是()A.19.5 B.20.5 C.21.5 D.25.58.(5分)设函数f(x)定义如表,数列{x n}满足x1=5,,则x2017的值为()A.1 B.3 C.5 D.6二、填空题(本大题共6小题,每小题5分,共30分.请把结果填在答题纸相应的位置)9.(5分)复数z=1﹣i(i是虚数单位)在复平面上对应的点位于第象限.10.(5分)经调查某地若干户家庭的年收入x(万元)和年饮食支出y(万元)具有线性相关关系,并得到y关于x的线性回归直线方和:,由回归直线方程预测,家庭年收入为2万元时,年饮食支出大约为万元.11.(5分)甲、乙、丙三位同学被问到是否正确的回答对A,B,C三个问题,甲说:我回答对的问题比乙多,但没有回答对B;乙说:我没回答对C;丙说:我们三人都同时答对一个题;由此可判断乙答对的题为.12.(5分)阅读图所示的程序框图,运行相应的程序,输出的结果是.13.(5分)a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…则a9+b9=.14.(5分)若集合M满足:∀x,y∈M,都有x+y∈M,xy∈M,则称集合M是封闭的.显然,整数集Z,有理数集Q,都是封闭的.在上述定义下,(1)复数集C封闭的(填“是”或“否”);(2)若Q⊊F⊆C,集合F是封闭,则满足条件的一个F可以是(只写一个).三、解答题(本大题共3小题,共30分,解答应写出文字说明证明过程或演算步骤,请将答案写在答题纸相应的位置上)15.(8分)已知复数z1=2+4i,z2=a+i(a∈R),z1=z2•(1+i),求|z2|.16.(12分)设函数,且曲线y=f(x)在点(2,f(2))处的切线的斜率为0.(1)求a的值;(2)求函数f(x)的单调区间;(3)求函数f(x)在区间上的最小值.17.(10分)对于无穷数列{a n}与{b n},记集合,集合,若同时满足条件:①数列{a n},{b n}均单调递增;②A∩B=∅且A∪B=N*,则称数列{a n}与{b n}是“好友数列”.(1)若a n=2n,,判断数列{a n}与{b n}是否为“好友数列”,并说明理由;(2)若数列{a n}与{b n}是“好友数列”,{a n}为等差数列且a16=36,求数列{a n}与{b n}的通项公式.一、选择题(本题共3小题,每小题6分,共18分.请把答案填在答题纸相应的位置上)18.(6分)=()A.﹣1 B.1 C.i D.﹣i19.(6分)类比等比数列的定义,定义等积数列为:若数列从第二项起,每一项与前一项的乘积为一个不变的非零常数,则称数列为等积数列,这个常数叫做该数列的公积.若一个等积数列的首项为2,公积为6,则数列的通项公式为()A.B.C.D.20.(6分)已知函数f(x)=sinx+e x,今f1(x)=f′(x),f2(x)=f′1(x),f3(x)=f′2(x),…,f n+1(x)=f′n(x),(n∈N*)则f2017(x)=()A.sinx+e x B.cosx+e x C.﹣sinx+e x D.﹣cosx+e x二、填空题(本题共3小题,每小题6分,共18分.请把答案填在答题纸相应的位置上)21.(6分)设z∈C,|z|=1,则|z﹣(1+i)|的最大值是.22.(6分)设函数f(x)在R上可导,其导函数为,且函数的图象如下图所示,则函数f(x)的极大值点为x=.23.(6分)等差数列中,a3+a4=4,a5+a7=6.(1)数列的通项公式为a n=.(2)设,其中[x]表示不超过x的最大整数,如[0.9]=0,[2.6]=2.则数列{b n}的前8项和为.三、解答题(本题共1小题,满分14分.请把解答过程写在答题纸相应的位置上)24.(14分)已知函数,且f′(﹣1)=0.(1)试用含a的代数式表示b;(2)a≤1时,求函数f(x)的单调区间;(3)令a=﹣1,并且设方程f(x)=m有三个不等的实数根,求实数m的取值范围.2017-2018学年北京市人大附中高二(下)期中数学试卷(文科)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸相应的位置上)1.(5分)复数3+4i的共轭复数是()A.3﹣4i B.3+4i C.﹣3+4i D.﹣3﹣4i【分析】共轭复数的定义为:若复数为a+bi,则其共轭复数为a﹣bi.所以根据可得答案.【解答】解:根据题意可得:复数为3+4i,所以结合共轭复数的定义可得:复数3+4i的共轭复数是3﹣4i.故选:A.【点评】解决此类问题的关键是熟练掌握有关定义即共轭副数的定义.2.(5分)如图是《集合》的知识结构图,如果要加入“列举法”,则应该接在()A.“集合的概念”的后面B.“集合的表示”的后面C.“基本关系”的后面D.“基本运算”的后面【分析】知识结构图的作用是用图形直观地再现出知识之间的关联,由列举法是集合表示法的一种,由此知正确的选项.【解答】解:列举法是集合表示法的一种,在知识结构图中,列举法应该放在集合的表示后面,即它的下位,由此知应选B.故选:B.【点评】本题考查了知识结构图的应用问题,是基础题.3.(5分)用反证法证明命题:“如果a>b>0,那么|a|>|b|”时,假设的内容应是()A.|a|=|b|B.|a|<|b|C.|a|≤|b| D.|a|>|b|且|a|=|b|【分析】结论|a|>|b|的否定为:|a|≤|b|,由此得出结论.【解答】解:由于结论|a|>|b|的否定为:|a|≤|b|,用反证法证明命题时,要首先假设结论的否定成立,故应假设:|a|≤|b|,由此推出矛盾.故选:C.【点评】本题主要考查用反证法证明数学命题,把要证的结论进行否定,得到要证的结论的反面,从而得到所求,属于基础题.4.(5分)下列结论正确的个数是()①回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法;②为了研究吸烟与患肺病是否有关,在吸烟与患肺病这两个分类变量的计算中,x2的观测值为x2=7.469大于6.635,故我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;③在线性回归分析中,相关系数为r,|r|≤1,并且|r|越接近1,线性相关程度越强.A.0 B.1 C.2 D.3【分析】①根据回归分析的定义去判断;②由独立性检验的概率意义判断;③由相关系数的大小与线性相关程度的关系判断.【解答】解:①,回归分析是对具有相关关系的两个变量进行统计分析的一种方法,不是对具有函数关系的变量进行分析,故①正确;②,x2的观测值为x2=7.469大于6.635,故我们有99%的把握认为吸烟与患肺病有关系,但不表示在100个吸烟的人中必有99人患有肺病,故②不正确;③,在线性回归分析中,相关系数为r满足|r|越接近1,线性相关程度越强,正确.∴正确结论的个数是2个.故选:C.【点评】本题考查命题的真假判断与应用,考查独立性检验及线性相关关系的基本概念,是基础题.5.(5分)函数f(x)的定义域为(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极值点()A.1个B.2个C.3个D.4个【分析】根据当f'(x)>0时函数f(x)单调递增,f'(x)<0时f(x)单调递减,可从f′(x)的图象可知f(x)在(a,b)内从左到右的单调性依次为增→减→增→减,然后得到答案.【解答】解:从f′(x)的图象可知f(x)在(a,b)内从左到右的单调性依次为增→减→增→减,根据极值点的定义可知,导函数在某点处值为0,左右两侧异号的点为极值点,由图可知,在(a,b)内只有3个极值点.故选:C.【点评】本题主要考查函数的极值点和导数正负的关系.属基础题.6.(5分)类比平面几何中的勾股定理:若直角三角形ABC中的两边AB,AC互相垂直,则三角形三边长之间满足关系:AB2+AC2=BC2,若三棱锥A﹣BCD的三个侧面ABC、ACD、ADB所在平面两两互相垂直,其三个侧面面积分别为S1,S2,S3,则三棱锥的三个侧面积与底面BCD的面积S之间满足的关系为()A.B.C.D.【分析】斜边的平方等于两个直角边的平方和,可类比到空间就是斜面面积的平方等于三个直角面的面积的平方和,边对应着面.【解答】解:由边对应着面,边长对应着面积,由类比可得.故选:A.【点评】本题考查从平面类比到空间,属于基本类比推理,考查推理论证能力、分析判断能力、归纳总结能力,是基础题.7.(5分)为解决四个村庄用电问题,政府投资在已建电厂与这四个村庄之间架设输电线路,现已知这四个村庄及电厂之间的距离如图所示(距离单位:公里)则能把电力输送到这四个村庄的输电线路的最短总长度应该是()A.19.5 B.20.5 C.21.5 D.25.5【分析】选择数据较小的路线,确定到达4个村庄的最短路线即可【解答】解:如图,最短总长度应该是:电厂到A,再从A到B、D,然后从D 到C,所以能把电力输送到这四个村庄的输电线路的最短总长度应该是5+4+6+5.5=20.5km.故选:B.【点评】本题考查合情推理,考查学生的计算能力,找到最短路线是解决本题的关键.8.(5分)设函数f(x)定义如表,数列{x n}满足x1=5,,则x2017的值为()A.1 B.3 C.5 D.6【分析】推导出数列{x n}是以6为周期的周期数列,从而x2017=x1=5.【解答】解:∵数列{x n}满足x1=5,,∴由表得:x2=f(5)=6,x3=f(6)=3,x4=f(3)=1,x5=f(1)=4,x6=f(4)=2,x7=f(2)=5,x8=f(5)=6,∴数列{x n}是以6为周期的周期数列,∵2017=336×6+1,∴x2017=x1=5.故选:C.【点评】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.二、填空题(本大题共6小题,每小题5分,共30分.请把结果填在答题纸相应的位置)9.(5分)复数z=1﹣i(i是虚数单位)在复平面上对应的点位于第四象限.【分析】直接由复数得到复数z=1﹣i在复平面上对应的点的坐标,则答案可求.【解答】解:∵复数z=1﹣i在复平面上对应的点的坐标为(1,﹣1),∴复数z=1﹣i(i是虚数单位)在复平面上对应的点位于第四象限.故答案为:四.【点评】本题考查复数的代数表示法及其几何意义,是基础题.10.(5分)经调查某地若干户家庭的年收入x(万元)和年饮食支出y(万元)具有线性相关关系,并得到y关于x的线性回归直线方和:,由回归直线方程预测,家庭年收入为2万元时,年饮食支出大约为0.7万元.【分析】利用线性回归直线方程计算x=2时的值即可.【解答】解:根据线性回归直线方程,计算x=2时,=0.2×2+0.3=0.7,即预测家庭年收入为2万元时,年饮食支出大约为0.7万元.故答案为:0.7.【点评】本题考查了线性回归方程的应用问题,是基础题.11.(5分)甲、乙、丙三位同学被问到是否正确的回答对A,B,C三个问题,甲说:我回答对的问题比乙多,但没有回答对B;乙说:我没回答对C;丙说:我们三人都同时答对一个题;由此可判断乙答对的题为A.【分析】可先由乙推出,可能答案对A或B,再由甲推出只能是A,B中的一个,再由丙即可推出结论.【解答】解:由乙说:我没回答对C,则乙可能答对A或B,但甲说:我回答对的问题比乙多,但没有回答对B,则乙只能是答对A,B中的任一个,再由丙说:我们三人都同时答对一个题,则由此可判断乙答对的题为A.【点评】本题考查乙答对的题的判断,考查简单的合情推等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.12.(5分)阅读图所示的程序框图,运行相应的程序,输出的结果是4.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环求函数S=的周期,我们用表格列出程序运行过程中各变量的值的变化情况,不难给出答案.【解答】解:程序在运行过程中各变量变化的如下表示:S n 是否继续循环循环前 2 1/第一圈﹣1 2 是第二圈 3 是第三圈 2 4 否故最后输出的n值为4【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.13.(5分)a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…则a9+b9=76.【分析】观察可得各式的值构成数列1,3,4,7,11,…,然后根据归纳推理即可得到结论.【解答】解:观察可得各式的值构成数列1,3,4,7,11,…,其规律为从第三项起,每项等于其前相邻两项的和,所求值为数列中的第9项.继续写出此数列为1,3,4,7,11,18,29,47,76,123,…,第9项为76,即a9+b9=76,.故答案为:76;【点评】本题主要考查归纳推理的应用,根据已知条件得到数列取值的规律性是解决本题的关键.考查学生的观察能力.14.(5分)若集合M满足:∀x,y∈M,都有x+y∈M,xy∈M,则称集合M是封闭的.显然,整数集Z,有理数集Q,都是封闭的.在上述定义下,(1)复数集C是封闭的(填“是”或“否”);(2)若Q⊊F⊆C,集合F是封闭,则满足条件的一个F可以是R(只写一个).【分析】(1)根据题意,由复数的运算法则,分析可得其符合集合封闭的定义,即可得答案;(2)根据题意,分析可得R符合题意的要求,即可得答案.【解答】解:(1)根据题意,对于复数集,由复数的运算法则,若x,y∈C,则x+y∈C,xy∈C,则复数C是封闭的,(2)若Q⊊F⊆C,集合F是封闭,则实数集R符合,则满足条件的一个F可以是R;故答案为:(1)是,(2)R.【点评】本题考查集合的关系,关键是掌握集合封闭的定义,属于基础题.三、解答题(本大题共3小题,共30分,解答应写出文字说明证明过程或演算步骤,请将答案写在答题纸相应的位置上)15.(8分)已知复数z1=2+4i,z2=a+i(a∈R),z1=z2•(1+i),求|z2|.【分析】把z1=2+4i,z2=a+i(a∈R)代入z1=z2•(1+i),整理后利用复数相等的条件列式求得a,再由复数模的计算公式求解.【解答】解:∵z1=2+4i,z2=a+i(a∈R),由z1=z2•(1+i),得2+4i=(a+i)(1+i)=(a﹣1)+(a+1)i.∴,即a=3.∴|z2|=|3+i|=.【点评】本题考查复数代数形式的乘除运算,考查复数相等的条件,训练了复数模的求法,是基础题.16.(12分)设函数,且曲线y=f(x)在点(2,f(2))处的切线的斜率为0.(1)求a的值;(2)求函数f(x)的单调区间;(3)求函数f(x)在区间上的最小值.【分析】(1)求得f(x)的导数,可得切线的斜率,解方程可得a的值;(2)由导数大于0,可得增区间;导数小于0,可得减区间;(3)由(2)可得f(x)的极小值,且为最小值.【解答】解:(1)函数的导数为:f′(x)=3x﹣,曲线y=f(x)在点(2,f(2))处的切线的斜率为0.可得6﹣=0,解得a=4;(2)f(x)=x2﹣12lnx,导数为f′(x)=3x﹣=,由f′(x)>0,可得x>2;由f′(x)<0,可得0<x<2;即f(x)的增区间为(2,+∞).减区间为(0,2);(3)由(2)可得函数f(x)的极小值为f(2)=6﹣12ln2,且2∈[,e],可得f(x)的最小值为6﹣12ln2.【点评】本题考查导数的运用:求切线的斜率和单调性、极值和最值,同时考查不等式的解法,属于基础题.17.(10分)对于无穷数列{a n}与{b n},记集合,集合,若同时满足条件:①数列{a n},{b n}均单调递增;②A∩B=∅且A∪B=N*,则称数列{a n}与{b n}是“好友数列”.(1)若a n=2n,,判断数列{a n}与{b n}是否为“好友数列”,并说明理由;(2)若数列{a n}与{b n}是“好友数列”,{a n}为等差数列且a16=36,求数列{a n}与{b n}的通项公式.【分析】(1)由于集合B中不含1,3等元素,不满足新定义,即可判断;(2)设数列{a n}的公差为d的等差数列,运用等差数列的通项公式,结合条件和新定义,求得d=1,2,分别讨论可得所求数列的通项公式.【解答】解:(1)数列{a n}与{b n}不为“好友数列”.由a n=2n,,可得集合A为正偶数集,集合B中不含1,3,虽然满足①数列{a n},{b n}均单调递增;②A∩B=∅但A∪B≠N*,则数列{a n}与{b n}不为“好友数列”;(2)设数列{a n}的公差为d的等差数列,由a16=36,即有a1+15d=36,由题意可得36﹣15d≥1,解得d=1或2,若d=1,则a1=21,a n=n+20,b n=n(1≤n≤20),与无穷数列{a n}与{b n}矛盾,舍去;若d=2,则a1=6,a n=2n+4,b n=,综上可得a n=2n+4,b n=,n∈N*.【点评】本题考查新定义的理解和运用,考查等差数列的通项公式的运用和方程思想、分类讨论思想方法,考查运算能力,属于中档题.一、选择题(本题共3小题,每小题6分,共18分.请把答案填在答题纸相应的位置上)18.(6分)=()A.﹣1 B.1 C.i D.﹣i【分析】利用复数代数形式的乘除运算化简,再由虚数单位i的性质得答案.【解答】解:∵,∴=i8=(i4)2=1.故选:B.【点评】本题考查复数代数形式的乘除运算,考查虚数单位i的性质,是基础题.19.(6分)类比等比数列的定义,定义等积数列为:若数列从第二项起,每一项与前一项的乘积为一个不变的非零常数,则称数列为等积数列,这个常数叫做该数列的公积.若一个等积数列的首项为2,公积为6,则数列的通项公式为()A.B.C.D.【分析】由题意可得,a n a n+1=6,由递推公式可求解数列的通项公式.【解答】解:由题意可得,a n a n+1=6,∵a1=2∴a2=3,a3=2,a4=3,…,∴a n=,(k∈N*).故选:A.【点评】此题的思想方法要抓住给出的信息,观察数列的规律,总结出项数与项之间的关系,求出通项公式时需要分类讨论,一定清楚奇数项数与偶数项数,否则容易出错.20.(6分)已知函数f(x)=sinx+e x,今f1(x)=f′(x),f2(x)=f′1(x),f3(x)=f′2(x),…,f n+1(x)=f′n(x),(n∈N*)则f2017(x)=()A.sinx+e x B.cosx+e x C.﹣sinx+e x D.﹣cosx+e x(x)【分析】分别求出f1(x)、f2(x)、f3(x)、f4(x),结合f(x),可得到f n+4=f n(x),于是可得到f2017(x)=f1(x),从而可得出答案.【解答】∵f(x)=sinx+e x,∴,,(x)=f n(x),,,∴f n+4,故选:B.【点评】本题考查导数的运算,找出导数的周期性是解本题的关键,属于基础题.二、填空题(本题共3小题,每小题6分,共18分.请把答案填在答题纸相应的位置上)21.(6分)设z∈C,|z|=1,则|z﹣(1+i)|的最大值是1+.【分析】由复数模的几何意义,数形结合即可求得|z﹣(1+i)|的最大值.【解答】解:由题意可知,复数z的轨迹为单位圆,如图,|z﹣(1+i)|的几何意义为单位圆上的动点到定点P的距离,由图可知,|z﹣(1+i)|的最大值为|AP|=1+.故答案为:1+.【点评】本题考查复数模的求法,考查复数模的几何意义,是基础题.22.(6分)设函数f(x)在R上可导,其导函数为,且函数的图象如下图所示,则函数f(x)的极大值点为x=﹣2.【分析】利用函数的图象,判断导函数值为0时,左右两侧的导数的符号,即可判断极值.【解答】解:由函数的图象可知,f′(﹣2)=0,f′(1)=0,f′(2)=0,并且当x<﹣2时,f′(x)>0;当﹣2<x<1,f′(x)<0;当1<x<2时,f′(x)<0;x>2时,f′(x)>0,即f(x)在(﹣∞,﹣2)上单调递增,在(﹣2,1)上单调递减,在(1,2)递减,在(2,+∞)递增,所以f(x)在x=﹣2处取得极大值,在x=2处取得极小值,x=1不为极值点,故答案为:﹣2.【点评】本题考查函数与导数的应用,考查分析问题解决问题的能力,函数的图象的应用.23.(6分)等差数列中,a3+a4=4,a5+a7=6.(1)数列的通项公式为a n=+.(2)设,其中[x]表示不超过x的最大整数,如[0.9]=0,[2.6]=2.则数列{b n}的前8项和为16.【分析】(1)利用等差数列通项公式列出方程组,由此能求出a1=1,d=,从而能求出数列的通项公式.(2)由,能求出数列{b n}的前8项和.【解答】解:(1)∵等差数列中,a3+a4=4,a5+a7=6.∴,解得a1=1,d=,∴a n=1+(n﹣1)×=+.故答案为:+.(2)∵,∴数列{b n}的前8项和为:S8=[]+[]+[]+[]+[]+[]+[]+[]=1+1+1+2+2+3+3+3=16.故答案为:16.【点评】本题考查等差数列的通项公式的求法,考查数列的前8项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.三、解答题(本题共1小题,满分14分.请把解答过程写在答题纸相应的位置上)24.(14分)已知函数,且f′(﹣1)=0.(1)试用含a的代数式表示b;(2)a≤1时,求函数f(x)的单调区间;(3)令a=﹣1,并且设方程f(x)=m有三个不等的实数根,求实数m的取值范围.【分析】(1)求得f(x)的导数,由f′(﹣1)=0,可得所求关系式;(2)求得f(x)的导数,讨论a=1,a<1,结合二次不等式的解法,可得所求单调区间;(3)由(2)可得f(x)的单调性,求得极值,由题意可得m介于极小值和极大值之间.【解答】解:(1)函数,导数为f′(x)=x2+2ax+b,f′(﹣1)=0,即为1﹣2a+b=0,可得b=2a﹣1;(2)a≤1时,f(x)=x3+ax2+(2a﹣1)x导数为f′(x)=x2+2ax+2a﹣1=(x+1)(x+2a﹣1),当a=1时,f′(x)=(x+1)2≥0,f(x)在R上递增;当a<1时,1﹣2a>﹣1,可得f(x)在(﹣1,1﹣2a)递减;在(﹣∞,﹣1),(1﹣2a,+∞)递增;(3)a=﹣1,f(x)=x3﹣x2﹣3x,导数为f′(x)=x2﹣2x﹣3=(x﹣3)(x+1),f(x)在(﹣1,3)递减,在(﹣∞,﹣1),(3,+∞)递增;可得f(x)的极小值为f(3)=﹣27,极大值为f(﹣1)=,方程f(x)=m有三个不等的实数根,可得﹣27<m<,即m的取值范围是(﹣27,).【点评】本题考查导数的运用:求单调性和极值,考查方程思想和运算能力,属于基础题.。
2018北京人大附中高二(下)期末数 学(理)

2018北京人大附中高二(下)期末数 学(理)2018年7月6日说明:本练习共三道大题20道小题,共4页,满分150分,考试时间120分钟。
一、选择题 (本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸的相应位置.)1.10(e 2)d xx x +⎰等于( )(A )1(B )e 1-(C )e (D )e 1+2.已知(13)n x +的展开式中含有2x 项的系数是54,则n =( ) (A )3 (B )4 (C )5 (D )6 3.函数()y f x =的导函数()y f x '=的图象如右图所示,则()y f x =的 图象可能是( )4.已知从A 口袋中摸出一个球是红球的概率为14,从B 口袋中摸出一个球是红球的概率为15,现从两个口袋中各摸出一个球,那么这两个球至少有一个不是红球的概率是( )(A )120 (B )1920 (C )35 (D )7205.下列极坐标方程中,对应的曲线为右图的是( ) (A )65cos ρθ=+ (B )65sin ρθ=+ (C )65cos ρθ=- (D )65sin ρθ=-6.已知随机变量i ξ满足(1)i i P p ξ==,(0)1i i P p ξ==-,1,2i =.若12102p p <<<,则( )(A )12()()E E ξξ<,12()()D D ξξ< (B )12()()E E ξξ<,12()()D D ξξ> (C )12()()E E ξξ>,12()()D D ξξ< (D )12()()E E ξξ>,12()()D D ξξ>7.集合230123{|222}P x x a a a a ==+⨯+⨯+⨯,其中{0,1},0,1,2,3i a i ∈=.则集合P 中元素的个数及所有元素之和分别是( ) (A )16,120 (B )8,120 (C )16,60 (D )8,608.设函数32,e,ln ,e x x x y a x x ⎧-+<⎪=⎨≥⎪⎩的图象上存在两点,P Q ,使得POQ △是以O 为直角顶点的直角三角形(其中O 为坐标原点),且斜边的中点恰好在y 轴上,则实数a 的取值范围是( )(A )1(0,]e 1+ (B )1(,]e 1-∞+ (C )1[+)e 1∞+, (D )R二、填空题(本大题共6小题,每小题5分,共30分.请把结果填在答题纸的相应位置.)9.已知复数12i1iz +=+,其中i 是虚数单位,则z 的模是________. 10.圆12cos 12sin x y θθ=-+⎧⎨=+⎩(θ为参数)被x 轴截得的弦长为________.11.现有5名教师要带3个兴趣小组外出学习考察,要求每个兴趣小组的带队教师至多2人,则不同的带队方案有________种.(用数字作答) 12.观察下列一组等式1+2=32+3+4+5=14x O3+4+5+6+7+8=33 4+5+6+7+8+9+10+11=60……照此规律,第n 个等式的右端为________.13.已知函数22,0,()ln(1),0.x x x f x x x ⎧-+≤⎪=⎨+>⎪⎩ 若|()|f x ax ≥恒成立,则a 的取值范围是________.14.给定集合{1,2,3,,}n A n =⋅⋅⋅,映射:n n f A A →,若f 满足:① 当,,n i j A i j ∈≠时,()()f i f j ≠;② 任取n m A ∈,若2m ≥,则有{(1),(2),,()}m f f f m ∈⋅⋅⋅.则称映射f 为n n A A →是一个“优映射”.例如:用表1表示的映射33:f A A →是一个优映射. 表1 表2(1)已知表2表示的映射44:f A A →是一个优映射,请把表2补充完整(只需填出一个满足条件的映射); (2)若映射1010:f A A →是“优映射”,且方程()f i i =的解恰有6个,则这样的“优映射”的个数是________.三、解答题 (本大题共6小题,共80分,解答应写出文字说明证明过程或演算步骤.) 15.(本小题13分)甲、乙两人进行射击比赛,各射击4局,每局射击10次,射击命中目标得1分,未命中目标得0分.两人4局的得分情况如下:甲 6 6 9 9乙79xy(Ⅰ)若从甲的4局比赛中,随机选取2局,求这2局的得分恰好相等的概率;(Ⅱ)如果7x y ==,从甲、乙两人的4局比赛中随机各选取1局,记这2局的得分和为X ,求X 的分布列和数学期望;(Ⅲ)在4局比赛中,若甲、乙两人的平均得分相同,且乙的发挥更稳定,写出x 的所有可能取值.(结论不要求证明) 16.(本小题13分)已知数列{}n a 中,11a =,且12()2nn n a a n a *+=∈+N .(Ⅰ)求234,,a a a 的值;(Ⅱ)试猜想这个数列的通项公式,并用数学归纳法证明. 17.(本小题13分)已知函数32()4f x ax bx x =++的极小值为8-,其导函数()y f x '=的图象经过点(2,0)-,如图所示. (Ⅰ)求()f x 的解析式;(Ⅱ)若函数()y f x k =-在区间[3,2]-上有两个不同的零点,求实数k 的取值范围.18.(本小题13分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买i1 2 3 ()f i231i1 2 3 4 ()f i3yx O -2这种零件作为备件,每个200元,在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. (Ⅰ)求X 的分布列;(Ⅱ)若要求()0.5P X n ≤≥,确定n 的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个? 19.(本小题14分)已知函数e ()(ln )()xf x a x x a x=--∈R .(Ⅰ)当1a =时,试求()f x 在(1,(1))f 处的切线方程; (Ⅱ)当0a ≤时,试求()f x 的单调区间;(Ⅲ)若存在12(0,1),(0,1)x x ∈∈,使得12()()f x f x =,试求a 的取值范围.20.(本小题14分)对于项数为m 的有穷数列{}n a ,令12max{,,,}(1,2,,)k k b a a a k m =⋅⋅⋅=⋅⋅⋅,即k b 为12,a a ,…k a 中的最大值, 称数列{}n b 为{}n a 的上界数列, 如1, 3, 2, 5的上界数列是1, 3, 3, 5.(Ⅰ)若各项均为正整数的数列{}n a 的上界数列为2, 4, 4, 5, 写出所有的{}n a ;(Ⅱ)设{}n b 是{}n a 的上界数列, 满足1k m k a b C -++=(C 为常数,1,2,,k m =⋅⋅⋅),求证:k k b a =;(Ⅲ)若各项为正整数的数列{}n a 的项数5m =, 其上界数列{}n b 满足11b =, 510b =, 求满足条件的数列{}n a 和{}n b 的个数.频数40208 9 10 11 更换的易损零件数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人大附·高二·周末练习二
2018.3.9一、选择题
1.已知函数33
=-+的图象与x恰有两个公共点,则()
y x x c
A.420︒
B.390︒
C.450︒
D.480︒
2.设函数()
y x f x'
=-的图象如图所示,则下
f x在R上可导,其导函数为()
f x',且函数(1)()
列结论中一定成立的是()
A.函数()
f
f和极小值(1)
f x有极大值(2)
B.函数()
f
f-和极小值(1)
f x有极大值(2)
C.函数()
f和极小值(2)
f-
f x有极大值(2)
D.函数()
f
f x有极大值(2)
f-和极小值(2)
3.已知某函数()
y f x
f x'的图象如图所示,则原函数的图象可能是()
=的导函数()
4.函数32
f x ax bx cx d
=+++的图象如图所示,12
()
<,则有()
x x
A.0,0,0,0
a b c d
<><>
>><> B.0,0,0,0
a b c d
C.0,0,0,0
><><
a b c d
a b c d
<<>> D.0,0,0,0
小数学个微信号
5.已知()y f x =是R 上的可导函数,对于任意的正实数t ,都有函数()()()g x f x t f x =+-在其定义域内为减函数,则小强数学函数()y f x =的图象可能为下图中()
6.定义在R 上的函数()f x 满足(4)1f =,()f x '为()f x 的导函数,
已知()y f x '=的图象如图所示,若两个正数a ,b 满足(2)1f a b +<,则11b a ++的取值范围是()
A.11(,)
53 B.1(,)(5,)3-∞+∞ C.1(,5)3
D.(,3)-∞7.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是()
8.函数2sin 2x y x =-的图象大致是()
二、填空题
9.函数3231y x x =-+在x =_______处取得极小值.
10.若32()(0)f x ax bx cx d a =+++>在R 上为小强数学增函数,
则a ,b ,c 的关系式为_______.11.已知可导函数()y f x =满足(2)()f x f x -=-,
函数()y f x =的图象在点(1,(1))f 处的切线方程为21y x =+,则(1)f '=____,函数()y f x =的图象在点(3,(3))f --处的切线方程为_______.
12.已知二次函数()f x '、一次函数()g x '分别为()f x 、()g x 的导函数,它们在同一坐标系下的图象如图所示:
①若(1)1f =,则(1)f -=_______;②设()()()h x h x g x =-,则(1)h -,(0)h ,(1)h 的大小关系为_______.
13.设函数ln ,0,()21,0,x x f x x x >⎧=⎨
--≤⎩D 是由x 轴和曲线()y f x =及曲线在点(1,0)处的切线所围成的封闭区域,则2z x y =-在D 上的最大值为_______.
14.定义方程()()f x f x '=的实数根0x 叫做函数()f x 的“新驻点”,如果函数()g x x =,()ln(1)h x x =+,()cos ((,))2x x x πϕπ=∈的“新驻点”分别为α,β,γ,那么α,β,γ的大小关系是_______.
三、解答题
15.已知向量2(,1)a x x =+ ,(1,)b x t =- ,若小强数学函数()f x a b =⋅ 在区间(1,1)-上是增函数,
求t 的取值范围.
16.已知函数32()f x x ax bx c =+++在2x =-与1x =时都取得极值.(I)求a ,b 的值与()f x 的单调区间;(II)若对[1,2]x ∈-不等式2()f x c <恒成立,求c 的取值范围.17.已知函数321()3f x ax bx cx d =+++,
其中a ,b ,c 是以d 为公差的等差数列,且0a >,0d >.设0x 为()f x 的极小值点,在2[1,0]b a
-上,()f x '在1x 处取得最大值,在2x 处取得最小值,将点00(,())x f x ,11(,())x f x ',22(,())x f x '依次记为A ,B ,C.(I)求0x 的值;
(II)若ABC ∆有一边平行于x 轴,且小强数学面积为2+,求a ,d 的值.。