限时训练9.26

合集下载

九年级英语限时训练(附参考答案)

九年级英语限时训练(附参考答案)

九年级英语限时训练(附参考答案)(满分40分,时间30分钟)一.单词拼写(共5小题,每题2分,满分10分)根据句意和首字母或汉语提示,将单词的正确形式完整地写在横线上。

1. —Cindy, what kind of restaurants do you like ?—I p_____ restaurants that can provide customers with free Wi - Fi.2. Mr.King is very P ______. He often explains difficult problems many times until we understand.3. It’s_________(危险的)for people to use the mobile phone while crossing the street.4. China has been making many great _____(成就)in every field these years, which amazes the world.5. Teenagers should be_________(鼓励)to learn and spread Chinese traditional culture.二、综合填空(共10小题,每题2分,满分20分)根据短文内容,用方框中所给词语的适当形式填空,使文章通顺、完整。

(每词限用一次)hour, power, a, matter, pain, compete, good, point, keep, createEileen Gu was born in San Francisco, California to an American father and a Chinese mother. While 6._______ for the United States in her earlier years, Gu announced her decision to ski for China in 2019 after her first World Cup Italy. In the interview, Gu mentioned her 8.5 7.______training a day, which gives her the confidence to win.She scored 1,580 8. ________out of a maximum 1,600 in the SAT, the test used for college admissions in the United States. “I encourage you all to step out of your comfort zone to show the boys that girls are just as 9._________ as they are.” Gu said. “I’m not trying 10._________ anyone happy. I’m 11.________18-year-old girl living my best life. It doesn’t really12. _____ if other people are happy or not, because I feel I am doing my 13._______. I’m enjoying the entire process and I’m using my voice 14._______ as much positive change as I can, fo r the voice that will listen to me.”She’s not afraid of hardship, tiredness, and 15.______ .she’s especially positive and optimistic. she’s quite burning. A ball of flame was surrounding her.三、阅读理解(共5个小题,每题2分,满分10分)阅读下面的短文,从每题所给的A、B、C、D四个选项中,选出最佳答案。

北师大版高中数学必修四双基限时练26

北师大版高中数学必修四双基限时练26

双基限时练(二十六) 两角和与差的正弦、余弦函数一、选择题1.cos80°cos20°+sin80°sin20°的值为( ) A.22 B.32 C.12D .-22解析 cos80°cos20°+sin20°sin80°=cos60°=12.答案 C2.设α∈⎝ ⎛⎭⎪⎫0,π2,sin α=35,则cos ⎝⎛⎭⎪⎫α+π3的值为( )A.4+3310B.4-3310C.4+335D.4-334解析 ∵α∈⎝ ⎛⎭⎪⎫0,π2,sin α=35,cos α=45,cos ⎝⎛⎭⎪⎫α+π3=cosαcos π3-sin αsin π3=4-3310,故选B.答案 B3.对任意的锐角α,β,下列不等关系中一定成立的是( ) A .sin(α+β)>sin α+sin β B .sin(α-β)>sin α-sin β C .cos(α+β)<cos α+cos β D .cos(α-β)<cos α-cos β解析 α,β为任意锐角,在(0,π)上余弦函数是减函数,显然cos α>0,cos β>0,cos(α+β)<cos α,所以C 一定成立.答案 C4.12sin15°-32cos15°的值为( ) A.22 B .-22C.12D .-12解析 原式=-⎝⎛⎭⎪⎪⎫32cos15°-12sin15°=-cos(30°+15°)=-cos45°=-22.答案 B5.在△ABC 中,若2cos B sin A =sin C ,则△ABC 是( ) A .等腰直角三角形 B .直角三角形C .等腰三角形D .等边三角形解析 由条件知:2cos B sin A =sin(A +B ),即2cos B sin A =sin A cos B +cos A sin B ,∴sin A cos B -cos A sin B =0,即sin(A -B )=0.∴A =B .故选C.答案 C6.已知sin(α+β)=14,sin(α-β)=13,则tan αtan β等于( )A .-17B.17 C .-7D .7解析 由sin(α+β)=14,sin(α-β)=13,得sin αcos β+cos αsin β=14,①sin αcos β-cos αsin β=13.②①+②,得sin αcos β=724;①-②,得cos αsin β=-124.所以tan αtan β=sin αcos βcos αsin β=-7.答案 C7.函数y =cos ⎝ ⎛⎭⎪⎫π3-2x +cos2x 的最小正周期为( )A.2πB .πC .2πD .4π解析 y =cos ⎝ ⎛⎭⎪⎫π3-2x +cos2x =cos π3cos2x +sin π3sin2x +cos2x =32cos2x +32sin2x =3sin ⎝⎛⎭⎪⎫2x +π3,周期T =π.答案 B 二、填空题8.sin105°的值为________.解析 sin105°=sin(45°+60°)=sin45°cos60°+cos45°sin60°=22×12+22×32=2+64.答案6+249.sin π12-3cos π12=________.解析 sin π12-3cos π12=2sin ⎝ ⎛⎭⎪⎫π12-π3=-2sin π4=- 2.答案 - 210.已知向量a =(cos α,sin α),b =(cos β,sin β),|a -b |=255,则cos(α-β)=________.解析 由|a -b |=255知,(cos α-cos β)2+(sin α-sin β)2=45,即2-2cos(α-β)=45,cos(α-β)=35. 答案 35三、解答题11.已知A 、B 均为钝角且sin A =55,sin B =1010,求A +B 的值.解 ∵A 、B 均为钝角且sin A =55,sin B =1010,∴cos A =-1-sin 2A =-255,cos B =-1-sin 2B =-31010.∴cos(A +B )=cos A cos B -sin A sin B=-255×⎝⎛⎭⎪⎪⎫-31010-55×1010=22. 又∵π2<A <π,π2<B <π,∴π<A +B <2π.∴A +B =7π4. 12.已知π4<α<3π4,0<β<π4,cos ⎝ ⎛⎭⎪⎫π4-α=35,sin ⎝ ⎛⎭⎪⎫3π4+β=513,求sin(α+β)的值. 解 因为π4<α<3π4,0<β<π4,所以-π2<π4-α<0,3π4<3π4+β<π.所以sin ⎝ ⎛⎭⎪⎫π4-α=-45,cos ⎝ ⎛⎭⎪⎫3π4+β=-1213,所以sin(α+β)=-cos ⎝ ⎛⎭⎪⎫π2+α+β=-cos ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫3π4+β-⎝ ⎛⎭⎪⎫π4-α =-cos ⎝ ⎛⎭⎪⎫3π4+βcos ⎝ ⎛⎭⎪⎫π4-α-sin ⎝ ⎛⎭⎪⎫3π4+βsin ⎝ ⎛⎭⎪⎫π4-α =1213×35-513×⎝ ⎛⎭⎪⎫-45=5665. 13.已知a =(3,-1),b =(sin x ,cos x ),x ∈R ,f (x )=a ·b ,(1)求f (x )的表达式;(2)求函数f (x )的周期、值域、单调区间. 解 (1)f (x )=a ·b =(3,-1)·(sin x ,cos x ) =3sin x -cos x (x ∈R ). (2)f (x )=3sin x -cos x=2⎝⎛⎭⎪⎪⎫sin x ·32-cos x ·12 =2⎝ ⎛⎭⎪⎫sin x ·cos π6-cos x ·sin π6=2sin ⎝⎛⎭⎪⎫x -π6.∴T =2πω=2π,值域[-2,2],由-π2+2k π≤x -π6≤π2+2k π,得f (x )的单调增区间为⎣⎢⎡⎦⎥⎤-π3+2k π,23π+2k π(k ∈Z ),由π2+2k π≤x -π6≤32π+2k π,得f (x )的单调减区间为⎣⎢⎡⎦⎥⎤23π+2k π,53π+2k π(k ∈Z ).。

高考英语人教通用版限时规范练9(必修2Unit4)

高考英语人教通用版限时规范练9(必修2Unit4)

限时规范练9(必修2Unit4)核心素养关键词:培养学生人与自然、保护动物的思维意识一、阅读理解AWhat do you usually do when a flying insect lands on your arm? Most likely you blow it away.But what if that bug were a ladybug (瓢虫)? Then chances are you would let it stay.What is it about ladybugs that we like?Farmers once thought ladybugs were a good luck sign.A ladybug in the field meant that the crops would be successful and the weather would be good.The farmers may have been exaggerating (夸大) about what a very small bug can do,but in fact ladybugs do help out with the crops.They eat harmful insects.Actually,it is not the adult ladybug that eats the other insects.It’s the ladybug larvae (幼虫).Ladybugs lay their eggs on leaves that are covered with aphids or other insects.When the larvae e out of the eggs,they are very hungry and will eat mites,aphids,mealybugs,green flies,and other cropdestroyers.A single ladybug larva can eat over 1,000 aphids in one day.In the 1800s,ladybugs were brought all the way from Australia to California and set free among orange trees that were dying from being eaten by insects.The little red and black “eating machines” pletely saved all the trees.Ladybugs go about their daily business without worrying much about anything.Very few birds or insects will eat a ladybug because it gives off something that is dangerous to dybugs also protect themselves by playing dead.They fall off leaves and remain very still until their enemy goes away.So next time you see a ladybug,think about what it may be up to.Maybe it is off to save an orange tree.Maybe its next move will be to fall off a leaf and play dead or stand up to a bird about 100 times its size.Maybe it’s letting you know that the weather will be good tomorrow.Who knows? Ladybugs are special that way.1.What do we know about mites and aphids?A.They do harm to the crops.B.They eat more than they should.C.They are food for adult ladybugs.D.They are the enemy of ladybug larvae.2.Why were ladybugs brought from Australia to California in the 1800s?A.To save orange trees.B.To do research on them.C.To increase their number.D.To report the weather for farmers.3.What does the underlined part “stand up to” in the last paragraph probably mean?A.Play with.B.Worry about.C.Get along with.D.Fight back against.BTwo books have been developed to help designers,developers and homeowners make it easier and safer for the blind to find their way to,into and through buildings and large public spaces.The books were created by the Cooperative Research Centre for Construction Innovation (建筑创新),a programme which helps solve the problem of finding ways around buildings and public spaces.Construction Innovation CEO Keith Hampson says any wayfinding system is more than just signs.“It includes buildings,inside design and lighting,” Keith says.He says people having problems with their eyesight use these municative signs to make moving around spaces easier.For example,a good sign may include tactile (可感触到的) lettering — Braille and a tactile ground surface.The project won the 2007 Disability Action Week Award for Building Accessible Housing and Environments.“The project has received increased national attention since the award last year,” Keith says.“Most importantly however,we have helped to raise the awareness and need for a wayfinding system across the building and construction industry.”The Department of Public Works was a key member in the project.Team leader Ron Apelt says people with eyesight problems are often forgotten in the planning and design of buildings and public open spaces.“Our books are mainly for new buildings and the immediate spaces surrounding these buildings,” Ron says.“However,the books can also be used for any plans for old buildings and improving wayfinding around places such as universities,hospitals and schools.”“They can also be used in busy spaces like shopping centres as the design ideas remain unchanged no matter what the spaces and places are like.”4.What are the books mentioned in the text about?A.How to improve eyesight.B.How to build highquality houses.C.How to make buildings blindfriendly.D.How to develop a good sense of direction.5.What does the wayfinding system include according to Keith?A.A flat ground surface.B.Signs that can be touched.C.Spaces that are wide enough.D.Lighting that’s not too strong.6.What has happened since the project won the award?A.More blind people are getting help.B.More people are trying to win the award.C.More people are realising the system’s importance.D.More people are interested in the construction industry.7.What does Ron think of the books?A.They are of little real use.B.They will never be forgotten.C.They came as no surprise to the public.D.They will make a good guide for builders.二、七选五Deciding whether or not to take part in an extracurricular (课外的) activity can be a challenge.Before signing up to play on the volleyball team,first consider the advantages and disadvantages of such a decision.1 Students are successful when they take part in many activities.They do well in their classes and feel more connected to school.Research shows that students in extracurricular activities have better attendance and grades.Extracurricular activities also help students make new friends and lasting relationships.2Even though we became friends a long time ago,we are still close today.While these activities have many advantages,students should consider the downside as well.3 Extracurricular activities can be too much for students who do not practice good timemanagement.Students need to be good at managing their time between different activities.Another downside to extracurricular activities involves transportation.4 This situation limits students’ extracurricular choices to those outside the school and closer to home.A few of my classmates joined the school’s cultural club.They later discovered that it met after school.These students dropped out of the club because they had to catch their buses.Only you can decide if extracurricular activities are right for you.Activities outside the school can help you succeed in many areas of your life.5 Are you up for a challenge?A.We were both in the eightandunder age group.B.Some clubs or sports meet before or after school.C.One downside is that it can create a busy life for students.D.Many students are tired from all the things they have to do.E.Taking part in extracurricular activities has many advantages.F.I met my best friend when we were on the YMCA swim team.G.However,you need good time management skills to deal with a busy life.三、语法填空The jaguar (美洲豹) is the largest cat in the Americas.A hundred years ago,jaguars 1.(find) everywhere from the southwestern United States to Argentina,in South America.Today,jaguars are an endangered species throughout their 2. (nature) habitat and have been lost from 50 percent of their territory.Today they live 3. (most) in the Amazon rainforest.And jaguars aren’t the only animals losing their homes — according 4. the International Union for Conservation of Nature,habitat loss 5. (be) the main threat to about 85 percent of all endangered plant and animal species.Tropical rainforests cover only about 7 percent of Earth’s land,but they’re home to about half of all known plant and animal species.Most 6. (scientist) agree that about 80,000 acres (an acre is equal to 4,047 square metres) disappear every day when trees are cut down and land is cleared for farms.Trees also play 7. important role in climate change.Fewer forests mean that more greenhouse gases remain 8. (trap) in the atmosphere,the mixture of gases that surrounds the Earth.Grasslands,underwater habitats,and wetlands are also at risk.For example,the World Wildlife Fund reports that about half of the world’s wetlands 9. (disappear) since a hundred years ago as a result of being drained (排水) for either farmland 10. other industries.That means less space for animals to feed and raise their young.参考答案限时规范练9(必修2Unit4)一、【篇章导读】本文是说明文。

2019年高中数学 双基限时练26 新人教B版必修4

2019年高中数学 双基限时练26 新人教B版必修4

2019年高中数学 双基限时练26 新人教B 版必修41.sin15°cos75°+cos15°sin105°=( ) A .0 B.12 C.32D .1解析 原式=cos75°cos75°+sin75°sin75° =cos(75°-75°)=cos0°=1. 答案 D2.已知cos α=1213,α∈⎝⎛⎭⎫3π2,2π,则cos ⎝⎛⎭⎫α-π4的值为( ) A.5213 B.7213 C.17226D.7226解析 ∵α∈⎝⎛⎭⎫3π2,2π,cos α=1213,∴sin α=-513. cos ⎝⎛⎭⎫α-π4=22cos α+22sin α=7226. 答案 D3.若α、β均为锐角,sin α=255,cos(α+β)=45,则cos β的值为( ) A.255B.510C.4525D.7525解析 ∵α,β均为锐角,∴cos α=55,sin(α+β)=35. ∴cos β=cos[(α+β)-α] =cos(α+β)cos α+sin(α+β)sin α =45×55+255×35=255. 答案 A4.满足cos αcos β=32+sin αsin β的一组α,β的值是( ) A .α=π3,β=π4B .α=π2,β=π3C .α=-π3,β=π6D .α=π3,β=π6解析 由题意可知cos(α+β)=32,将选项逐个代入检验可知C 正确. 答案 C5.在△ABC 中,sin A =45,cos B =-1213,则cos C 等于( )A.5665 B .-1665C.5665或-1665D .-3365解析 解法1 ∵cos B =-1213,∴B 为钝角.∴sin B =513.∵sin A =45,∴cos A =35.∴cos C =-cos(A +B )=-(cos A cos B -sin A sin B )=5665.解法2 ∵B 为钝角,∴C 为锐角,cos C >0, ∴选A. 答案 A 6.已知sin A =55,sin B =1010,A 、B ∈⎝⎛⎭⎫π2,π,则A +B 的值为( ) A.74π B.π4 C.3π4D .-7π4解析 ∵A 、B ∈⎝⎛⎭⎫π2,π,sin A =55,sin B =1010, ∴cos A =-255,cos B =-31010.∴cos(A +B )=cos A cos B -sin A sin B =⎝⎛⎭⎫-255×⎝⎛⎭⎫-31010-55×1010 =55050=22. ∵A 、B ∈(π2,π),∴π<A +B <2π.∵cos(A +B )=22>0,∴A +B =7π4. 答案 A7.若cos(A -B )=13,则(sin A +sin B )2+(cos A +cos B )2=________.解析 (sin A +sin B )2+(cos A +cos B )2=2+2cos A cos B +2sin A sin B =2+2cos(A -B )=2+23=83. 答案 838.若a =(cos60°,sin60°),b =(cos15°,sin15°),则a ·b =________. 解析 a ·b =cos60°cos15°+sin60°sin15°=cos(60°-15°)=cos45°=22. 答案22能 力 提 升9.已知α,β∈⎝⎛⎭⎫3π4,π,sin(α+β)=-35,sin ⎝⎛⎭⎫β-π4=1213,则cos ⎝⎛⎭⎫α+π4=________. 解析 ∵α,β∈⎝⎛⎭⎫3π4,π, ∴3π2<α+β<2π,π2<β-π4<3π4. sin(α+β)=-35,则cos(α+β)=45.sin ⎝⎛⎭⎫β-π4=1213,则cos ⎝⎛⎭⎫β-π4=-513. cos ⎝⎛⎭⎫α+π4=cos ⎣⎡⎦⎤α+β-⎝⎛⎭⎫β-π4 =cos(α+β)cos ⎝⎛⎭⎫β-π4+sin(α+β)sin ⎝⎛⎭⎫β-π4 =45×⎝⎛⎭⎫-513+⎝⎛⎭⎫-35×1213=-5665. 答案 -566510.已知π2<β<α<3π4,cos(α-β)=1213,sin(α+β)=-35,求cos2α与cos2β的值.解析 ∵π2<β<α<3π4,∴0<α-β<π4,π<α+β<3π2.∴sin(α-β)=1-cos 2α-β=1-⎝⎛⎭⎫1213=513,cos(α+β)=-1-sin 2α+β=-1-⎝⎛⎭⎫-352=-45. ∴cos2α=cos[(α+β)+(α-β)]=cos(α+β)cos(α-β)-sin(α+β)sin(α-β) =-45×1213-⎝⎛⎭⎫-35×513=-3365. cos2β=cos[(α+β)-(α-β)]=cos(α+β)cos(α-β)+sin(α+β)sin(α-β) =-45×1213+⎝⎛⎭⎫-35×513=-6365. 11.已知cos α=17,cos(α-β)=1314,且0<β<α<π2,求β的值.解析 由cos α=17,0<α<π2,得sin α=1-cos 2α=1-⎝⎛⎭⎫172=437.由0<β<α<π2,得0<α-β<π2.又∵cos(α-β)=1314,∴sin(α-β)=1-cos 2α-β=1-⎝⎛⎭⎫13142=3314.由β=α-(α-β),得cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=17×1314+437×3314=12,∴β=π3. 12.已知函数f (x )=2cos ⎝⎛⎭⎫ωx +π6,(其中ω>0,x ∈R )的最小正周期为10π, (1)求ω的值;(2)设α,β∈⎣⎡⎦⎤0,π2,f ⎝⎛⎭⎫5α+5π3=-65, f ⎝⎛⎭⎫5β-5π6=1617,求cos(α+β)的值. 解析 (1)∵f (x )=2cos ⎝⎛⎭⎫ωx +π6,ω>0的最小正周期T =10π=2πω.∴ω=15. (2)∵f (x )=2cos ⎝⎛⎭⎫15x +π6∴f ⎝⎛⎭⎫5α+5π3=2cos ⎝⎛⎭⎫α+π3+π6=-2sin α.∴sin α=35,∵f ⎝⎛⎭⎫5β-5π6=2cos ⎝⎛⎭⎫β-π6+π6=2cos β, ∴cos β=817.∵α,β∈⎣⎡⎦⎤0,π2,∴cos α=45,sin β=1517, cos(α+β)=cos αcos β-sin αsin β =45×817-35×1517=-1385. 品 味 高 考13.已知cos ⎝⎛⎭⎫x -π6=-33,则cos x +cos ⎝⎛⎭⎫x -π3=( ) A .-233B .±233C .-1D .±1解析 cos x +cos ⎝⎛⎭⎫x -π3 =cos ⎝⎛⎭⎫x -π6+π6+cos ⎝⎛⎭⎫x -π6-π6 =2cos ⎝⎛⎭⎫x -π6cos π6=2×⎝⎛⎭⎫-33×32=-1. 答案 C.。

北师大版高中数学选修2-1限时训练9.docx

北师大版高中数学选修2-1限时训练9.docx

班级 姓名 座号__________限时训练91.抛物线x 2=(2a -1)y 的准线方程是y =1,则实数a =( )A.52B.32 C .-12 D .-322、设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,PA⊥l ,A 为垂足.如果直线AF 的斜率为那么|PF|=( )(A)3、已知抛物线22(0)y px p =>,过其焦点且斜率为1的直线交抛物线与A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( )(A )1x = (B)1x =-(C)2x = (D)2x =-4.以坐标轴为对称轴,原点为顶点且过圆x 2+y 2-2x +6y +9=0圆心的抛物线方程是( )A .y =3x 2或y =-3x 2B .y =3x 2C .y 2=-9x 或y =3x 2D .y =-3x 2或y 2=9x 5.已知圆C 的圆心与抛物线x y 42=的焦点关于直线x y =对称.直线0234=--y x 与圆C相交于B A ,两点,且6=AB ,则圆C 的方程为 .6.已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为7、已知F 是抛物线24C y x =:的焦点,A B ,是C 上的两个点,线段AB 的中点为(22)M ,,则ABF △的面积等于 .8、过抛物线22(0)x py p =>的焦点F 作倾角为30o 的直线,与抛物线分别交于A 、B 两点(A 在y 轴左侧),则AF FB= 9、已知以F 为焦点的抛物线24y x =上的两点A 、B 满足3AF FB =u u u r u u u r ,则弦AB 的中点到准线的距离为___________.10.已知圆C 过定点F ⎝ ⎛⎭⎪⎫-14,0,且与直线x =14相切,圆心C 的轨迹为E ,曲线E 与直线l :y =k (x +1)(k ∈R )相交于A ,B 两点.(1)求曲线E的方程;(2)当△OAB的面积等于10时,求k的值.。

专题限时训练教案

专题限时训练教案

专题限时训练教案教案标题:专题限时训练教案教学目标:1. 提高学生在特定专题领域的知识和技能。

2. 培养学生的时间管理和应试能力。

3. 培养学生的解决问题和批判性思维能力。

教学内容:本教案将以某一特定专题为基础,设计一系列限时训练活动,旨在帮助学生提高对该专题的理解和应用能力。

具体的教学内容将根据不同学段和专题而有所不同。

教学步骤:1. 导入- 引入本次课程的专题,并与学生讨论他们对该专题的了解程度。

- 引发学生对该专题的兴趣,并解释本次课程的重要性。

2. 专题讲解- 通过讲解、展示实例或使用多媒体资源等方式,向学生介绍该专题的基本概念、原理和应用。

- 提供足够的实例和案例,帮助学生更好地理解和应用该专题。

3. 限时训练活动- 设计一系列限时训练活动,要求学生在规定的时间内完成特定任务或解决问题。

- 活动可以包括选择题、填空题、解答题等形式,根据学段和专题的不同,难度和复杂度也会有所调整。

- 活动的时间限制可以根据学生的实际情况进行调整,逐渐提高难度和时间要求。

4. 分组讨论和反馈- 将学生分成小组,让他们在限时训练活动后进行讨论和交流。

- 鼓励学生分享他们的解题思路、策略和经验,并相互学习和借鉴。

- 教师可以选择几个代表性的问题进行讨论,并给予学生指导和反馈。

5. 总结和评价- 结束本次课程前,与学生一起总结他们在限时训练活动中的表现和收获。

- 鼓励学生提出问题和困惑,并尽可能解答他们的疑问。

- 对学生的表现进行评价,鼓励他们继续努力和提高。

教学辅助资源:1. 课件或多媒体资源,用于专题讲解和实例展示。

2. 限时训练活动的题目和答案,以及学生讨论和反馈的记录表。

教学评估:1. 观察学生在限时训练活动中的表现,包括解题速度、准确性和策略运用等。

2. 收集学生的讨论和反馈记录,评估他们的合作和批判性思维能力。

3. 针对学生在限时训练活动中的表现,给予个别或整体评价,并提供进一步的指导和建议。

教学延伸:根据学生的实际情况和教学进度,可以进行以下延伸活动:1. 设计更复杂和挑战性的限时训练活动,以提高学生的应试能力和解决问题能力。

人教A版高中数学必修四双基限时练9

人教A版高中数学必修四双基限时练9

双基限时练(九)1.函数y =cos2x 在下列哪个区间上是减函数( )A.⎣⎢⎡⎦⎥⎤-π4,π4B.⎣⎢⎡⎦⎥⎤π4,3π4C.⎣⎢⎡⎦⎥⎤0,π2D.⎣⎢⎡⎦⎥⎤π2,π 解析 ∵y =cos2x , ∴2k π≤2x ≤π+2k π(k ∈Z ), 即k π≤x ≤π2+k π(k ∈Z ).∴⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z )为y =cos2x 的单调递减区间.而⎣⎢⎡⎦⎥⎤0,π2显然是上述区间中的一个.答案 C2.函数y =cos ⎝ ⎛⎭⎪⎫x +π6,x ∈⎣⎢⎡⎦⎥⎤0,π2的值域是( )A.⎝⎛⎦⎥⎥⎤-32,12 B.⎣⎢⎢⎡⎦⎥⎥⎤-12,32 C.⎣⎢⎢⎡⎦⎥⎥⎤32,1 D.⎣⎢⎡⎦⎥⎤12,1 解析 由0≤x ≤π2,得π6≤x +π6≤2π3,∴-12≤cos ⎝⎛⎭⎪⎫x +π6≤32,选B.答案 B3.设M 和m 分别表示函数y =13cos x -1的最大值和最小值,则M +m 等于( )A.23 B .-23C .-43D .-2解析 依题意得M =13-1=-23,m =-13-1=-43,∴M +m =-2.答案 D4.下列关系式中正确的是( ) A .sin11°<cos10°<sin168°B .sin168°<sin11°<cos10°C .sin11°<sin168°<cos10°D .sin168°<cos10°<sin11°解析 cos10°=sin80°,sin168°=sin12°. sin80°>sin12°>sin11°, 即cos10°>sin168°>sin11°. 答案 C5.若函数f (x )=sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=( )A.23B.32C.2D.3解析 由题意知函数f (x )在x =π3处取得最大值,∴ωπ3=2k π+π2,ω=6k +32,k ∈Z .故选B.答案 B6.若a 为常数,且a >1,0≤x ≤2π,则函数y =sin 2x +2a sin x 的最大值为( )A .2a +1B .2a -1C .-2a -1D .a 2解析 令sin x =t ,则-1≤t ≤1,原函数变形为y =t 2+2at =(t +a )2-a 2.∵a >1,∴当t =1时,y max =12+2a ×1=2a +1,故选A.答案 A7.函数y =sin2x ,x ∈R 的最大值是________,此时x 的取值集合是________.解析 ∵x ∈R ,∴y =sin2x 的最大值为1,此时2x =2k π+π2,x =k π+π4(k ∈Z ).答案 1 ⎩⎨⎧⎭⎬⎫x |x =k π+π4,k ∈Z8.函数y =13sin ⎝ ⎛⎭⎪⎫π6-x (x ∈[0,π])的单调递增区间为__________.解析 由y =-13sin ⎝ ⎛⎭⎪⎫x -π6的单调性,得π2+2k π≤x -π6≤3π2+2k π, 即2π3+2k π≤x ≤5π3+2k π. 又x ∈[0,π],故2π3≤x ≤π.即递增区间为⎣⎢⎡⎦⎥⎤2π3,π.答案 ⎣⎢⎡⎦⎥⎤2π3,π9.若f (x )=2sin ωx (0<ω<1)在区间⎣⎢⎡⎦⎥⎤0,π3上的最大值为2,则ω=________.解析 由2sin ωx ≤2,知sin ωx ≤22,又0<ω<1,0≤x ≤π3,∴0≤ωx ≤π4,∴0≤x ≤π4ω,令π4ω=π3,得ω=34.答案 3410.函数y =2sin 2x +2cos x -3的最大值是________. 解析 y =2sin 2x +2cos x -3=-2cos 2x +2cos x -1=-2⎝⎛⎭⎪⎫cos x -122-12≤-12.答案 -1211.已知ω>0,函数f (x )=2sin ωx 在⎣⎢⎡⎦⎥⎤-π3,π4上递增,求ω的范围.解 由-π2+2k π≤ωx ≤π2+2k π知,2k π-π2ω≤x ≤2k π+π2ω.令k =0知-π2ω≤x ≤π2ω,故⎭⎪⎬⎪⎫-π2ω≤-π3,π2ω≥π4,ω>0⇒0<ω≤32. ∴ω的取值范围是⎝⎛⎦⎥⎤0,32.12.已知函数f (x )=2sin ⎝⎛⎭⎪⎫2x -π3.(1)求f (x )的单调递增区间;(2)求f (x )的最大值及取得最大值时相应的x 的值. 解 (1)由2k π-π2≤2x -π3≤2k π+π2(k ∈Z ),得k π-π12≤x ≤k π+5π12(k ∈Z ).∴f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ).(2)当sin ⎝⎛⎭⎪⎫2x -π3=1时,f (x )有最大值2.此时2x -π3=2k π+π2(k ∈Z ),即x =k π+5π12(k ∈Z ). 13.已知函数f (x )=2a sin ⎝ ⎛⎭⎪⎫2x -π3+b 的定义域为⎣⎢⎡⎦⎥⎤0,π2,值域为[-5,1],求a 和b 的值.解 ∵0≤x ≤π2,∴-π3≤2x -π3≤2π3.∴-32≤sin ⎝ ⎛⎭⎪⎫2x -π3≤1.当a >0时,则⎩⎪⎨⎪⎧2a +b =1,-3a +b =-5,∴⎩⎪⎨⎪⎧a =12-63,b =-23+12 3.当a <0时,则⎩⎪⎨⎪⎧-3a +b =1,2a +b =-5,∴⎩⎪⎨⎪⎧a =-12+63,b =19-12 3.。

限时训练参考答案

限时训练参考答案

限时训练参考答案限时训练参考答案在现代社会中,时间成为了一种宝贵的资源。

我们总是不断地追求高效率和快速完成任务的能力。

为了应对这种需求,限时训练应运而生。

限时训练是一种通过在规定的时间内完成任务来提高工作效率和学习能力的方法。

在这篇文章中,我们将探讨限时训练的意义和一些参考答案。

限时训练的意义在于它可以帮助我们培养时间管理和压力应对能力。

在限时训练中,我们必须在规定的时间内完成任务,这迫使我们学会合理安排时间和高效利用时间。

这种训练不仅可以提高我们的工作效率,还可以培养我们的冷静和应对压力的能力。

当我们在紧迫的时间限制下工作时,我们需要保持冷静并集中注意力,这对我们的工作和学习都非常重要。

在进行限时训练时,我们需要有一些参考答案来帮助我们评估自己的表现。

这些参考答案可以是标准答案、模板或者是其他人的答案。

通过参考答案,我们可以了解到自己在时间管理、任务完成和问题解决等方面的表现如何。

同时,参考答案也可以帮助我们发现自己的不足之处,并进行针对性的改进。

然而,我们需要明确的是,参考答案只是一种参考,我们并不需要完全照搬,而是应该根据自己的实际情况进行调整和改进。

在限时训练中,我们可以运用参考答案的方法和思路,但是我们需要注意避免机械地套用答案。

每个人都有自己的思维方式和解决问题的方法,因此我们需要根据自己的特点和优势来进行答题。

参考答案只是给我们提供一种思路和方法的参考,而不是唯一的正确答案。

我们需要根据自己的理解和思考来进行创新和发展。

限时训练不仅可以应用于学习和工作,也可以应用于日常生活中的各个方面。

比如,我们可以设定一个时间限制来完成家务,这样不仅可以提高效率,还可以让我们有更多的时间去做其他喜欢的事情。

又比如,我们可以设定一个时间限制来锻炼身体,这样不仅可以提高身体素质,还可以节约时间。

限时训练可以应用于各个领域,它可以帮助我们更好地管理时间,提高效率。

综上所述,限时训练是一种提高工作效率和学习能力的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三限时训练 9.26
生物变异
一、选择题
1.下列各项属于基因重组的是()
A.基因型为Dd的个体自交后代发生性状分离B.雌雄配子随机结合产生不同类型的子代个体
C.YyRr自交后代出现不同于亲本的新类型D.杂合高茎与矮茎豌豆测交的后代有高茎和矮茎
2.在白花豌豆品种栽培园中,偶然发现了一株开红花的豌豆植株,推测该红花表现型的出现是花色基因突变的结果。

为了确定该推测是否正确,应检测和比较红花植株与白花植株中()
A.花色基因的碱基组成 B.花色基因的DNA序列 C.细胞的DNA含量D.细胞的RNA含量
3.下图为结肠癌发病过程中细胞形态和部分染色体上基因的变化。

下列叙述正确的是()
A.图示中与结肠癌有关的基因互为等位基因
B.结肠癌的发生是多个基因突变累积的结果
C.图中染色体上的基因变化说明基因突变是随机和定向的
D.上述基因突变可传递给子代细胞从而一定传给子代个体
4.下列关于生物变异的叙述,正确的是()
A.肺炎双球菌R型转化为S型的实质是基因突变B.高茎豌豆后代出现高茎和矮茎是发生了基因重组C.染色体之间发生的片段交换属于染色体结构变异D.基因分子结构发生改变后可能产生新基因
5.下列说法正确的是()
A.若体细胞发生突变,一定不能传递给后代
B.两对独立遗传的基因之间可以发生基因重组
C.若没有外界诱发因素的作用,生物不会发生基因突变
D.人的心肌细胞的一对同源染色体的多对基因之间可以发生基因重组
6.普通小麦是六倍体,有42条染色体,科学家们用花药离体培养出的小麦幼苗是()
A.三倍体、21条染色体B.三倍体、三个染色体组C.单倍体、21条染色体D.单倍体、一个染色体组7.下列与染色体变异有关的说法中不正确的是()
A.染色体变异包括染色体结构的改变和染色体数目的改变
B.两条染色体相互交换片段都属于染色体变异
C.猫叫综合征的患者与正常人相比,第5号染色体发生部分缺失
D.染色体结构的改变,会使排列在染色体上的基因的数目或排列顺序发生改变
8.如图表示果蝇体细胞内一条染色体发生了变异,①②代表染色体,下列说法正确的是()
A.果蝇的缺刻翅是基因b丢失造成的 B.①和②构成一对同源染色体
C.该变异能导致新基因的形成 D.①和②都能被龙胆紫溶液染色
9.下图中字母代表正常细胞中所含有的基因,下列说法错误的是()
A.①可以表示经过秋水仙素处理后形成的四倍体西瓜的体细胞的基因组成
B.②可以表示果蝇体细胞的基因组成,该细胞中有2个染色体组
C.③可以表示香蕉体细胞的基因组成
D.④可以表示雄性蜜蜂体细胞的基因组成,该细胞中有一个染色体组
10.某植物株色紫色对绿色是显性,分别由基因PL和pl控制,不含pl、PL 基因的植物株色表现为白色。

该植物株色在遗传时出现了变异(如下图所示),下列相关叙述错误的是()
A.该变异是由某条染色体结构缺失引起的
B.该变异是由显性基因突变引起的
C.该变异在子二代中能够表现出新的株色的表现型
D.该变异可以使用显微镜观察鉴定
11.决定玉米籽粒有色(C)和无色(c)、淀粉质(Wx)和蜡质(wx)的基因位于9号染色体上,结构异常的9号染色体一端有染色体结节,另一端有来自8号染色体的片段(见左图)。

科学家利用玉米染色体的
特殊性进行了右图所示的研究。

请回答问题:
(1)8号染色体片段转移到9号染色体上的变异现象称为___________________。

(2)右图中的母本在减数分裂形成配子时,这两对基因所在的染色体_____________(填“能”或“不能”)发生联会。

(3)右图中的亲本杂交时,F1出现了四种表现型,其中表现型为无色蜡质个体的出现,说明亲代__________细胞在减数分裂过程中,同源染色体的非姐妹染色单体间发生了_________,产生了基因型为__________的重组型配子。

(4)由于异常的9号染色体上有_______作为C和wx的细胞学标记,所以可在显微镜下通过观察染色体来研究两对基因的重组现象。

将F1表现型为无色蜡质个体的组织细胞制成临时装片观察,观察到_______的染色体,可作为基因重组的细胞学证据。

12.某二倍体植物的花色受独立遗传且完全显性的三对等位基因(用Ii、Aa、Bb表示)控制。

基因控制花瓣色素合成的途径如下图所示。

请分析并回答:
(1)酶1、酶2、酶3能催化不同的化学反应是因为它们具有各自特有的______。

(2)在基因控制酶合成的转录过程中,存在RNA—DNA的杂交区域,此杂交区域含有DNA的___链(写链的名称)。

(3)正常情况下,上图示意的红花植株基因型有____种,而基因型为IiaaBb的红花植株中有少部分枝条开出了白花,推测可能是由于形成花芽的细胞在分裂过程中发生了_____,也可能是因某条染色体发生缺失,出现了基因型为____的花芽细胞。

(4)科研人员在研究中发现,由于染色体发生了结构变异(重复)或者数目变异,出现了基因型为IIaaBbb 的开粉红色花的植株,这是因为花芽细胞中b基因数多于B基因数时,B基因的表达减弱而形成粉红花突变体。

请设计杂交实验,确定该突变植株属于哪种变异类型?
让该突变体植株与基因型为IIaabb的植株杂交,观察并统计子代表现型及比例。

①预测结果:
若子代表现型及比例为________,则属于染色体数目变异。

若子代表现型及比例为________,则属于染色体结构变异。

②请将属于染色体结构变异的杂交过程用遗传图解表示。

高三限时训练 9.26
CBBDB CBDAB
11(1)易位(或“移接”)(2)能(3)初级生殖母交叉互换cwx(4)结节和片段有片段无结节
12.(1)空间结构(2)模板链(3)4 基因突变Iiaab
(4)①红花:粉红:白花= 1:2:3 红花:白花= 1:1
②遗传图解。

相关文档
最新文档