新人教版高中数学必修第一册:课时跟踪检测(三十五) 诱导公式五、六
高中数学(新人教A版)必修第一册: 诱导公式 诱导公式五、六【精品课件】

(2)因为α的终边与单位圆交于点 A,A 点的纵坐标为4,所以 sin α=4.
5
5
因为 0<α<π2,所以 cos α=35,
故ssiinnαπ2+-πα+ +ccoossπ2π+-ββ=-cosisnαα--sicnosββ=-3545-+1511323=47.
[方法技巧] 诱导公式综合应用要“三看”
∴cossinπ+αcαoscβo+s-3sβin-π2+3sαinsαinsiβn β
=-sicnosαcαocsosβ+β-3c3ossinααsisninββ=-t1a-n α3+tan3tαatnanβ β
=-1--3×2 2-+23
2 2×
= 2
2 11 .
[课堂思维激活] 一、综合性——强调融会贯通 1.小明在解“已知角 α 终边上一点 P(-4,3),求ccooss1π212+π-ααsinsin-92ππ-+αα的
所以
tan(π-α)=-tan
α=-csoins
α= α
3.
答案:A
2.若 cosα+π6=45,则 sinα-π3=
()
4 A.5
B.35
C.-35
D.-45
解析:∵cosα+π6=45,∴sinα-π3=sinα+π6-π2=-cosα+π6=
-45. 答案:D
3.已知 cos 31°=m,则 sin 239°tan 149°的值是
B.cos 5° D.2sin 5°
()
4.计算:sin211°+sin279°=________. 解析:sin211°+sin279°=sin211°+cos211°=1. 答案:1
题型一 利用诱导公式化简求值 [学透用活]
2020-2021学年新教材人教A版必修第一册 53 第2课时 诱导公式五、六 作业

第2课时诱导公式五、六分层演练综合提升A级基础巩固1.sin 480°的值为 ()A.√32B.-√32C.-12D.12答案:A2.若sin(α+75°)=12,则cos(α-15°)= ()A.√32B.-√32C.12D.-12答案:C3.若cos(π2+θ)+sin(π+θ)=-m,则cos(3π2-θ)+2sin(6π-θ)的值为 ()A.2m3B.-3m2C.-2m3D.3m2答案:B4.若f(sin x)=cos 3x,则f(cos 10°)的值为()A.-12 B.12C.-√32D.√32答案:A5.已知sin α是方程5x 2-7x -6=0的一个根,且α为第三象限角,求sin(α+3π2)sin(3π2-α)tan 2(2π-α)tan (π-α)cos(π2-α)cos(π2+α)的值.解:解方程5x 2-7x -6=0,得x 1=2,x 2=-35.因为sin α是方程5x 2-7x -6=0的一个根,所以sin α=-35.又因为α为第三象限角,所以cos α=-√1-sin 2α=-45.所以tan α=34.故原式=(-cosα)(-cosα)tan 2α(-tanα)sinα(-sinα)=tan α=34.B 级 能力提升6.若cos(π2+φ)=√32,且|φ|<π2,则tan φ等于 ( )A.-√33B.√33C.-√3D.√3解析:由cos(π2+φ)=-sin φ=√32,得sin φ=-√32.又因为|φ|<π2,所以φ=-π3,所以tan φ=-√3.答案:C7:角θ与φ都是任意角,若满足θ+φ=90°,则称θ与φ“广义互余”.已知sin(π+α)=-14,下列角β中,可能与角α“广义互余”的是 ( ) A.sin β=√154B.cos(π+β)=14C.tan β=√15D.tan β=√155解析:因为sin(π+α)=-sin α,所以sin α=14.若α+β=90°,则β=90°-α,故sin β=sin(90°-α)=cos α=±√154,故选项A满足题意;选项C中,tanβ=√15,即sin β=√15cos β,又因为sin2β+cos2β=1,故sin β=±√154,即选项C满足题意,而选项B、D不满足题意.答案:AC8.已知sin(3π-α)=√2cos(3π2+β),cos(π-α)=√63cos(π+β),且0<α<π,0<β<π,求sin α和cos β的值.解:由已知,得sin α=√2sin β, ①√3cos α=√2cos β, ②将①②等号两边分别平方,得sin2α=2sin2β,3cos2α=2cos2β,两式相加,得sin2α+3cos2α=2,即sin2α+3(1-sin2α)=2,所以sin2α=12.因为0<α<π,则sin α=√22.将sin α=√22代入①,得sin β=12.又因为0<β<π,故cos β=±√32.C级挑战创新9cos θ的值相等的是()A.sin(π+θ)B.sin(π2-θ)C.cos(π2-θ) D.sin(π2+θ)解析:sin(π+θ)=-sin θ;sin(π2-θ) =cos θ;Cos(π2-θ) =sin θ; sin(π2+θ)=cos θ.故选B、D.答案:BD10α为第三象限角,若cos(α+π2)=15,f(α)=sin(π2-α)sin(α-π)·tan(α-π)cos(3π-α),则cos α=-2√65,f(α)=-5√612.解析:因为cos(α+π2)=15,所以-sin α=15,即sin α=-15.又因为α为第三象限角,所以cos α=-√1-sin2α=-2√65.又因为f(α)=cosαtanα(-sinα)(-cosα)=1 cosα,所以f(α)的值为-5√612.。
2020年高中数学课时跟踪检测含解析(全一册)新人教A版

2020年高中数学课时跟踪检测含解析新人教A版课时跟踪检测一变化率问题导数的概念课时跟踪检测二导数的几何意义课时跟踪检测三几个常用函数的导数基本初等函数的导数公式及导数的运算法则课时跟踪检测四复合函数求导及应用课时跟踪检测五函数的单调性与导数课时跟踪检测六函数的极值与导数课时跟踪检测七函数的最大小值与导数课时跟踪检测八生活中的优化问题举例课时跟踪检测九定积分的概念课时跟踪检测十微积分基本定理课时跟踪检测十一定积分的简单应用课时跟踪检测十二合情推理课时跟踪检测十三演绎推理课时跟踪检测十四综合法和分析法课时跟踪检测十五反证法课时跟踪检测十六数学归纳法课时跟踪检测十七数系的扩充和复数的概念课时跟踪检测十八 复数的几何意义课时跟踪检测十九 复数代数形式的加减运算及其几何意义 课时跟踪检测二十 复数代数形式的乘除运算课时跟踪检测(一) 变化率问题、导数的概念一、题组对点训练对点练一 函数的平均变化率1.如果函数y =ax +b 在区间[1,2]上的平均变化率为3,则a =( ) A .-3 B .2 C .3 D .-2解析:选C 根据平均变化率的定义,可知Δy Δx =(2a +b )-(a +b )2-1=a =3.2.若函数f (x )=-x 2+10的图象上一点⎝ ⎛⎭⎪⎫32,314及邻近一点⎝ ⎛⎭⎪⎫32+Δx ,314+Δy ,则Δy Δx =( )A .3B .-3C .-3-(Δx )2D .-Δx -3解析:选D ∵Δy =f ⎝ ⎛⎭⎪⎫32+Δx -f ⎝ ⎛⎭⎪⎫32=-3Δx -(Δx )2,∴Δy Δx =-3Δx -(Δx )2Δx =-3-Δx . 3.求函数y =f (x )=1x在区间[1,1+Δx ]内的平均变化率.解:∵Δy =f (1+Δx )-f (1)=11+Δx-1=1-1+Δx 1+Δx =1-(1+Δx )(1+1+Δx )1+Δx=-Δx(1+1+Δx )1+Δx, ∴Δy Δx =-1(1+1+Δx )1+Δx. 对点练二 求瞬时速度4.某物体的运动路程s (单位:m)与时间t (单位:s)的关系可用函数s (t )=t 3-2表示,则此物体在t =1 s 时的瞬时速度(单位:m/s)为( )A .1B .3C .-1D .0 答案:B5.求第4题中的物体在t 0时的瞬时速度. 解:物体在t 0时的平均速度为v =s (t 0+Δt )-s (t 0)Δt=(t 0+Δt )3-2-(t 30-2)Δt =3t 20Δt +3t 0(Δt )2+(Δt )3Δt=3t 20+3t 0Δt +(Δt )2.因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20,故此物体在t =t 0时的瞬时速度为3t 20 m/s. 6.若第4题中的物体在t 0时刻的瞬时速度为27 m/s,求t 0的值.解:由v =s (t 0+Δt )-s (t 0)Δt =(t 0+Δt )3-2-(t 30-2)Δt=3t 20Δt +3t 0(Δt )2+(Δt )3Δt =3t 20+3t 0Δt +(Δt )2,因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20. 所以由3t 20=27,解得t 0=±3, 因为t 0>0,故t 0=3,所以物体在3 s 时的瞬时速度为27 m/s. 对点练三 利用定义求函数在某一点处的导数 7.设函数f (x )可导,则lim Δx →0 f (1+3Δx )-f (1)3Δx等于( )A .f ′(1)B .3f ′(1)C .13f ′(1) D .f ′(3)解析:选A lim Δx →0f (1+3Δx )-f (1)3Δx=f ′(1).8.设函数f (x )=ax +3,若f ′(1)=3,则a 等于( ) A .2 B .-2 C .3 D .-3 解析:选C ∵f ′(1)=lim Δx →0 f (1+Δx )-f (1)Δx=lim Δx →0a (1+Δx )+3-(a +3)Δx=a ,∴a =3.9.求函数f (x )=x 在x =1处的导数f ′(1).解:由导数的定义知,函数在x =1处的导数f ′(1)=lim Δx →0f (1+Δx )-f (1)Δx,而f (1+Δx )-f (1)Δx =1+Δx -1Δx =11+Δx +1,又lim Δx →0 11+Δx +1=12,所以f ′(1)=12.二、综合过关训练1.若f (x )在x =x 0处存在导数,则lim h →0 f (x 0+h )-f (x 0)h( )A .与x 0,h 都有关B .仅与x 0有关,而与h 无关C .仅与h 有关,而与x 0无关D .以上答案都不对解析:选B 由导数的定义知,函数在x =x 0处的导数只与x 0有关.2.函数y =x 2在x 0到x 0+Δx 之间的平均变化率为k 1,在x 0-Δx 到x 0之间的平均变化率为k 2,则k 1与k 2的大小关系为( )A .k 1>k 2B .k 2<k 2C .k 1=k 2D .不确定解析:选D k 1=f (x 0+Δx )-f (x 0)Δx =(x 0+Δx )2-x 20Δx=2x 0+Δx ;k 2=f (x 0)-f (x 0-Δx )Δx =x 20-(x 0-Δx )2Δx=2x 0-Δx .因为Δx 可正也可负,所以k 1与k 2的大小关系不确定. 3.A ,B 两机关开展节能活动,活动开始后两机关的用电量W 1(t ),W 2(t )与时间t (天)的关系如图所示,则一定有( )A .两机关节能效果一样好B .A 机关比B 机关节能效果好C .A 机关的用电量在[0,t 0]上的平均变化率比B 机关的用电量在[0,t 0]上的平均变化率大D .A 机关与B 机关自节能以来用电量总是一样大解析:选B 由题图可知,A 机关所对应的图象比较陡峭,B 机关所对应的图象比较平缓,且用电量在[0,t 0]上的平均变化率都小于0,故一定有A 机关比B 机关节能效果好.4.一个物体的运动方程为s =1-t +t 2,其中s 的单位是:m,t 的单位是:s,那么物体在3 s 末的瞬时速度是( )A .7 m/sB .6 m/sC .5 m/sD .8 m/s解析:选C ∵Δs Δt =1-(3+Δt )+(3+Δt )2-(1-3+32)Δt=5+Δt ,∴lim Δt →0 Δs Δt =lim Δt →0 (5+Δt )=5 (m/s). 5.如图是函数y =f (x )的图象,则(1)函数f (x )在区间[-1,1]上的平均变化率为________; (2)函数f (x )在区间[0,2]上的平均变化率为________. 解析:(1)函数f (x )在区间[-1,1]上的平均变化率为f (1)-f (-1)1-(-1)=2-12=12.(2)由函数f (x )的图象知,f (x )=⎩⎪⎨⎪⎧x +32,-1≤x ≤1,x +1,1<x ≤3.所以,函数f (x )在区间[0,2]上的平均变化率为f (2)-f (0)2-0=3-322=34.答案:(1)12 (2)346.函数y =-1x在点x =4处的导数是________.解析:∵Δy =-14+Δx+14=12-14+Δx =4+Δx -224+Δx =Δx24+Δx (4+Δx +2). ∴Δy Δx =124+Δx (4+Δx +2). ∴lim Δx →0 Δy Δx =lim Δx →0124+Δx (4+Δx +2) =12×4×(4+2)=116.∴y ′|x =4=116.答案:1167.一做直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2(位移:m ;时间:s). (1)求此物体的初速度;(2)求此物体在t =2时的瞬时速度; (3)求t =0到t =2时平均速度.解:(1)初速度v 0=lim Δt →0 s (Δt )-s (0)Δt =lim Δt →0 3Δt -(Δt 2)Δt=lim Δt →0 (3-Δt )=3(m/s). 即物体的初速度为3 m/s. (2)v =lim Δt →0s (2+Δt )-s (2)Δt=lim Δt →0 3(2+Δt )-(2+Δt )2-(3×2-4)Δt=lim Δt →0 -(Δt )2-Δt Δt =lim Δt →0 (-Δt -1)=-1(m/s). 即此物体在t =2时的瞬时速度为1 m/s,方向与初速度相反. (3)v =s (2)-s (0)2-0=6-4-02=1(m/s).即t =0到t =2时的平均速度为1 m/s.8.若函数f (x )=-x 2+x 在[2,2+Δx ](Δx >0)上的平均变化率不大于-1,求Δx 的范围.解:因为函数f (x )在[2,2+Δx ]上的平均变化率为: Δy Δx =f (2+Δx )-f (2)Δx=-(2+Δx )2+(2+Δx )-(-4+2)Δx=-4Δx +Δx -(Δx )2Δx =-3-Δx ,所以由-3-Δx ≤-1, 得Δx ≥-2. 又因为Δx >0,即Δx 的取值范围是(0,+∞).课时跟踪检测(二) 导数的几何意义一、题组对点训练对点练一 求曲线的切线方程1.曲线y =x 3+11在点(1,12)处的切线与y 轴交点的纵坐标是( ) A .-9 B .-3 C .9 D .15解析:选C ∵切线的斜率k =lim Δx →0 Δy Δx =lim Δx →0 (1+Δx )3+11-12Δx =lim Δx →0 1+3·Δx +3·(Δx )2+(Δx )3-1Δx =lim Δx →0[3+3(Δx )+(Δx )2]=3, ∴切线的方程为y -12=3(x -1). 令x =0得y =12-3=9.2.求曲线y =1x 在点⎝ ⎛⎭⎪⎫12,2的切线方程.解:因为y ′=lim Δx →0 Δy Δx =lim Δx →0 1x +Δx -1x Δx =lim Δx →0 -1x 2+x ·Δx =-1x 2, 所以曲线在点⎝ ⎛⎭⎪⎫12,2的切线斜率为k =y ′|x =12=-4.故所求切线方程为y -2=-4⎝ ⎛⎭⎪⎫x -12,即4x +y -4=0.对点练二 求切点坐标3.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1D .a =-1,b =-1解析:选A ∵点(0,b )在直线x -y +1=0上,∴b =1. 又y ′=lim Δx →0 (x +Δx )2+a (x +Δx )+1-x 2-ax -1Δx =2x +a , ∴过点(0,b )的切线的斜率为y ′|x =0=a =1.4.已知曲线y =2x 2+4x 在点P 处的切线斜率为16,则点P 坐标为________. 解析:设P (x 0,2x 20+4x 0),则f ′(x 0)=lim Δx →0 f (x 0+Δx )-f (x 0)Δx =lim Δx →0 2(Δx )2+4x 0Δx +4ΔxΔx=4x 0+4, 又∵f ′(x 0)=16,∴4x 0+4=16,∴x 0=3,∴P (3,30). 答案:(3,30)5.曲线y =f (x )=x 2的切线分别满足下列条件,求出切点的坐标. (1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)切线的倾斜角为135°.解:f ′(x )=lim Δx →0 f (x +Δx )-f (x )Δx =lim Δx →0(x +Δx )2-x2Δx=2x , 设P (x 0,y 0)是满足条件的点.(1)∵切线与直线y =4x -5平行,∴2x 0=4,∴x 0=2,y 0=4,即P (2,4),显然P (2,4)不在直线y =4x -5上,∴符合题意.(2)∵切线与直线2x -6y +5=0垂直,∴2x 0·13=-1,∴x 0=-32,y 0=94,即P ⎝ ⎛⎭⎪⎫-32,94.(3)∵切线的倾斜角为135°,∴其斜率为-1,即2x 0=-1,∴x 0=-12,y 0=14,即P ⎝ ⎛⎭⎪⎫-12,14. 对点练三 导数几何意义的应用 6.下面说法正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )点(x 0,f (x 0))处没有切线B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D .若曲线y =f (x )在点(x 0,f (x 0))处没有切线,则f ′(x 0)有可能存在解析:选C 根据导数的几何意义及切线的定义知曲线在(x 0,y 0)处有导数,则切线一定存在,但反之不一定成立,故A,B,D 错误.7.设曲线y =f (x )在某点处的导数值为0,则过曲线上该点的切线( ) A .垂直于x 轴B .垂直于y 轴C .既不垂直于x 轴也不垂直于y 轴D .方向不能确定解析:选B 由导数的几何意义知曲线f (x )在此点处的切线的斜率为0,故切线与y 轴垂直.8.如图所示,单位圆中弧AB 的长为x ,f (x )表示弧AB 与弦AB 所围成的弓形面积的2倍,则函数y =f (x )的图象是( )解析:选D 不妨设A 固定,B 从A 点出发绕圆周旋转一周,刚开始时x 很小,即弧AB 长度很小,这时给x 一个改变量Δx ,那么弦AB 与弧AB 所围成的弓形面积的改变量非常小,即弓形面积的变化较慢;当弦AB 接近于圆的直径时,同样给x 一个改变量Δx ,那么弧AB 与弦AB 所围成的弓形面积的改变量将较大,即弓形面积的变化较快;从直径的位置开始,随着B点的继续旋转,弓形面积的变化又由变化较快变为越来越慢.由上可知函数y =f (x )图象的上升趋势应该是首先比较平缓,然后变得比较陡峭,最后又变得比较平缓,对比各选项知D 正确.9.已知函数y =f (x )的图象如图所示, 则函数y =f ′(x )的图象可能是________(填序号).解析:由y =f (x )的图象及导数的几何意义可知,当x <0时f ′(x )>0,当x =0时,f ′(x )=0,当x >0时,f ′(x )<0,故②符合.答案:②二、综合过关训练1.函数f (x )的图象如图所示,则下列结论正确的是( ) A .0<f ′(a )<f ′(a +1)<f (a +1)-f (a ) B .0<f ′(a +1)<f (a +1)-f (a )<f ′(a ) C .0<f ′(a +1)<f ′(a )<f (a +1)-f (a ) D .0<f (a +1)-f (a )<f ′(a )<f ′(a +1)解析:选B f ′(a ),f ′(a +1)分别为曲线f (x )在x =a ,x =a +1处的切线的斜率,由题图可知f ′(a )>f ′(a +1)>0,而f (a +1)-f (a )=f (a +1)-f (a )(a +1)-a表示(a ,f (a ))与(a +1,f (a+1))两点连线的斜率,且在f ′(a )与f ′(a +1)之间.∴0<f ′(a +1)<f (a +1)-f (a )<f ′(a ).2.曲线y =1x -1在点P (2,1)处的切线的倾斜角为( ) A .π6 B .π4 C .π3 D .3π4解析:选D Δy =12+Δx -1-12-1=11+Δx -1=-Δx 1+Δx ,lim Δx →0 Δy Δx =lim Δx →0 -11+Δx =-1,斜率为-1,倾斜角为3π4.3.曲线y =x 3-2x +1在点(1,0)处的切线方程为( ) A .y =x -1 B .y =-x +1 C .y =2x -2D .y =-2x +2解析:选 A 由Δy =(1+Δx )3-2(1+Δx )+1-(1-2+1)=(Δx )3+3(Δx )2+Δx 得lim Δx →0 Δy Δx =lim Δx →0 (Δx )2+3Δx +1=1,所以在点(1,0)处的切线的斜率k =1,切线过点(1,0),根据直线的点斜式可得切线方程为y =x -1.4.设P 0为曲线f (x )=x 3+x -2上的点,且曲线在P 0处的切线平行于直线y =4x -1,则P 0点的坐标为( )A .(1,0)B .(2,8)C .(1,0)或(-1,-4)D .(2,8)或(-1,-4)解析:选C f ′(x )=lim Δx →0 (x +Δx )3+(x +Δx )-2-(x 3+x -2)Δx=lim Δx →0 (3x 2+1)Δx +3x (Δx )2+(Δx )3Δx =3x 2+1.由于曲线f (x )=x 3+x -2在P 0处的切线平行于直线y =4x -1,所以f (x )在P 0处的导数值等于4.设P 0(x 0,y 0),则有f ′(x 0)=3x 20+1=4,解得x 0=±1,P 0的坐标为(1,0)或(-1,-4).5.已知二次函数y =f (x )的图象如图所示,则y =f (x )在A 、B 两点处的导数f ′(a )与f ′(b )的大小关系为:f ′(a )________f ′(b )(填“<”或“>”).解析:f ′(a )与f ′(b )分别表示函数图象在点A 、B 处的切线斜率,故f ′(a )>f ′(b ).答案:>6.过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程为____________.解析:曲线y =3x 2-4x +2在点M (1,1)处的切线斜率k =y ′|x =1=lim Δx →03(1+Δx )2-4(1+Δx )+2-3+4-2Δx=lim Δx →0 (3Δx +2)=2.所以过点 P (-1,2)的直线的斜率为2.由点斜式得y-2=2(x+1),即2x-y+4=0.所以所求直线方程为2x-y+4=0.答案:2x-y+4=07.甲、乙二人跑步的路程与时间关系以及百米赛跑路程和时间关系分别如图①②,试问:(1)甲、乙二人哪一个跑得快?(2)甲、乙二人百米赛跑,问快到终点时,谁跑得较快?解:(1)图①中乙的切线斜率比甲的切线斜率大,故乙跑得快;(2)图②中在快到终点时乙的瞬时速度大,故快到终点时,乙跑得快.8.“菊花”烟花是最壮观的烟花之一,制造时通常期望它在达到最高时爆裂.如果烟花距地面的高度h(m)与时间t(s)之间的关系式为h(t)=-4.9t2+14.7t.其示意图如图所示.根据图象,结合导数的几何意义解释烟花升空后的运动状况.解:如图,结合导数的几何意义,我们可以看出:在t=1.5 s附近曲线比较平坦,也就是说此时烟花的瞬时速度几乎为0,达到最高点并爆裂;在0~1.5 s之间,曲线在任何点的切线斜率大于0且切线的倾斜程度越来越小,也就是说烟花在达到最高点前,以越来越小的速度升空;在1.5 s后,曲线在任何点的切线斜率小于0且切线的倾斜程度越来越大,即烟花达到最高点后,以越来越大的速度下降,直到落地.课时跟踪检测(三) 几个常用函数的导数、基本初等函数的导数公式及导数的运算法则一、题组对点训练对点练一 利用导数公式求函数的导数 1.给出下列结论:①(cos x )′=sin x ;②⎝ ⎛⎭⎪⎫sin π3′=cos π3;③若y =1x 2,则y ′=-1x ;④⎝ ⎛⎭⎪⎫-1x ′=12x x.其中正确的个数是( )A .0B .1C .2D .3解析:选B 因为(cos x )′=-sin x ,所以①错误.sin π3=32,而⎝ ⎛⎭⎪⎫32′=0,所以②错误.⎝ ⎛⎭⎪⎫1x 2′=0-(x 2)′x 4=-2x x 4=-2x 3,所以③错误.⎝ ⎛⎭⎪⎫-1x ′=-0-(x 12)′x =12x -12x =12x -32=12x x,所以④正确. 2.已知f (x )=x α(α∈Q *),若f ′(1)=14,则α等于( )A .13B .12C .18D .14 解析:选D ∵f (x )=x α,∴f ′(x )=αx α-1.∴f ′(1)=α=14.对点练二 利用导数的运算法则求导数 3.函数y =sin x ·cos x 的导数是( ) A .y ′=cos 2x +sin 2x B .y ′=cos 2x -sin 2x C .y ′=2cos x ·sin xD .y ′=cos x ·sin x解析:选B y ′=(sin x ·cos x )′=cos x ·cos x +sin x ·(-sin x )=cos 2x -sin 2x . 4.函数y =x 2x +3的导数为________.解析:y ′=⎝ ⎛⎭⎪⎫x 2x +3′=(x 2)′(x +3)-x 2(x +3)′(x +3)2=2x (x +3)-x 2(x +3)2=x 2+6x (x +3)2.答案:x 2+6x (x +3)25.已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.解析:f ′(x )=a ⎝ ⎛⎭⎪⎫ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3, 所以a =3.答案:36.求下列函数的导数.(1)y =sin x -2x 2;(2)y =cos x ·ln x ;(3)y =exsin x.解:(1)y ′=(sin x -2x 2)′=(sin x )′-(2x 2)′=cos x -4x .(2)y ′=(cos x ·ln x )′=(cos x )′·ln x +cos x ·(ln x )′=-sin x ·ln x +cos xx.(3)y ′=⎝ ⎛⎭⎪⎫e x sin x ′=(e x )′·sin x -e x ·(sin x )′sin 2x =e x ·sin x -e x ·cos x sin 2x =e x(sin x -cos x )sin 2x. 对点练三 利用导数公式研究曲线的切线问题7.(2019·全国卷Ⅰ)曲线y =3(x 2+x )e x在点(0,0)处的切线方程为________. 解析:∵y ′=3(2x +1)e x +3(x 2+x )e x =e x (3x 2+9x +3), ∴切线斜率k =e 0×3=3,∴切线方程为y =3x . 答案:y =3x8.若曲线f (x )=x ·sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a =________.解析:因为f ′(x )=sin x +x cos x ,所以f ′⎝ ⎛⎭⎪⎫π2=sin π2+π2cos π2=1.又直线ax +2y +1=0的斜率为-a2,所以根据题意得1×⎝ ⎛⎭⎪⎫-a 2=-1,解得a =2.答案:29.已知a ∈R,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.解析:因为f ′(x )=a -1x,所以f ′(1)=a -1,又f (1)=a ,所以切线l 的方程为y -a=(a -1)(x -1),令x =0,得y =1.答案:110.在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +13上,且在第一象限内,已知曲线C 在点P 处的切线的斜率为2,求点P 的坐标.解:设点P 的坐标为(x 0,y 0),因为y ′=3x 2-10,所以3x 20-10=2,解得x 0=±2.又点P 在第一象限内,所以x 0=2,又点P 在曲线C 上,所以y 0=23-10×2+13=1,所以点P 的坐标为(2,1).二、综合过关训练1.f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x ),n ∈N,则f 2 019(x )=( )A .sin xB .-sin xC .cos xD .-cos x解析:选D 因为f 1(x )=(sin x )′=cos x ,f 2(x )=(cos x )′=-sin x ,f 3(x )=(-sin x )′=-cos x ,f 4(x )=(-cos x )′=sin x ,f 5(x )=(sin x )′=cos x ,所以循环周期为4,因此f 2 019(x )=f 3(x )=-cos x .2.已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D .12解析:选A 因为y ′=x 2-3x ,所以根据导数的几何意义可知,x 2-3x =12,解得x =3(x =-2不合题意,舍去).3.曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为( )A .-12B .12C .-22D .22解析:选B y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=11+sin 2x ,把x =π4代入得导数值为12,即为所求切线的斜率.4.已知直线y =3x +1与曲线y =ax 3+3相切,则a 的值为( ) A .1 B .±1 C .-1D .-2解析:选A 设切点为(x 0,y 0),则y 0=3x 0+1,且y 0=ax 30+3,所以3x 0+1=ax 30+3…①.对y =ax 3+3求导得y ′=3ax 2,则3ax 20=3,ax 20=1…②,由①②可得x 0=1,所以a =1.5.设a 为实数,函数f (x )=x 3+ax 2+(a -3)x 的导函数为f ′(x ),且f ′(x )是偶函数,则曲线y =f (x )在点(2,f (2))处的切线方程为____________.解析:f ′(x )=3x 2+2ax +a -3, ∵f ′(x )是偶函数,∴a =0, ∴f (x )=x 3-3x ,f ′(x )=3x 2-3, ∴f (2)=8-6=2,f ′(2)=9,∴曲线y =f (x )在点(2,f (2))处的切线方程为y -2=9(x -2), 即9x -y -16=0. 答案:9x -y -16=06.设f (x )=x (x +1)(x +2)…(x +n ),则f ′(0)=________. 解析:令g (x )=(x +1)(x +2)…(x +n ),则f (x )=xg (x ), 求导得f ′(x )=x ′g (x )+xg ′(x )=g (x )+xg ′(x ), 所以f ′(0)=g (0)+0×g ′(0)=g (0)=1×2×3×…×n . 答案:1×2×3×…×n7.已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.解析:法一:∵y =x +ln x , ∴y ′=1+1x,y ′|x =1=2.∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1. ∵y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1,消去y ,得ax 2+ax +2=0.由Δ=a 2-8a =0,解得a =8. 法二:同法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1). ∵y ′=2ax +(a +2), ∴y ′|x =x 0=2ax 0+(a +2).由⎩⎪⎨⎪⎧2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎪⎨⎪⎧x 0=-12,a =8.答案:88.设f (x )=x 3+ax 2+bx +1的导数f ′(x )满足f ′(1)=2a ,f ′(2)=-b ,其中常数a ,b ∈R.求曲线y =f (x )在点(1,f (1))处的切线方程.解:因为f (x )=x 3+ax 2+bx +1,所以f ′(x )=3x 2+2ax +b . 令x =1,得f ′(1)=3+2a +b , 又f ′(1)=2a,3+2a +b =2a , 解得b =-3,令x =2得f ′(2)=12+4a +b , 又f ′(2)=-b , 所以12+4a +b =-b , 解得a =-32.则f (x )=x 3-32x 2-3x +1,从而f (1)=-52.又f ′(1)=2×⎝ ⎛⎭⎪⎫-32=-3, 所以曲线y =f (x )在点(1,f (1))处的切线方程为y -⎝ ⎛⎭⎪⎫-52=-3(x -1), 即6x +2y -1=0.9.已知两条直线y =sin x ,y =cos x ,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.解:不存在.由于y =sin x ,y =cos x ,设两条曲线的一个公共点为P (x 0,y 0),所以两条曲线在P (x 0,y 0)处的斜率分别为k 1=y ′|x =x 0=cos x 0,k 2=y ′|x =x 0=-sinx 0.若使两条切线互相垂直,必须使cos x 0·(-sin x 0)=-1,即sin x 0·cos x 0=1,也就是sin 2x 0=2,这是不可能的,所以两条曲线不存在公共点,使在这一点处的两条切线互相垂直.课时跟踪检测(四) 复合函数求导及应用一、题组对点训练对点练一 简单复合函数求导问题 1.y =cos 3x 的导数是( ) A .y ′=-3cos 2x sin x B .y ′=-3cos 2x C .y ′=-3sin 2xD .y ′=-3cos x sin 2x解析:选A 令t =cos x ,则y =t 3,y ′=y t ′·t x ′=3t 2·(-sin x )=-3cos 2x sin x . 2.求下列函数的导数. (1)y =ln(e x +x 2); (2)y =102x +3;(3)y =sin 4x +cos 4x .解:(1)令u =e x +x 2,则y =ln u .∴y ′x =y ′u ·u ′x =1u ·(e x +x 2)′=1e x +x 2·(e x+2x )=e x+2x e x +x2.(2)令u =2x +3,则y =10u,∴y ′x =y ′u ·u ′x =10u·ln 10·(2x +3)′=2×102x +3ln10.(3)y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2x ·cos 2x =1-12sin 22x =1-14(1-cos 4x )=34+14cos 4x . 所以y ′=⎝ ⎛⎭⎪⎫34+14cos 4x ′=-sin 4x . 对点练二 复合函数与导数运算法则的综合应用 3.函数y =x 2cos 2x 的导数为( ) A .y ′=2x cos 2x -x 2sin 2x B .y ′=2x cos 2x -2x 2sin 2x C .y ′=x 2cos 2x -2x sin 2xD .y ′=2x cos 2x +2x 2sin 2x解析:选B y ′=(x 2)′cos 2x +x 2(cos 2x )′=2x cos 2x +x 2(-sin 2x )·(2x )′=2x cos 2x -2x 2sin 2x .4.函数y =x ln(2x +5)的导数为( ) A .ln(2x +5)-x2x +5B .ln(2x +5)+2x2x +5C .2x ln(2x +5)D .x2x +5解析:选 B y ′=[x ln(2x +5)]′=x ′ln(2x +5)+x [ln(2x +5)]′=ln(2x +5)+x ·12x +5·(2x +5)′=ln(2x +5)+2x 2x +5. 5.函数y =sin 2x cos 3x 的导数是________. 解析:∵y =sin 2x cos 3x ,∴y ′=(sin 2x )′cos 3x +sin 2x (cos 3x )′=2cos 2x cos 3x -3sin 2x sin 3x . 答案:2cos 2x cos 3x -3sin 2x sin 3x6.已知f (x )=e πxsin πx ,求f ′(x )及f ′⎝ ⎛⎭⎪⎫12.解:∵f (x )=e πxsin πx ,∴f ′(x )=πe πxsin πx +πe πxcos πx =πe πx(sin πx +cos πx ). f ′⎝ ⎛⎭⎪⎫12=πe π2⎝ ⎛⎭⎪⎫sin π2+cos π2=πe 2π. 对点练三 复合函数导数的综合问题7.设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2D .3解析:选D 令y =ax -ln(x +1),则f ′(x )=a -1x +1.所以f (0)=0,且f ′(0)=2.联立解得a =3.8.曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是( ) A. 5 B .2 5 C .3 5D .0解析:选A 设曲线y =ln(2x -1)在点(x 0,y 0)处的切线与直线2x -y +3=0平行. ∵y ′=22x -1,∴y ′|x =x 0=22x 0-1=2,解得x 0=1,∴y 0=ln(2-1)=0,即切点坐标为(1,0).∴切点(1,0)到直线2x -y +3=0的距离为d =|2-0+3|4+1=5,即曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是 5.9.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:M (t )=M 02-t30,其中M 0为t =0时铯137的含量.已知t =30时,铯137含量的变化率是-10ln 2(太贝克/年),则M (60)=( )A .5太贝克B .75ln 2太贝克C .150ln 2 太贝克D .150太贝克解析:选D M ′(t )=-130ln 2×M 02-t30,由M ′(30)=-130ln 2×M 02-3030=-10 ln 2,解得M 0=600, 所以M (t )=600×2-t 30,所以t =60时,铯137的含量为M (60)=600×2-6030=600×14=150(太贝克).二、综合过关训练1.函数y =(2 019-8x )3的导数y ′=( ) A .3(2 019-8x )2B .-24xC .-24(2 019-8x )2D .24(2 019-8x 2)解析:选C y ′=3(2 019-8x )2×(2 019-8x )′=3(2 019-8x )2×(-8)=-24(2 019-8x )2.2.函数y =12(e x +e -x)的导数是( )A .12(e x -e -x) B .12(e x +e -x) C .e x-e -xD .e x+e -x解析:选A y ′=12(e x +e -x )′=12(e x -e -x).3.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1 B .2 C .-1D .-2解析:选B 设切点坐标是(x 0,x 0+1),依题意有⎩⎪⎨⎪⎧1x 0+a=1,x 0+1=ln (x 0+a ),由此得x 0+1=0,x 0=-1,a =2.4.函数y =ln ex1+ex 在x =0处的导数为________.解析:y =ln e x1+e x =ln e x -ln(1+e x )=x -ln(1+e x),则y ′=1-e x1+e x .当x =0时,y ′=1-11+1=12. 答案:125.设曲线y =e ax在点(0,1)处的切线与直线x +2y +1=0垂直,则a =________. 解析:令y =f (x ),则曲线y =e ax在点(0,1)处的切线的斜率为f ′(0),又切线与直线x +2y +1=0垂直,所以f ′(0)=2.因为f (x )=e ax ,所以f ′(x )=(e ax )′=e ax ·(ax )′=a e ax,所以f ′(0)=a e 0=a ,故a =2.答案:26.f (x )=ax 2-1且f ′(1)=2,则a 的值为________.解析:∵f (x )=(ax 2-1)12,∴f ′(x )=12(ax 2-1)-12·(ax 2-1)′=ax ax 2-1 .又f ′(1)=2,∴aa -1=2,∴a =2. 答案:27.求函数y =a sin x3+b cos 22x (a ,b 是实常数)的导数.解:∵⎝⎛⎭⎪⎫a sin x 3′=a cos x 3·⎝ ⎛⎭⎪⎫x 3′=a 3cos x3,又(cos 22x )′=⎝ ⎛⎭⎪⎫12+12cos 4x ′=12(-sin 4x )×4=-2sin 4x , ∴y =a sin x3+b cos 22x 的导数为y ′=⎝ ⎛⎭⎪⎫a sin x 3′+b (cos 22x )′=a 3cos x 3-2b sin 4x .8.曲线y =e 2xcos 3x 在(0,1)处的切线与l 的距离为5,求l 的方程. 解:由题意知y ′=(e 2x)′cos 3x +e 2x(cos 3x )′ =2e 2x cos 3x +3(-sin 3x )·e 2x=2e 2x cos 3x -3e 2xsin 3x ,所以曲线在(0,1)处的切线的斜率为k =y ′|x =0=2. 所以该切线方程为y -1=2x ,即y =2x +1. 设l 的方程为y =2x +m ,则d =|m -1|5= 5.解得m =-4或m =6.当m =-4时,l 的方程为y =2x -4;当m=6时,l的方程为y=2x+6.综上,可知l的方程为y=2x-4或y=2x+6.课时跟踪检测(五)函数的单调性与导数一、题组对点训练对点练一函数与导函数图象间的关系1.f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能是下列选项中的( )解析:选C 题目所给出的是导函数的图象,导函数的图象在x轴的上方,表示导函数大于零,原函数的图象呈上升趋势;导函数的图象在x轴的下方,表示导函数小于零,原函数的图象呈下降趋势.由x∈(-∞,0)时导函数图象在x轴的上方,表示在此区间上,原函数的图象呈上升趋势,可排除B、D两选项.由x∈(0,2)时导函数图象在x轴的下方,表示在此区间上,原函数的图象呈下降趋势,可排除A选项.故选C.2.若函数y=f′(x)在区间(x1,x2)内是单调递减函数,则函数y=f(x)在区间(x1,x2)内的图象可以是( )解析:选B 选项A中,f′(x)>0且为常数函数;选项C中,f′(x)>0且f′(x)在(x1,x2)内单调递增;选项D中,f′(x)>0且f′(x)在(x1,x2)内先增后减.故选B.3.如图所示的是函数y=f(x)的导函数y=f′(x)的图象,则在[-2,5]上函数f(x)的递增区间为________.解析:因为在(-1,2)和(4,5]上f′(x)>0,所以f(x)在[-2,5]上的单调递增区间为(-1,2)和(4,5].答案:(-1,2)和(4,5]对点练二判断(证明)函数的单调性、求函数的单调区间4.函数f(x)=(x-3)e x的单调递增区间是( )A.(-∞,2)B.(0,3)C.(1,4) D.(2,+∞)解析:选D f′(x)=(x-3)′e x+(x-3)(e x)′=e x(x-2).由f′(x)>0得x>2,∴f(x)的单调递增区间是(2,+∞).5.函数f (x )=2x 2-ln x 的递增区间是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫-12,0和⎝ ⎛⎭⎪⎫12,+∞C.⎝ ⎛⎭⎪⎫12,+∞ D.⎝⎛⎭⎪⎫-∞,-12和⎝ ⎛⎭⎪⎫0,12解析:选C 由题意得,函数的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x=(2x +1)(2x -1)x ,令f ′(x )=(2x +1)(2x -1)x >0,解得x >12,故函数f (x )=2x 2-ln x 的递增区间是⎝ ⎛⎭⎪⎫12,+∞.故选C. 6.已知f (x )=ax 3+bx 2+c 的图象经过点(0,1),且在x =1处的切线方程是y =x . (1)求y =f (x )的解析式; (2)求y =f (x )的单调递增区间.解:(1)∵f (x )=ax 3+bx 2+c 的图象经过点(0,1),∴c =1,f ′(x )=3ax 2+2bx ,f ′(1)=3a +2b =1,切点为(1,1),则f (x )=ax 3+bx 2+c 的图象经过点(1,1),得a +b +c =1,解得a =1,b =-1,即f (x )=x 3-x 2+1.(2)由f ′(x )=3x 2-2x >0得x <0或x >23,所以单调递增区间为(-∞,0)和⎝ ⎛⎭⎪⎫23,+∞.对点练三 与参数有关的函数单调性问题7.若函数f (x )=x -a x 在[1,4]上单调递减,则实数a 的最小值为( ) A .1 B .2 C .4D .5解析:选C 函数f (x )=x -a x 在[1,4]上单调递减,只需f ′(x )≤0在[1,4]上恒成立即可,令f ′(x )=1-12ax -12≤0,解得a ≥2x ,则a ≥4.∴a min =4.8.若函数f (x )=x 3+bx 2+cx +d 的单调递减区间为(-1,2),则b =________,c =________.解析:f ′(x )=3x 2+2bx +c ,由题意知-1<x <2是不等式f ′(x )<0的解,即-1,2是方程3x 2+2bx +c =0的两个根,把-1,2分别代入方程,解得b =-32,c =-6.答案:-32-69.已知函数f (x )=(x -2)e x+a (x -1)2.讨论f (x )的单调性. 解:f ′(x )=(x -1)e x+2a (x -1)=(x -1)·(e x+2a ).(1)设a ≥0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0.所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.(2)设a <0,由f ′(x )=0得x =1或x =ln(-2a ).①若a =-e 2,则f ′(x )=(x -1)(e x-e),所以f (x )在(-∞,+∞)上单调递增;②若-e2<a <0,则ln(-2a )<1,故当x ∈(-∞,ln(-2a ))∪(1,+∞)时,f ′(x )>0;当x∈(ln(-2a ),1)时,f ′(x )<0.所以f (x )在(-∞,ln(-2a ))∪(1,+∞)上单调递增,在(ln(-2a ),1)上单调递减;③若a <-e2,则ln(-2a )>1,故当x ∈(-∞,1)∪(ln(-2a ),+∞)时,f ′(x )>0;当x ∈(1,ln(-2a ))时,f ′(x )<0.所以f (x )在(-∞,1)∪(ln(-2a ),+∞)上单调递增,在(1,ln(-2a ))上单调递减.二、综合过关训练1.若函数e xf (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( )A .f (x )=2-xB .f (x )=x 2C .f (x )=3-xD .f (x )=cos x解析:选A 对于选项A,f (x )=2-x=⎝ ⎛⎭⎪⎫12x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫12x =⎝ ⎛⎭⎪⎫e 2x ,∵e 2>1,∴e x f (x )在R 上单调递增,∴f (x )=2-x具有M 性质.对于选项B,f (x )=x 2,e xf (x )=e x x 2,[e xf (x )]′=e x(x 2+2x ),令e x (x 2+2x )>0,得x >0或x <-2;令e x (x 2+2x )<0,得-2<x <0,∴函数e xf (x )在(-∞,-2)和(0,+∞)上单调递增,在(-2,0)上单调递减,∴f (x )=x 2不具有M 性质.对于选项C,f (x )=3-x=⎝ ⎛⎭⎪⎫13x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫13x =⎝ ⎛⎭⎪⎫e 3x ,∵e3<1, ∴y =⎝ ⎛⎭⎪⎫e 3x在R 上单调递减,∴f (x )=3-x不具有M 性质.对于选项D,f (x )=cos x ,e xf (x )=e xcos x ,则[e x f (x )]′=e x (cos x -sin x )≥0在R 上不恒成立,故e x f (x )=e xcos x 在R 上不是单调递增的,∴f (x )=cos x 不具有M 性质.故选A.2.若函数f (x )=x -eln x,0<a <e<b ,则下列说法一定正确的是( ) A .f (a )<f (b ) B .f (a )>f (b ) C .f (a )>f (e)D .f (e)>f (b )解析:选C f ′(x )=1-e x =x -ex,x >0,令f ′(x )=0,得x =e,f (x )在(0,e)上为减函数,在(e,+∞)上为增函数,所以f (a )>f (e),f (b )>f (e),f (a )与f (b )的大小不确定.3.设f ′(x )是函数f (x )的导函数,将y =f (x )和y =f ′(x )的图象画在同一直角坐标系中,不可能正确的是( )解析:选D 对于选项A,若曲线C 1为y =f (x )的图象,曲线C 2为y =f ′(x )的图象,则函数y =f (x )在(-∞,0)内是减函数,从而在(-∞,0)内有f ′(x )<0;y =f (x )在(0,+∞)内是增函数,从而在(0,+∞)内有f ′(x )>0.因此,选项A 可能正确.同理,选项B 、C 也可能正确.对于选项D,若曲线C 1为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为增函数,与C 2不相符;若曲线C 2为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为减函数,与C 1不相符.因此,选项D 不可能正确.4.设f (x ),g (x )是定义在R 上的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时有( )A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (a )解析:选C 因为⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2,又因为f ′(x )g (x )-f (x )g ′(x )<0,所以f (x )g (x )在R 上为减函数.又因为a <x <b ,所以f (a )g (a )>f (x )g (x )>f (b )g (b ),又因为f (x )>0,g (x )>0,所以f (x )g (b )>f (b )g (x ).5.(2019·北京高考)设函数f (x )=e x +a e -x(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是________.解析:∵f (x )=e x +a e -x(a 为常数)的定义域为R, ∴f (0)=e 0+a e -0=1+a =0,∴a =-1.∵f (x )=e x +a e -x ,∴f ′(x )=e x -a e -x =e x-ae x .∵f (x )是R 上的增函数,∴f ′(x )≥0在R 上恒成立, 即e x≥ae x 在R 上恒成立,∴a ≤e 2x在R 上恒成立.又e 2x>0,∴a ≤0,即a 的取值范围是(-∞,0]. 答案:-1 (-∞,0]6.如果函数f (x )=2x 2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.解析:函数f (x )的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x.由f ′(x )>0,得函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫12,+∞;由f ′(x )<0,得函数f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,12.由于函数在区间(k -1,k +1)上不是单调函数,所以⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0.解得:1≤k <32.答案:⎣⎢⎡⎭⎪⎫1,32 7.已知函数f (x )=x ln x .(1)求曲线f (x )在x =1处的切线方程;(2)讨论函数f (x )在区间(0,t ](t >0)上的单调性. 解:(1)f (x )的定义域为(0,+∞),f ′(x )=ln x +1. 曲线f (x )在x =1处的切线的斜率为k =f ′(1)=1.把x =1代入f (x )=x ln x 中得f (1)=0,即切点坐标为(1,0).所以曲线f (x )在x =1处的切线方程为y =x -1.(2)令f ′(x )=1+ln x =0,得x =1e.①当0<t <1e时,在区间(0,t ]上,f ′(x )<0,函数f (x )为减函数.②当t >1e 时,在区间⎝ ⎛⎭⎪⎫0,1e 上,f ′(x )<0,f (x )为减函数;在区间⎝ ⎛⎭⎪⎫1e ,t 上,f ′(x )>0,f (x )为增函数.8.已知函数f (x )=ln x ,g (x )=12ax 2+2x ,a ≠0.若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围.解:h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x -ax -2.因为h (x )在[1,4]上单调递减,所以x ∈[1,4]时,h ′(x )=1x-ax -2≤0恒成立,即a ≥1x 2-2x恒成立,令G (x )=1x 2-2x,则a ≥G (x )max .而G (x )=⎝ ⎛⎭⎪⎫1x-12-1.因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )max =-716(此时x =4),所以a ≥-716.当a =-716时,h ′(x )=1x +716x -2=16+7x 2-32x 16x =(7x -4)(x -4)16x .因为x ∈[1,4],所以h ′(x )=(7x -4)(x -4)16x ≤0,即h (x )在[1,4]上为减函数. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞.课时跟踪检测(六) 函数的极值与导数一、题组对点训练对点练一 求函数的极值1.函数y =x 3-3x 2-9x (-2<x <2)有( ) A .极大值5,极小值-27 B .极大值5,极小值-11 C .极大值5,无极小值D .极小值-27,无极大值解析:选C 由y ′=3x 2-6x -9=0, 得x =-1或x =3.当x <-1或x >3时,y ′>0; 当-1<x <3时,y ′<0.∴当x =-1时,函数有极大值5; 3∉(-2,2),故无极小值.2.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于(1,0)点,则f (x )的极大值、极小值分别为( )A .427,0 B .0,427C .-427,0D .0,-427解析:选A f ′(x )=3x 2-2px -q , 由f ′(1)=0,f (1)=0,得⎩⎪⎨⎪⎧3-2p -q =0,1-p -q =0,解得⎩⎪⎨⎪⎧p =2,q =-1,∴f (x )=x 3-2x 2+x .由f ′(x )=3x 2-4x +1=0得x =13或x =1,易得当x =13时f (x )取极大值427,当x =1时f (x )取极小值0.3.已知函数f (x )=ax 3+bx 2+cx ,其导函数y =f ′(x )的图象经过点(1,0),(2,0),如图所示,则下列说法中不正确的序号是________. ①当x =32时,函数取得极小值;②f (x )有两个极值点; ③当x =2时,函数取得极小值; ④当x =1时,函数取得极大值.解析:由题图知,当x ∈(-∞,1)时,f ′(x )>0;当x ∈(1,2)时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0,所以f (x )有两个极值点,分别为1和2,且当x =2时函数取得极小值,当x =1时函数取得极大值.只有①不正确.答案:①对点练二 已知函数的极值求参数4.函数f (x )=ax 3+bx 在x =1处有极值-2,则a ,b 的值分别为( )A .1,-3B .1,3C .-1,3D .-1,-3解析:选A f ′(x )=3ax 2+b , 由题意知f ′(1)=0,f (1)=-2,∴⎩⎪⎨⎪⎧3a +b =0,a +b =-2,∴a =1,b =-3.5.若函数f (x )=x 2-2bx +3a 在区间(0,1)内有极小值,则实数b 的取值范围是( ) A .b <1 B .b >1 C .0<b <1 D .b <12解析:选C f ′(x )=2x -2b =2(x -b ),令f ′(x )=0,解得x =b ,由于函数f (x )在区间(0,1)内有极小值,则有0<b <1.当0<x <b 时,f ′(x )<0;当b <x <1时,f ′(x )>0,符合题意.所以实数b 的取值范围是0<b <1.6.已知函数f (x )=x 3+3ax 2+3(a +2)x +1既有极大值又有极小值,则实数a 的取值范围是________.解析:f ′(x )=3x 2+6ax +3(a +2),∵函数f (x )既有极大值又有极小值,∴方程f ′(x )=0有两个不相等的实根,∴Δ=36a 2-36(a +2)>0.即a 2-a -2>0,解之得a >2或a <-1.答案:(-∞,-1)∪(2,+∞) 对点练三 函数极值的综合问题7.设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R. (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 解:(1)由f ′(x )=ln x -2ax +2a , 可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 则g ′(x )=1x -2a =1-2ax x.当a ≤0时,x ∈(0,+∞)时,g ′(x )>0,函数g (x )单调递增;当a >0时,x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,函数g (x )单调递减.所以当a ≤0时,g (x )的单调增区间为(0,+∞); 当a >0时,g (x )的单调增区间为⎝ ⎛⎭⎪⎫0,12a ,单调减区间为⎝ ⎛⎭⎪⎫12a ,+∞. (2)由(1)知,f ′(1)=0.。
5.3诱导公式:诱导公式公式五和公式六课件(人教版)

)
A.-23 2
B.-13
C.2 3 2
D.13
C 解析:∵3sin2α=8cosα,∴sin2α+3si8n2α 2 =1,
整理可得 9sin4α+64sin2α-64=0,解得 sin2α=89 或 sin2α=-8(舍去). 又∵α 是第四象限角,∴sinα=-2 3 2 , ∴cos α+2 0221π =cos α+1 010π+2π =cos α+π2 =-sin α=2 3 2 .
=tan tan
θ+1 θ-1
,
右边=tanta(n 8(ππ++πθ+)θ-)1+1
=tan tan
(π+θ)+1 (π+θ)-1
=tan tan
θ+1 θ-1
,
左边=右边,所以等式成立.
经典例题
题型三 给值求值
例 3 已知 cosπ6-α=13,求 cos56π+α·sin23π-α的值.
解:cos56π+α·sin23π-α =cosπ-π6-α·sinπ-π3+α =-cos6π-α·sin3π+α =-cos6π-α·sin2π-π6-α =-cos6π-α·cosπ6-α =-13×13=-19.
经典例题
题型三 给值求值
跟踪训练3
(2)已知 cosα=-45,且
α
为第三象限角.求
f(α)=tanπ-α·csoinsππ-+αα·sinπ2-α的值.
解:(2)因为 cosα=-45,且 α 为第三象限角,
所以 sinα=- 1-cos2α=- 1--452=-35.
所以 f(α)=-tan-α·csionsαα·cosα=tanαsinα=csoinsαα·sinα
小试牛刀
1.思考辨析(正确的画“√”,错误的画“×”)
人教A版高中数学必修第一册精品课件 第5章 三角函数 5.3 第2课时 诱导公式五、六

【变式训练 2】 已知 sin(3π+α)=2sin
(-)-
+
则(+)+(-)=
解析:∵sin(3π+α)=2sin
.
+ ,
∴-sin α=-2cos α,即 sin α=2cos α.
-
)
C.
D.- 二、诱导公式六1.以-α代替公式五中的α,你会得到什么公式?
提示:sin
+
=cos(-α)=cos α,cos( +α)=sin(-α)=-sin α.
2.诱导公式六
sin
cos
+
+
=cos α
=-sin α
3.sin 165°等于(
)
A.-sin 15° B.cos 15°
【变式训练 3】 求证:
-
证明:∵右边=
-
(+)
= - =
=
=
--
+ -
+
∴原等式成立.
-(+)
·(-)- + - -
-
=cos
+
=sin
+
=
,
+ =± ,
- =sin + =± .
2019-2020学年新教材人教A版数学必修第一册课后作业42诱导公式五、六 Word版含解析

课后作业(四十二)复习巩固一、选择题1.下列各式中,不正确的是( ) A .sin(180°-α)=sin αB .cos ⎝⎛⎭⎪⎫180°+α2=sin α2 C .cos ⎝ ⎛⎭⎪⎫3π2-α=-sin αD .tan(-α)=-tan α[解析] 由诱导公式知A 、D 正确. cos ⎝⎛⎭⎪⎫32π-α=cos ⎝⎛⎭⎪⎫π+π2-α=-cos ⎝⎛⎭⎪⎫π2-α=-sin α,故C 正确.cos ⎝⎛⎭⎪⎪⎫180°+α2=cos ⎝ ⎛⎭⎪⎫90°+α2 =-sin α2,故B 不正确. [答案] B2.若sin ⎝ ⎛⎭⎪⎫π2+θ<0,且cos ⎝ ⎛⎭⎪⎫π2-θ>0,则θ是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角[解析] 由于sin ⎝ ⎛⎭⎪⎫π2+θ=cos θ<0,cos ⎝ ⎛⎭⎪⎫π2-θ=sin θ>0,所以角θ的终边落在第二象限,故选B.[答案] B3.若sin(3π+α)=-12,则cos ⎝ ⎛⎭⎪⎫7π2-α等于( )A .-12 B.12 C.32D .-32[解析] 因为sin(3π+α)=-sin α=-12,所以sin α=12,所以cos ⎝ ⎛⎭⎪⎫7π2-α=cos ⎝ ⎛⎭⎪⎫3π2-α=-cos ⎝ ⎛⎭⎪⎫π2-α=-sin α=-12. [答案] A4.已知cos31°=m ,则sin239°tan149°的值是( ) A.1-m 2m B.1-m 2 C .-1-m 2mD .-1-m 2[解析] sin239°tan149°=sin(180°+59°)·tan(180°-31°)=-sin59°(-tan31°)=-sin(90°-31°)·(-tan31°) =-cos31°·(-tan31°)=sin31° =1-cos 231°=1-m 2.[答案] B5.sin (2π-α)·cos ⎝ ⎛⎭⎪⎫π3+2αcos (π-α)tan (α-3π)sin ⎝ ⎛⎭⎪⎫π2+αsin ⎝ ⎛⎭⎪⎫7π6-2α等于( )A .-cos αB .cos αC .sin αD .-sin α[解析] 原式=sin (-α)·cos ⎝ ⎛⎭⎪⎫π3+2α·(-cos α)tan α·cos α·sin ⎣⎢⎡⎦⎥⎤32π-⎝ ⎛⎭⎪⎫π3+2α=sin αcos α·cos ⎝ ⎛⎭⎪⎫π3+2αtan αcos α⎣⎢⎡⎦⎥⎤-cos ⎝ ⎛⎭⎪⎫π3+2α=-cos α.故选A.[答案] A 二、填空题6.化简sin400°sin (-230°)cos850°tan (-50°)的结果为________.[解析] sin400°sin (-230°)cos850°tan (-50°)=sin (360°+40°)[-sin (180°+50°)]cos (720°+90°+40°)(-tan50°)=sin40°sin50°sin40°tan50° =sin50°sin50°cos50°=cos50°. [答案] cos50°7.已知cos α=13,则sin ⎝⎛⎭⎪⎫α-π2·cos ⎝⎛⎭⎪⎫3π2+αtan(π-α)=________.[解析] sin ⎝ ⎛⎭⎪⎫α-π2cos ⎝ ⎛⎭⎪⎫3π2+αtan(π-α)=-cos αsin α(-tan α)=sin 2α=1-cos 2α=1-⎝ ⎛⎭⎪⎫132=89.[答案] 898.若sin ⎝ ⎛⎭⎪⎫α+π12=13,则cos ⎝ ⎛⎭⎪⎫α+7π12=________. [解析] cos ⎝⎛⎭⎪⎫α+7π12=cos ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫π12+α =-sin ⎝ ⎛⎭⎪⎫π12+α=-13.[答案] -13 三、解答题9.求证:cos (π-θ)cos θ⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫3π2-θ-1+cos (2π-θ)cos (π+θ)sin ⎝ ⎛⎭⎪⎫π2+θ-sin ⎝ ⎛⎭⎪⎫3π2+θ=2sin 2θ.[证明] 左边=-cos θcos θ(-cos θ-1)+cos θ-cos θcos θ+cos θ=11+cos θ+11-cos θ=1-cos θ+1+cos θ(1+cos θ)(1-cos θ) =21-cos 2θ=2sin 2θ=右边. ∴原式成立.10.已知sin α是方程5x 2-7x -6=0的根,且α是第三象限角,求sin ⎝ ⎛⎭⎪⎫-α-3π2cos ⎝ ⎛⎭⎪⎫3π2-αcos ⎝ ⎛⎭⎪⎫π2-αsin ⎝ ⎛⎭⎪⎫π2+α·tan 2(π-α)的值.[解] 原式=-sin ⎝ ⎛⎭⎪⎫π+π2+αcos ⎝ ⎛⎭⎪⎫π+π2-αsin αcos α·tan 2α=-sin ⎝ ⎛⎭⎪⎫π2+αcos ⎝ ⎛⎭⎪⎫π2-αsin αcos α·tan 2α=-cos αsin αsin αcos α·tan 2α=-tan 2α.方程5x 2-7x -6=0的两根为x 1=-35,x 2=2,又α是第三象限角,∴sin α=-35,cos α=-45,∴tan α=34,故原式=-tan 2α=-916.综合运用11.计算sin 21°+sin 22°+sin 23°+…+sin 289°=( ) A .89B .90 C.892 D .45[解析] ∵sin 21°+sin 289°=sin 21°+cos 21°=1,sin 22°+sin 288°=sin 22°+cos 22°=1,…∴sin 21°+sin 22°+sin 23°+…+sin 289°=sin 21°+sin 22°+sin 23°+…+sin 244°+sin 245°+cos 244°+cos 243°+…+cos 23°+cos 22°+cos 21°=44+12=892.[答案] C12.在△ABC 中,3sin ⎝ ⎛⎭⎪⎫π2-A =3sin(π-A ),且cos A =-3cos(π-B ),则C =________.[解析]由题意得⎩⎨⎧3cos A =3sin A ,①cos A =3cos B ,②由①得tan A =33,故A =π6.由②得cos B =cos π63=12,故B =π3.故C =π2.[答案] π213.已知f (α)=cos ⎝⎛⎭⎪⎫π2+αsin ⎝⎛⎭⎪⎫3π2-αcos (-π-α)tan (π-α),则f ⎝ ⎛⎭⎪⎫-253π的值为________.[解析] ∵f (α)=(-sin α)(-cos α)(-cos α)(-tan α)=cos α,∴f ⎝ ⎛⎭⎪⎫-253π=cos ⎝ ⎛⎭⎪⎫-253π=cos 253π =cos ⎝⎛⎭⎪⎫8π+π3=cos π3=12.[答案] 1214.若f (cos x )=cos2x ,则f (sin15°)=________. [解析] f (sin15°)=f (cos75°)=cos150°=-cos30°=-32. [答案] -3215.已知cos(15°+α)=35,α为锐角,求tan (435°-α)+sin (α-165°)cos (195°+α)·sin (105°+α)的值.[解] 原式=tan (360°+75°-α)-sin (α+15°)cos (180°+15°+α)·sin[180°+(α-75°)]=tan (75°-α)-sin (α+15°)-cos (15°+α)·[-sin (α-75°)]=-1cos (15°+α)·sin (15°+α)+sin (α+15°)cos (15°+α)·cos (15°+α).因为α为锐角,所以0°<α<90°,所以15°<α+15°<105°. 又cos(15°+α)=35,所以sin(15°+α)=45, 故原式=-135×45+4535×35=536.。
高中数学课时跟踪检测六诱导公式一新人教A版必修5

12
所以
cos(212°+ α)= cos(360°+
α- 148° )= cos(α- 148° )= cos(148°-
α)=
. 13
12 答案: 13
9.求下列各三角函数值:
8π
23π
37π
(1)sin - 3 ;(2)cos 6 ; (3)tan 6 .
8π
4π 4π
解: (1)sin - 3 = sin - 4π+3 = sin 3
55
25 A.- 5
5 B.- 5
5 C. 5
25 D. 5
5 解析:选 C ∵ r= 1,∴ cos θ=- 5 ,
5 ∴ cos(π-θ)=- cos θ= 5 .
π
1
2π
4.已知 tan 3- α= 3,则 tan 3 +α= (
)
1 A.3
1 B.- 3
马鸣风萧萧整理
》》》》》》》》》积一时之跬步 臻千里之遥程《 《《《《《《《《《《《
x-1 - 1, x>0 , 则 f - 6 + f
6 的值为 ________.
11
11π
解析:因为 f - 6 = sin - 6
π π1
= sin
- 2π+6
= sin = ; 62115 Nhomakorabea1
f 6 =f 6 -1=f -6 -2
π
1
5
= sin
- 6
- 2=-
2-
2=-
. 2
11
11
所以 f - 6 + f 6 =- 2.
3 答案: (1)- 2 (2)1
1
π
7.已知 sin(π-α)= log84,且 α∈ - 2,0 ,则 tan(2π-α)的值为 ________.
新教材高中数学课时跟踪检测三十五诱导公式二三四新人教A版必修第一册

新教材高中数学课时跟踪检测三十五诱导公式二三四新人教A 版必修第一册课时跟踪检测(三十五) 诱导公式二、三、四A 级——学考水平达标练1.sin 780°+tan 240°的值是( )A .332B .32C .12+ 3D .-12+ 3 解析:选A sin 780°+tan 240°=sin 60°+tan(180°+60°)=32+tan 60°=32+3=332. 2.若600°角的终边上有一点(-4,a ),则a 的值是( )A .4 3B .±4 3C .-4 3D . 3解析:选C 由题意,得tan 600°=a-4,则a =-4·tan 600°=-4tan(540°+60°)=-4tan 60°=-4 3.3.已知cos(α-π)=-513,且α是第四象限角,则sin(-2π+α)等于( ) A .-1213B .1213C .±1213D .512 解析:选A 由cos(α-π)=-513,得cos α=513.又α为第四象限角,所以sin(-2π+α)=sin α=-1-cos 2α=-1213. 4.设ta n(5π+α)=m ,则sin (α-3π)+cos (π-α)sin (-α)-cos (π+α)的值为( ) A .m +1m -1 B .m -1m +1C .-1D .1解析:选A ∵tan(5π+α)=m ,∴tan α=m .∴原式=sin(π+α)+cos(π-α)sin(-α)-cos(π+α)=-sin α-cos α-sin α+cos α=sin α+cos αsin α-cos α=tan α+1tan α-1=m+1m-1.5.现有下列三角函数式:①sin⎝⎛⎭⎪⎫nπ+4π3(n∈Z);②sin⎝⎛⎭⎪⎫2nπ+π3(n∈Z);③sin⎣⎢⎡⎦⎥⎤(2n+1)π-π6(n∈Z);④sin⎣⎢⎡⎦⎥⎤(2n+1)π-π3(n∈Z).其中值与sinπ3的值相同的是( )A.①② B.②④C.①③ D.①②④解析:选B ①sin⎝⎛⎭⎪⎫nπ+4π3=⎩⎪⎨⎪⎧-32,n为偶数,32,n为奇数;②sin⎝⎛⎭⎪⎫2nπ+π3=sinπ3=32(n∈Z);③sin⎣⎢⎡⎦⎥⎤(2n+1)π-π6=sin5π6=12(n∈Z);④sin⎣⎢⎡⎦⎥⎤(2n+1)π-π3=sin2π3=32(n∈Z).又sinπ3=32,故②④中式子的值与sinπ3的值相同.6.化简cos(-α)tan(7π+α)sin(π-α)=________.解析:cos(-α)tan(7π+α)sin(π-α)=cos αtan(π+α)sin α=cos αtan αsin α=cos αsin αcos αsin α=1.答案:17.若sin(π-α)=log 814,且α∈⎝ ⎛⎭⎪⎫-π2,0,则cos(2π-α)的值是________. 解析:因为sin(π-α)=sin α=log 814=-23,α∈⎝ ⎛⎭⎪⎫-π2,0,所以cos(2π-α)=cos α=1-sin 2α=53. 答案:53 8.已知cos ⎝ ⎛⎭⎪⎫π4-α=-13,则cos ⎝ ⎛⎭⎪⎫3π4+α的值为________. 解析:cos ⎝ ⎛⎭⎪⎫3π4+α=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π4-α =-cos ⎝ ⎛⎭⎪⎫π4-α=-⎝ ⎛⎭⎪⎫-13=13. 答案:139.已知cos α=14,求sin (2π+α)cos (-π+α)cos (-α)tan α的值. 解:sin (2π+α)cos (-π+α)cos (-α)tan α=sin α(-cos α)cos αtan α=-cos α=-14. 10.(2018·山东师大附中高一期末)(1)计算:sin 11π6+cos ⎝⎛⎭⎪⎫-20π3+tan 29π4; (2)化简:tan (π-α)cos (2π-α)cos ()3π-αcos (-π-α)sin (π+α). 解:(1)sin 11π6+cos ⎝ ⎛⎭⎪⎫-20π3+tan 29π4=sin ⎝ ⎛⎭⎪⎫2π-π6+cos ⎝ ⎛⎭⎪⎫-6π-2π3+tan ⎝ ⎛⎭⎪⎫6π+5π4=sin ⎝ ⎛⎭⎪⎫-π6+cos ⎝ ⎛⎭⎪⎫-2π3+tan ⎝⎛⎭⎪⎫π+π4=-sin π6+cos 2π3+tan π4=-12+⎝ ⎛⎭⎪⎫-12+1=0. (2)tan (π-α)cos ()2π-αcos ()3π-αcos (-π-α)sin (π+α)=-tan αcos α(-cos α)-cos α(-sin α)=1. B 级——高考水平高分练1.已知a =tan ⎝ ⎛⎭⎪⎫-7π6,b =cos 23π4,c =sin ⎝ ⎛⎭⎪⎫-33π4,则a ,b ,c 的大小关系是________(用“>”表示).解析:a =-tan π6=-33,b =cos 23π4=cos π4=22, c =sin ⎝ ⎛⎭⎪⎫-33π4=-sin π4=-22, 所以b >a >c .答案:b >a >c2.已知函数f (x )=a sin(πx +α)+b cos(πx +β)+4,x ∈R ,且f (2 019)=3,则f (2 020)=________.解析:∵f (2 019)=a sin(2 019π+α)+b cos(2 019π+β)+4=3,∴a sin(2 019π+α)+b cos(2 019π+β)=-1,∴f (2 020)=a sin(2 019π+α+π)+b cos(2 019π+β+π)+4=-a sin(2 019π+α)-b cos(2 019π+β)+4=1+4=5.答案:53.化简:1+2sin 280°·cos 440°sin 260°+cos 800°. 解:原式=1+2sin (360°-80°)·cos (360°+80°)sin (180°+80°)+cos (720°+80°) =1-2sin 80°·cos 80°-sin 80°+cos 80°=sin 280°+cos 280°-2sin 80°·cos 80°-si n 80°+cos 80°=(sin 80°-cos 80°)2-sin 80°+cos 80°=|cos 80°-sin 80°|cos 80°-sin 80° =sin 80°-cos 80°cos 80°-sin 80°=-1. 4.已知1+tan (θ+720°)1-tan (θ-360°)=3+22,求:[cos 2(π-θ)+sin(π+θ)·cos(π-θ)+2sin 2(θ-π)]·1cos 2(-θ-2π)的值. 解:由1+tan (θ+720°)1-tan (θ-360°)=3+22,得(4+22)tan θ=2+22,所以tan θ=2+224+22=22, 故[cos 2(π-θ)+sin(π+θ)·cos(π-θ)+2sin 2(θ-π)]·1cos 2(-θ-2π)=(cos 2θ+sin θcos θ+2sin 2θ)·1cos 2θ=1+tan θ+2tan 2θ=1+22+2×⎝ ⎛⎭⎪⎫222=2+22.5.对于函数f (x )=a sin(π-x )+bx +c (其中a ,b ∈R ,c ∈Z),选取a ,b ,c 的一组值计算f (1)和f (-1),所得出的正确结果一定不可能是( )A .4和6B .3和1C .2和4D .1和2解析:选D ∵sin(π-x )=sin x ,∴f (x )=a sin x +bx +c ,则f (1)=a sin 1+b +c ,f (-1)=a sin(-1)+b ×(-1)+c =-a sin 1-b +c ,∴f (-1)=-f (1)+2c .①把f (1)=4,f (-1)=6代入①式,得c =5∈Z ,故排除A ;把f (1)=3,f (-1)=1代入①式,得c =2∈Z ,故排除B ;把f (1)=2,f (-1)=4代入①式,得c =3∈Z ,故排除C ;把f (1)=1,f (-1)=2代入①式,得c =32∉Z ,故选D.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时跟踪检测(三十五) 诱导公式五、六A 级——学考合格性考试达标练1.若sin ⎝⎛⎭⎫π2+θ<0,且cos ⎝⎛⎭⎫π2-θ>0,则θ是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角解析:选B 由于sin ⎝ ⎛⎭⎪⎫π2+θ=cos θ<0,cos ⎝ ⎛⎭⎪⎫π2-θ=sin θ>0,所以角θ的终边落在第二象限,故选B.2.若cos(α+π)=-23,则sin ⎝⎛⎭⎫-α-3π2=( )A .23B .-23C .53D .-53解析:选A 因为cos(α+π)=-cos α=-23,所以cos α=23.所以sin ⎝⎛⎭⎪⎫-α-3π2=cos α=23. 3.已知cos ⎝⎛⎭⎫π2+φ=32,且|φ|<π2,则tan φ等于( )A .-33B .33C .- 3D . 3解析:选C 由cos ⎝ ⎛⎭⎪⎫π2+φ=-sin φ=32,得sin φ=-32.又|φ|<π2,∴cos φ=12,∴tan φ=- 3.4.化简sin ⎝⎛⎭⎫α+π2·cos ⎝⎛⎭⎫α-3π2·tan ⎝⎛⎭⎫π2-α的结果是( ) A .1 B .sin 2α C .-cos 2αD .-1解析:选C 因为sin ⎝ ⎛⎭⎪⎫α+π2=cos α,cos ⎝ ⎛⎭⎪⎫α-3π2=cos ⎣⎢⎡⎦⎥⎤π+⎝ ⎛⎭⎪⎫π2-α=-sin α,tan ⎝ ⎛⎭⎪⎫π2-α=sin ⎝ ⎛⎭⎪⎫π2-αcos ⎝ ⎛⎭⎪⎫π2-α=cos αsin α,所以原式=cos α(-sin α)cos αsin α=-cos 2α,选C. 5.若角A ,B ,C 是△ABC 的三个内角,则下列等式中一定成立的是( ) A .cos(A +B )=cos C B .sin(A +B )=-sin C C .cos A +C2=sin BD .sin B +C 2=cos A 2解析:选D ∵A +B +C =π,∴A +B =π-C , ∴cos(A +B )=-cos C ,sin(A +B )=sin C ,故A 、B 错. ∵A +C =π-B ,∴A +C 2=π-B2,∴cos A +C 2=cos ⎝ ⎛⎭⎪⎫π2-B 2=sin B2,故C 错.∵B +C =π-A ,∴sin B +C 2=sin ⎝ ⎛⎭⎪⎫π2-A 2=cos A 2,故D 正确.6.sin 95°+cos 175°的值为________.解析:sin 95°+cos 175°=sin(90°+5°)+cos(180°-5°) =cos 5°-cos 5°=0. 答案:07.已知sin(π+α)=-13,则cos ⎝⎛⎭⎫α-3π2=________.解析:因为sin(π+α)=-sin α=-13,所以sin α=13,所以cos ⎝ ⎛⎭⎪⎫α-3π2=cos ⎝ ⎛⎭⎪⎫3π2-α=-sin α=-13.答案:-138.化简cos ⎝⎛⎭⎫α-π2sin⎝⎛⎭⎫5π2+α·sin(α-π)·cos(2π-α)的结果为________.解析:原式=cos ⎝ ⎛⎭⎪⎫π2-αsin ⎝ ⎛⎭⎪⎫2π+π2+α·(-sin α)·cos(-α)=sin αsin ⎝ ⎛⎭⎪⎫π2+α·(-sin α)·cos α=sin αcos α·(-sin α)·cos α=-sin 2α.答案:-sin 2α9.已知角α的终边在第二象限,且与单位圆交于点P ⎝⎛⎭⎫a ,35,求sin ⎝⎛⎭⎫π2+α+2sin ⎝⎛⎭⎫π2-α2cos ⎝⎛⎭⎫3π2-α的值.解:因为角α的终边在第二象限且与单位圆交于点P ⎝⎛⎭⎫a ,35,所以a 2+925=1(a <0), 所以a =-45,所以sin α=35,cos α=-45,所以原式=cos α+2cos α-2sin α=-32·cos αsin α=⎝⎛⎭⎫-32×-4535=2. 10.化简:(1)sin ⎝⎛⎭⎫π2+αcos ⎝⎛⎭⎫π2-αcos (π+α)+sin (π-α)cos ⎝⎛⎭⎫π2+αsin (π+α);(2)tan (3π-α)sin (π-α)sin ⎝⎛⎭⎫3π2-α+sin (2π-α)cos ⎝⎛⎭⎫α-7π2sin ⎝⎛⎭⎫3π2+αcos (2π+α).解:(1)∵sin ⎝ ⎛⎭⎪⎫π2+α=cos α,cos ⎝ ⎛⎭⎪⎫π2-α=sin α,cos(π+α)=-cos α,sin(π-α)=sin α,cos ⎝ ⎛⎭⎪⎫π2+α=-sin α,sin(π+α)=-sin α, ∴原式=cos α·sin α-cos α+sin α·(-sin α)-sin α=-sin α+sin α=0.(2)∵tan(3π-α)=-tan α, sin(π-α)=sin α,sin ⎝ ⎛⎭⎪⎫3π2-α=-cos α,sin(2π-α)=-sin α, cos ⎝ ⎛⎭⎪⎫α-7π2=cos ⎝ ⎛⎭⎪⎫7π2-α=cos ⎝ ⎛⎭⎪⎫4π-π2-α=cos ⎝ ⎛⎭⎪⎫π2+α=-sin α,sin ⎝ ⎛⎭⎪⎫3π2+α=-cos α,cos(2π+α)=cos α, ∴原式=-tan αsin α(-cos α)+(-sin α)(-sin α)(-cos α)·cos α=1cos 2α-sin 2αcos 2α=1-sin 2αcos 2α=cos 2αcos 2α=1.B 级——面向全国卷高考高分练1.已知α∈⎝⎛⎭⎫0,3π2,cos ⎝⎛⎭⎫3π2-α=32,则tan(2 019π-α)=( )A. 3B .- 3 C.3或- 3D.33或-33解析:选B 由cos ⎝ ⎛⎭⎪⎫3π2-α=32得sin α=-32,又0<α<3π2,所以π<α<3π2,所以cos α=-1-⎝⎛⎭⎫-322=-12,tan α= 3. 所以tan(2 019π-α)=tan(-α)=-tan α=- 3. 故选B.2.已知角α的终边上有一点P (1,3),则sin (π-α)-sin ⎝⎛⎭⎫π2+αcos⎝⎛⎭⎫3π2-α+2cos (-π+α)的值为( )A .-25B .-45C .-47D .-4解析:选A ∵点P (1,3)在α终边上,∴tan α=3,∴sin (π-α)-sin ⎝ ⎛⎭⎪⎫π2+αcos ⎝ ⎛⎭⎪⎫3π2-α+2cos (-π+α)=sin α-cos α-sin α-2cos α=tan α-1-tan α-2=3-1-3-2=-25.故选A.3.如果f (sin x )=cos 2x ,那么f (cos x )的值为( ) A .-sin 2x B .sin 2x C .-cos 2xD .cos 2x解析:选C f (cos x )=f ⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫π2-x=cos 2⎝ ⎛⎭⎪⎫π2-x =cos(π-2x )=-cos 2x .4.计算sin 21°+sin 22°+sin 23°+…+sin 289°=( ) A .89 B .90 C.892D .45解析:选C ∵sin 21°+sin 289°=sin 21°+cos 21°=1,sin 22°+sin 288°=sin 22°+cos 22°=1,……,∴sin 21°+sin 22°+sin 23°+…+sin 289°=sin 21°+sin 22°+sin 23°+…+sin 244°+sin 245°+cos 244°+cos 243°+…+cos 23°+cos 22°+cos 21°=44+12=892.5.sin 2⎝⎛⎭⎫π3-x +sin 2⎝⎛⎭⎫π6+x =________.解析:sin 2⎝ ⎛⎭⎪⎫π3-x +sin 2⎝ ⎛⎭⎪⎫π6+x =sin 2⎝ ⎛⎭⎪⎫π3-x +sin 2⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3-x =sin 2⎝ ⎛⎭⎪⎫π3-x +cos 2⎝ ⎛⎭⎪⎫π3-x =1.答案:16.已知f (α)=cos ⎝⎛⎭⎫π2+αsin ⎝⎛⎭⎫3π2-αcos (-π-α)tan (π-α),则f ⎝⎛⎭⎫-25π3的值为________.解析:∵f (α)=(-sin α)(-cos α)(-cos α)(-tan α)=cos α,∴f ⎝ ⎛⎭⎪⎫-25π3=cos ⎝ ⎛⎭⎪⎫-25π3=cos 25π3=cos ⎝ ⎛⎭⎪⎫8π+π3=cos π3=12.答案:127.在△ABC 中,sin A +B -C 2=sin A -B +C2,试判断△ABC 的形状.解:∵A +B +C =π,∴A +B -C =π-2C ,A -B +C =π-2B .又∵sin A +B -C 2=sin A -B +C 2,∴sin π-2C 2=sin π-2B2,∴sin ⎝ ⎛⎭⎪⎫π2-C =sin ⎝ ⎛⎭⎪⎫π2-B ,∴cos C =cos B .又B ,C 为△ABC 的内角,∴C =B . ∴△ABC 为等腰三角形.8.是否存在角α,β,α∈⎝⎛⎭⎫-π2,π2,β∈(0,π),使等式sin(3π-α)=2cos ⎝⎛⎭⎫π2-β,3cos(-α)=-2cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由. 解:假设存在角α,β满足条件,则由题可得⎩⎪⎨⎪⎧sin α=2sin β, ①3cos α=2cos β, ②①2+②2,得sin 2α+3cos 2α=2. ∴cos 2α=12,∴cos α=±22.∵α∈⎝ ⎛⎭⎪⎫-π2,π2,∴cos α=22.由cos α=22,3cos α=2cos β,得cos β=32. ∵β∈(0,π),∴β=π6.∴sin β=12,结合①可知sin α=22,则α=π4.故存在α=π4,β=π6满足条件.C 级——拓展探索性题目应用练已知函数f (α)=sin ⎝⎛⎭⎫α-π2cos ⎝⎛⎭⎫3π2+αtan (2π-α)tan (α+π)sin (α+π).(1)化简f (α);(2)若f (α)·f ⎝⎛⎭⎫α+π2=-18,且5π4≤α≤3π2,求f (α)+f ⎝⎛⎭⎫α+π2的值;(3)若f ⎝⎛⎭⎫α+π2=2f (α),求f (α)·f ⎝⎛⎭⎫α+π2的值.解:(1)f (α)=-cos αsin α(-tan α)tan α(-sin α)=-cos α.(2)f ⎝ ⎛⎭⎪⎫α+π2=-cos ⎝ ⎛⎭⎪⎫α+π2=sin α,因为f (α)·f ⎝⎛⎭⎪⎫α+π2=-18,所以cos α·sin α=18,可得⎣⎢⎡⎦⎥⎤f (α)+f ⎝ ⎛⎭⎪⎫α+π22=(sin α-cos α)2=34,由5π4≤α≤3π2,得cos α>sin α,所以f (α)+f ⎝⎛⎭⎪⎫α+π2=sin α-cos α=-32.(3)由(2)得f ⎝ ⎛⎭⎪⎫α+π2=2f (α)即为sin α=-2cos α,联立sin 2α+cos 2α=1,解得cos 2α=15,所以f (α)·f ⎝⎛⎭⎪⎫α+π2=-sin αcos α=2cos 2α=25.。