燃烧与爆炸理论名词解释简答
燃烧爆炸的名词解释

燃烧爆炸的名词解释燃烧和爆炸是我们日常生活中常见的现象,但这两个词却有着不同的含义和特点。
本文将就燃烧和爆炸的概念、原理以及其在科学、工程和生活中的应用进行解释。
燃烧是一种氧化反应。
在燃烧过程中,物质与氧气发生反应,产生新的物质、能量和可见的火焰。
这一反应是通过三个必备条件来实现的:可燃物质、氧气和引燃温度。
四个要素称作可燃三角。
首先,可燃物质是燃烧的基础。
它可以是固体、液体或气体形式,具有接受氧气和释放能量的能力。
我们周围有很多可燃物质,如纸、木材、石油、煤炭等。
其中,每一种可燃物质都有其特定的燃烧参数,如引燃温度和燃烧速度。
其次,氧气是燃烧必需的气体。
燃烧过程中,氧气与可燃物质相结合并释放出能量。
空气中的氧气含量约为21%,这是支持燃烧的足够量,也是为什么我们燃烧物质时总是将其暴露在空气中或使用氧气罐的原因。
最后,引燃温度是燃烧开始的温度。
每种物质都有其特定的引燃温度。
当可燃物质的温度达到或超过其引燃温度时,燃烧反应将开始,并持续进行直到可燃物质耗尽或外界条件改变。
接下来,我们将探讨一下爆炸的概念。
爆炸是一种非常剧烈的化学反应,通常伴随着可见的压力波、声波和火焰。
相比于燃烧,爆炸的速度更快、能量更高,由此产生的损害也更大。
爆炸发生时,能量以极快的速度释放,形成冲击波和高温火焰。
爆炸的原因主要在于燃烧过程产生的热能被迅速释放,导致快速扩大的气体体积增加,形成高压区域。
爆炸通常发生在密闭容器或管道内,这样可将压力逐渐建立起来,直到容器无法承受而发生爆炸。
爆炸可以分为两类:物理爆炸和化学爆炸。
物理爆炸是由于物质的相变或压力突然释放而导致。
例如,当高压气体容器泄漏或瓦斯管道破裂时,因压力突然减少而产生的爆炸被称为物理爆炸。
化学爆炸则是通过复杂的化学反应来实现,其中可燃物质和氧气反应产生巨大的能量释放。
燃烧和爆炸在科学、工程和生活中有着广泛的应用。
科学家和研究人员通过掌握燃烧和爆炸的基本原理,可以开展许多实验和研究,从而推动科学的进步。
燃烧和爆炸理论重点

第一章绪论燃烧(定义)是可燃物质与助燃物质(氧或其他助燃物质)发生的一种发光发热的氧化反应。
爆炸是物质发生剧烈的物理、化学变化,在瞬间释放出大量能量并半由巨大声响的过程。
火灾和爆炸的主要区别是能量释放的速度。
根据爆炸发生原因的不同,可将其分为物理爆炸、化学爆炸和核爆炸三类。
化学爆炸的主要特点是:反应速度极快、放出大量热量、产生大量气体,只有上述都同时具备的化学反应才能发生爆炸。
沸腾液体扩展蒸气爆炸(BLEVE):如果装有温度高于其在大气压下的沸点温度的液体的储罐破裂,就会发生BLEVE。
冲击波是沿气体移动的不连贯的压力波,冲击波与风结合后称为爆炸波,其过程几乎是绝热的。
第二章燃烧及其灾害燃烧的定义是可燃物质与助燃物质(氧或其他助燃物质)发生的一种发光发热的氧化反应。
燃烧的本质因素(三要素):燃料、氧化剂和引燃源。
是燃烧发生的必要条件,而不是充分条件。
燃烧四面体:可燃物、助燃物、游离基和点火源防火方法:控制可燃物、隔绝空气、消除或控制点火源灭火方法:①隔离法:将可燃物质同燃烧火场隔离开,燃烧就会停止;②窒息法:在燃烧过程中消除氧或者其他助燃剂成分,使燃烧反应因缺少助燃物质而停止燃烧;③冷却法:对燃烧物体进行降温,使其降低至着火温度以下,使燃烧停止;④抑制法:燃烧四面体为抑制法提供了理论依据,这种方法的原理是:使灭火剂参与到燃烧反应中去,它可以销毁燃烧过程中产生的游离基,形成稳定分子或活性游离基,从而使燃烧反应终止。
任何可燃物质的燃烧都经历氧化分解、着火、燃烧等阶段。
由理论上的自燃点T自到开始出现火焰的温度T’自间的时间间隔称为燃烧诱导期。
可燃气体和助燃气体燃烧反应预混燃烧和扩散燃烧两种形式。
均相燃烧和非均相燃烧;预混燃烧和扩散燃烧;蒸发燃烧、分解燃烧和表面燃烧。
可燃固体或液体的燃烧反应有蒸发燃烧、分解燃烧和表面燃烧。
燃烧可以分为闪燃、着火、自燃和爆炸四个种类。
可燃液体表面的蒸气与空气形成的混合气体与火源接近时会发生瞬间燃烧,出现瞬间火苗或闪光。
YS复习答案

《燃烧与爆炸学》复习题一、名词解释:燃烧、爆炸、火灾、爆炸极限、燃点、闪点、热值、反应当量浓度、爆炸危险度、着火极限、最小点火能、着火延滞期燃烧——燃烧是一种同时伴有放热、发光的激烈的氧化反应。
爆炸—爆炸是物质从一种状态迅速转变成另一状态,并在瞬间放出大量能量,同时产生声响的现象。
火灾——凡是在时间和空间上超出有效范围的燃烧都称为火灾。
爆炸极限——可燃物质(可燃气体,蒸气或粉尘)与空气(氧气)的混合物,遇着火源能够发生爆炸的浓度范围。
燃点——可燃物质开始持续燃烧时所需要的最低温度叫燃点。
闪点——易燃、可燃液体表面挥发的蒸气与空气形成的混合气,接近时火源产生的瞬间燃烧现象称为闪燃。
引起闪燃的最低温度叫闪点。
热值——单位质量或单位体积的可燃物质完全燃烧时所发出的热量。
反应当量浓度——爆炸性混合物中可燃物质和助燃物质恰好能发生完全反应时可燃物质的浓度。
爆炸危险度——可燃气体(蒸气、粉尘)的爆炸浓度极限范围与爆炸下限浓度之比值。
即:爆炸危险度=(爆炸上限浓度-爆炸下限浓度)/爆炸下限浓度着火极限——在一定温度、压力下,可燃气体或蒸气在助燃气体中形成的均匀混合系被点燃并能传播火焰的浓度范围。
最小点火能——最小点火能是指能引起爆炸性混合物燃烧爆炸时所需的最小能量。
着火诱导期——指可燃性物质和助燃气体的混合体在高温下从开始暴露到起火的时间或混合气着火前自动加热的时间。
二、填空题:1、火灾自动报警系统由火灾探测器、区域火灾报警装置、集中火灾警报装置和电源等四部分组成。
2、火灾探测器有感温火灾探测器、感烟火灾探测器、感光火灾探测器等。
3、防止瓦斯爆炸的主要措施有防止瓦斯积聚和消除火源。
4、灭火器上标注的“MF2”,其中M代表、F代表、数字2代表。
5、火灾自动报警系统基本形式有区域报警系统、集中报警系统和控制中心报警系统。
6、火灾探测算法可分为阀值法和过程法。
7、被动式隔爆装置是借助于爆炸冲击波的动力使隔爆装置动作(岩粉槽、水槽破碎,水袋脱钩),并抛洒消焰剂形成抑制带,扑灭爆炸火焰,以阻止爆炸的传播。
燃烧与爆炸学041123

燃烧与爆炸学041123一、名词解释1、可燃物、助燃物、点火源(着火源)。
2、1 mol纯物质完全燃烧生成稳定的氧化物时所放出的热量,叫做该物质的燃烧热.单位为kJ/mol。
3、可燃液体蒸发出的可燃整齐足以与空气形成一种混合物,并在与火源接触时发生闪燃的最低温度,称为改液体的闪点。
4、引起物质发生自燃的最低温度称为自燃点。
5、液体沸腾时的温度即液体的饱和蒸气压与外界压强相等时的温度。
6、单位时间内从液体蒸发出来的分子数等于回到液体的分子数的蒸气叫做饱和蒸气。
7、物质在短时间内完成化学变化,形成其他物质,同时产生大量气体和能量的现象。
8、氧指数是在规定条件下,试样在氧氮混合气流中,维持平稳燃烧所需的最低氧气浓度以氧气所占体积的百分数表示。
氧指数高表示材料不易烧,氧指数低表示材料易燃烧。
9、重大火灾:指造成10人以上30人以下死亡,或者50人以上100人以下重伤,或者5000万元以上1亿元以下直接财产损失的火灾。
10、可燃物质(可燃气体、蒸气、粉尘)与空气(氧气)必须在一定的浓度范围内均匀混合,形成预混气,遇到火源才会发生爆炸,这个浓度范围称为爆炸极限(爆炸浓度极限)。
二、简要回答1、法国化学家拉瓦锡在普利斯特利发现氧的基础上提出了燃烧的氧学说,认为燃烧是可燃物与氧的化合反应,同时放出光和热。
燃烧的“氧学说”宣告燃烧素学说的破灭。
2、气体的燃烧分为扩散燃烧与动力燃烧两种形式,气体燃烧不需要经过蒸发、熔化等过程,所以比固体和液体都容易燃烧。
(1)扩散燃烧:可燃气体与空气的混合是在燃烧过程中发生的,是稳定式燃烧。
(2)动力燃烧:可燃气体与空气在燃烧之前按一定的比例形成预混气,遇火源发生的爆炸式燃烧。
3、(1)严格控制火源;(2)监视酝酿期特征;(3)采用耐火材料;(4)阻止火焰的蔓延;(5)限制火灾可能发展的规模;(6)阻止训练消防队伍;(7)配备相应的消防器材。
4、B类火灾:指液体火灾和可熔化的固体物质火灾。
第一章燃烧与爆炸理论

核爆炸
剧烈的原子裂变、聚 变反应。
1.1.3 燃烧与爆炸的关系
相同
区别
转化
其他
化学爆炸和燃 烧的反应实质 相同,都是氧 化还原反应。
反应速度不同。 可燃气体与空 气混合系爆炸 速度更快,炸 药等爆炸是自 身氧化还原反 应
过压爆炸 热平衡破坏爆炸
蒸汽爆炸
液化气体、过热液体爆炸 凝聚相燃烧爆炸 分解爆炸 混合危险爆炸 喷雾爆炸 粉尘爆炸
1.2.3 重大火灾、爆炸事故案例
•长庆8.11井喷事故
•8月11日22时许,定边县长庆油田 一钻井作业时突发井喷,导致起火。 经榆林及周边市县消防多辆消防车 协同作战,历经20小时扑灭大火, 事故 未造成人员伤亡。
井喷是钻井过程中石油、天然气、水等 地层流体的压力大于井内压力而大量涌 入井筒,并从井口无控制地喷出的现象。
施工队在发现油气外侵现象后并未采取 有效措施,最终在排污坑处发生油气闪 爆,导致排污坑内原油着火。
• 11·22青岛输油管道爆炸事件
山东省青岛市“11·22”中石化东黄输油管 道泄漏爆炸特别重大事故认定为责任事故, 事故共造成62人遇难,136人受伤,直接 经济损失7.5亿元。
1.2.1 现代 化工生产的
特点
生产工艺过程高 度连续自动化
生产设备类型多样, 结构简繁不一
生产工艺高参数化
洛阳石化总厂140万吨/年重催装置 上海石化公司20000立方米低温储罐 金陵石化炼油厂50000立方米原油罐 金陵石化80万吨/年加氢裂化装置
1.2.2 工业装置燃烧爆炸常见模式
装置外混合系爆炸 装置内混合系爆炸 压力平衡破坏爆炸
燃烧与爆炸基础知识

第一部分:燃烧与爆炸
爆炸极限及影响因素
可燃气体、可燃液体蒸气或可燃粉尘与空气混合并达到一定浓 度时,遇火源就会燃烧或爆炸。这个遇火源能够发生燃烧或爆炸的 浓度范围,称为爆炸极限。爆炸极限通常用可燃气体在空气中的体 积百分比(V%)表示。对可燃粉尘,我们通常用单位体积内可燃 粉尘的质量g/cm3来表示其爆炸上、下限值。
实际燃烧温度不是固定的值,它受可燃物浓度和一系列 外界因素的影响。
第一部分:燃烧与爆炸
燃烧特性(3)
燃烧速度: 1 气体燃烧速度:火焰在可燃介质中的传播速度也称燃烧速度。 气体燃烧速度的影响因素: • 气体的组成和结构 • 可燃气体含量 • 初温 • 燃烧形式 • 管道 • 压力和流动状态
第一部分:燃烧与爆炸
燃烧的条件
第一部分:燃烧与爆炸
燃烧必须同时具备下述三个 条件:可燃性物质、助燃性物质、 点火源。每一个条件要有一定的 量,相互作用,燃烧方可产生。
(1)可燃物 (2)助燃物 (3)点火源
燃烧的条件:
燃烧三要素
第一部分:燃烧与爆炸
第一部分:燃烧与爆炸
常见的火源种类
在生产中,常见的引起火灾爆炸的点火源有以下8种: (1) 明火 (2) 高热物及高温表面 (3) 电火花 (4) 静电、雷电 (5) 摩擦与撞击 (6) 易燃物自行发热 (7) 绝热压缩 (8) 化学反应热及光线和射线
可燃物质在没有火焰、电火花等明火源的作用下, 由于本身受空气氧化而放出热量,或受外界温度、湿 度影响使其温度升高而引起燃烧的最低温度称为自燃 点(或引燃温度)。
第一部分:燃烧与爆炸
自燃有以下两种情况。 (1)受热自燃:可燃物质在外部热源作用下温度升高,
达到自燃点而自行燃烧。 (2)自热自燃:可燃物在无外部热源影响下,其内部
爆炸和燃烧的区别和联系

爆炸和燃烧的区别和联系爆炸和燃烧是我们生活中常见的现象。
许多人往往把爆炸和燃烧看作是同一种现象,但实际上两者是有本质区别的。
爆炸是指物质在短时间内迅速放出大量的能量并产生强烈的冲击波和压力波,而燃烧是指物质与氧气反应放出热能并产生光和烟。
本文将分析爆炸和燃烧的区别和联系。
首先让我们来看看爆炸的特征。
爆炸产生的能量很大,并且能在短时间内迅速放出。
这些能量往往来自于物质内部的化学能、核能或机械能等。
爆炸瞬间产生的高温高压燃烧物质,使其发生体积迅速膨胀,大量的气体和热能释放,形成强烈的冲击波和压力波。
爆炸所产生的冲击波和压力波有很强的杀伤力,可以摧毁物体,造成重大损失。
如炸药在爆炸时,释放出巨大的热和压力,瞬间将周围的物体炸成碎片。
与之相对应的是燃烧的特征。
燃烧是指物质与氧气反应释放出热能的一种过程。
燃烧需要热源来激发反应,但反应一旦开始,会自我维持并释放出大量热能,从而促使更多的反应发生。
燃烧的反应产生的热能大多数以光和烟的形式释放出来。
燃烧会产生一定量的废气,但压力和温度并不会像爆炸那样迅速升高。
例如,木材燃烧时,会发出明亮的火光和黑烟。
虽然燃烧也可以造成一定程度的破坏,但燃烧的杀伤力远远不及爆炸。
尽管爆炸和燃烧有着本质区别,但两者也有一定的联系。
事实上,爆炸通常是一种非常强烈的燃烧过程。
当可燃物质与氧气充分接触并点燃时,燃烧会释放出大量的热能。
如果这些能量无法及时释放,可能会导致可燃物质瞬间迅速膨胀、燃烧区域内的温度和压力急剧升高形成爆炸。
理解爆炸和燃烧的区别和联系对我们生活中的许多情况都有很大的帮助。
比如,在正确地处理易燃易爆物品时,需要知道两者的区别,在进行燃烧处理时,应该采取安全防护措施,避免意外的爆炸发生。
总的来说,爆炸是指在短时间内迅速放出大量的能量并产生强烈的冲击波和压力波,而燃烧是指物质与氧气反应放出热能并产生光和烟。
虽然两种现象有着本质区别,但在某些情况下,爆炸是由剧烈的燃烧过程引起的。
燃烧与爆炸理论及分析

燃烧与爆炸理论及分析燃烧和爆炸是化学反应中常见的现象。
燃烧是指物质与氧气发生化学反应,产生能量的过程。
爆炸是指燃烧过程中产生的能量迅速释放,并产生强大的冲击波和光亮现象。
燃烧和爆炸都是由氧气与可燃物质发生化学反应引起的,但爆炸的反应速度更快,产生的能量更大。
燃烧和爆炸的理论基础是燃烧化学和爆炸动力学。
燃烧化学研究燃烧过程中的物质转化和能量释放。
可燃物质一般是有机物,其化学反应可以分为三个阶段:引燃、燃烧和燃尽。
引燃是指可燃物质与氧气接触后产生点火源,并开始发生反应。
燃烧是指可燃物质与氧气发生反应,产生热和光。
燃尽是指可燃物质完全被氧气消耗,停止燃烧。
燃烧化学研究的重点是物质的热值、燃烧温度、燃烧产物和燃烧速率等参数。
爆炸动力学研究爆炸过程中的能量释放和冲击波的产生。
爆炸反应一般分为四个阶段:点火、反应、扩展和耗减。
点火是指爆炸剂与点火源接触后开始发生燃烧。
反应是指燃烧的爆炸产物放热,产生高温和高压。
扩展是指高温高压的爆炸产物迅速膨胀,产生冲击波和冲击力。
耗减是指爆炸产物消耗完毕,爆炸结束。
爆炸动力学研究的重点是爆炸的速度、压力和能量等参数。
燃烧和爆炸的分析是为了预防和控制火灾和爆炸事故,保护人民的生命财产安全。
燃烧和爆炸的危害主要表现在火势和冲击波两个方面。
火势可以引发火灾,破坏建筑和设备,威胁人员的安全。
冲击波可以引发爆炸事故,造成工厂、工地、交通运输等重大事故。
因此,燃烧和爆炸的分析需要研究燃烧材料的性质、火灾和爆炸的起因和传播机制,以及防火防爆的措施和应急处理方法。
在分析燃烧和爆炸过程中,需要考虑以下几个因素:燃烧材料的种类和性质。
不同的材料燃烧产生的热值和燃烧速率不同,对环境的影响也不同。
氧气的供应。
燃烧和爆炸都需要氧气作为氧化剂,如果缺氧则无法燃烧和爆炸。
点火源的存在。
燃烧和爆炸需要点火源引发反应,因此需要防止点火源的存在,避免引发事故。
环境的温度和压力。
燃烧和爆炸也受到环境的温度和压力的影响,高温和高压有利于燃烧和爆炸的发生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
闪燃:在一定温度下,可燃性液体蒸汽与空气混合后,达到一定浓度时,遇到火源产生的一闪即灭的燃烧现象,叫做闪燃。
着火:可燃物质在与空气并存条件下,遇到比其自燃点高的点火源时开始燃烧,并在点火源移开后仍能继续燃烧,这种持续燃烧(不小于5秒)的现象叫着火。
自燃:可燃物在没有外部火花、火焰等点火源的作用下,因受热或自身发热并蓄热而发生的自然燃烧现象。
燃烧:燃烧是伴随着有发光、放热现象的剧烈的氧化反应。
阴燃:指在氧气不足、温度较低或湿度较大的条件下,固体物质发生的只冒烟而无火焰的燃烧。
氧指数:指在规定的试验条件下,试样在氧、氮混合气流中,维持平稳燃烧(即进行有焰燃烧,火焰能保持燃烧50mm长或燃烧时间3min)所需的最低氧气体积分数。
最大安全间隙:是衡量爆炸性物品传爆能力的性能参数,是指在规定试验条件下,两个间隙长为25mm连通的容器,一个容器内燃爆时不致引起另一个容器内燃爆的最大连通间隙。
静电消散半衰期:通常取带电体上静电电量泄漏到原来一半所需要的时间叫静电消散半衰期。
耐火极限:对任一建筑构件进行标准耐火试验,从受到火的作用时起,到构件失去稳定性或完整性或绝热性时止,这段抵抗火的作用时间称为耐火极限,一般以小时计。
动火分析。
答:防火防爆生产企业在使用明火的作业之前要对设备内部或作业现场的可燃气体浓度进行分析,以避免燃烧、爆炸事故的发生。
动火分析不应早于动火作业之前半小时。
对爆炸下限小于4%的可燃气体,其浓度低于0.2%方可进行动火作业;对爆炸下限大于4%的可燃气体,其浓度低于0.5%可进行动火作业。
简述火灾的危险性。
答:1、火灾的热辐射可造成烧伤;
2、火场中由于氧气含量降低而造成的窒息作用;
3、燃烧产生的有毒烟气造成的毒害作用;
4、建筑物倒塌造成的二次伤害等等。
什么是链式反应理论,并举例说明。
答:链式反应是指由一个单独分子变化而引起一连串分子变化的化学反应。
链式反应理论的历程:链引发、链发展、链终止
氢气在氯气中的燃烧:
H2 + Cl2 2HCl (总反应)
①Cl2 + M 2Cl• + M (链引发)
②Cl• + H2 HCl + H•
③H• + Cl2 HCl + Cl• (链传递)
…………
④2Cl• + M Cl2 + M (链终止)
解释原油在燃烧过程中发生沸溢现象的原因。
答:由于原油的沸程较宽,组分之间的比重相差较大,因此在燃烧时能形成热波。
当热波遇到原油中的乳化水后使乳化水汽化形成水蒸汽,体积膨胀。
水蒸汽由于密度小,向上升,而原油粘度较大,水蒸汽不容易穿过油层进入环境,在原油内部形成油包水,导致原油体积不断膨胀,最终导致沸溢的发生。
请从至少三个方面比较爆燃和爆轰的区别。
答:1、激波阵面传播速度:爆燃波,亚声速;爆轰波,声速或超音速。
2、压力波情况:爆燃波宽而平滑,最大超压约1.5atm;爆轰波,尖锐,持续时间短,最大超压达15atm。
3、未燃气体被点燃方式:爆燃,热量传递或自由基传递;爆轰,绝热压缩。
4、破坏方式:爆燃,容器应力破坏,碎片较少,边缘有拉伸变薄现象;爆轰,脆性破坏,碎片更多,边缘无变薄。
简述粉尘爆炸的机理。
答:1、粉尘粒子表面通过热传导和热辐射,从点火源获得点火能量;
2、温度急剧升高,加速分解速度或蒸发速度,形成粉尘蒸气或分解气体;
3、与空气混合后就能引起点火;
4、成为点火源,使粉尘着火,从而扩大了爆炸(火焰)范围。
BLEVE的形成过程。
答:临近储罐发生泄露并产生火灾,火焰烘烤液体储罐。
由于液体传热速度快,储罐下部温度上升较慢;而上部气相空间气体传热速度慢,因而储罐上部温度上升较快。
最终由于热胀冷缩不均衡,使储罐结构失效。
容器失效后液体几乎瞬间闪蒸为蒸汽,产生压力波。
在进行闪点测量时,试分析哪些因素会影响到实验的测量结果。
答:⑴点火源的大小与离液面的距离点火焰过大,由于点火能量大,测得试样的闪点值偏低。
可燃液体蒸气在液面上有一个浓度梯度(开杯式更为显著),火源距离液面越近,测得试样的闪点值就越偏低,因此测试时点火火焰大小及离液面距离应恒定。
⑵加热速率加热过快,液相温度梯皮较大,导致液面上试样蒸气分布不均,测得的闪点值偏高。
⑶试样的均匀程度在测试过程中,要进行搅拌,否则试样浓度不均(温度也不均),影响测定数值。
⑷试样的纯度能溶于水的试样,随水分含量的增高,闪点升高。
⑸测试容器用闭杯式时,试样蒸气不散失,故测得的闪点值要比开杯式测得的数值低。
因此在用开杯式闪点测定仪时,环境的气流变化要小,尽可能用屏风遮挡,即便使用闭杯式测试时,也应避免盖子不必要的开启。
⑹大气压力的影响在1 大气压以下,测得的闪点值偏低;在大于1 大气压时,测得的闪点值偏离。