2017-2018学年河南省郑州一中高二下学期6月期末复习数学文试题(解析版)

合集下载

河南省郑州市2017-2018学年下期期末考试高二文科数学试卷(含详细答案)

河南省郑州市2017-2018学年下期期末考试高二文科数学试卷(含详细答案)

. 请你依据上述相关信息推测最后的两个数
字最有可能的是(

A. 18
B
. 20
10. 执行如图所示的程序框图(算法流程图)
C
. 21
,输出的 n 为(
D )
. 31
A. 3
B
.4
C
.5
D
.6
x 1 5cos
11. (选修 4-4 :坐标系与参数方程)若 P (2, 1) 为圆 O :
(0
y 5sin
2 )的
弦的中点,则该弦所在直线 l 的方程是( )
A. x y 3 0 B . x 2 y 0 C . x y 1 0 D . 2x y 5 0
(选修 4-5 :不等式选讲)已知
a , b , c 为三角形的三边,且
S
2
a
2
b
2
c,
P ab bc ca ,则(
A. P S 2P
B

. P S 2P
的程序是让机器人每一秒钟前进一步或后退一步,
并且以先前进 3 步,然后再后退 2 步的规
律前进 . 如果将机器人放在数轴的原点, 面向正的方向在数轴上前进 ( 1步的距离为 1个单位
长度) . 令 P(n) 表示第 n 秒时机器人所在位置的坐标,且记 P (0) 0 ,则下列结论中正确
河南省郑州市 2017-2018 学年下期期末考试
高二数学(文)试题卷
第Ⅰ卷(选择题,共 60 分)
一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分. 在每小题给出的四个
选项中,只有一项是符合题目要求的 .
1. 复数 1 i 1的虚部是(

1i

河南省顶级2017_2018学年高二数学下学期期末模拟试题文

河南省顶级2017_2018学年高二数学下学期期末模拟试题文

2017-18学年高二年级第二学期期末考试数学试卷(文数)本试卷分第I卷(选择题)和第II卷(非选择题)两部分.考试时间120分钟,满分150 分.第I卷(选择题,共60分)注意事项:1 .答第I卷前,考生务必将自己的姓名、准考证号、考场号、座号、考试科目涂写在答题卡上.2 •每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑•如需改动,用橡皮擦干净后,再选涂其它答案标号•不能答在试题卷上.一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A =, B二:z | z二x • y,x • A, y A:,则集合B的子集个数为()A .3 B.4 C . 7 D .822•若x 2m -3是-1 ::: x ::: 4的必要不充分条件,则实数m的取值范围是()A. 1-3,3〕B. -::,-3丨3 ,:: C . - ::,-1 丨1, :: D . L 1,11 3•命题“ -X • 〔-2, = , x • 3 _1 ”的否定为()A. X。

〔-2, :: , X。

3 :: 1B. X。

〔-2,二,X。

3 _1C . —x 〔一2, ::, x 3 < 1D . —X 三[,—2 , x 3 _ 14 •已知函数fx 在-::,=单调递减,且为奇函数,若f1=-1 ,则满足-1空f x - 2空1的x的取值范围是()A. '--2,21B. L-1,11 C . 0,41D. 135•已知函数f x l=5网, g x i〕=ax2-x , 若f!g1 丨=1,则a =()A. 1B. 2 C . 3 D . -1一x +6 x 兰2 r6•已知函数f(x)=」'_ ' , (a>0,且a^1)的值域是4,咼),则实数a的取值3 +lOg a X, X >2范围是()A.匚1,1丨B. 1,2】C. 0,4】 D . 1,3】7.已知函数2X12X-a 是奇函数,则使 f x 3成立x的取值范围是(点,则实数a 的取值范围是()A . 0,e 3-4 1D . e 3-4,::第II 卷(非选择题,共 90分) 注意事项:1.答题前将密封线内的项目及座号填写清楚;2.考生做答时,用黑色签字笔将答案答在答题卷上,答在试题卷上的答案无效.二、填空题(本大题共 4小题,每小题5分,共20分 13.函数f x : ln (x +1)a b 1114•设 2 =3 =m ,且 一+-=2,则 m = ___________ .a b15.已知函数f (x^ x 2mx -1 ,若对于任意x [m,m 1],都有f (x) - 0成立,贝U 实数m 的最小值是 .A .B . -1,0C . 0,1D . 1,:: &若 a . b . 0 , 0 ::: c ::: 1,则()A. log a c ::: log b c B . log c a ::: log c b C . a c::: b cD . c ac b9•已知函数 f x =2|x ^ -1 为偶函数,记 a = f log 0.5 3,b= f log 2 5 , f 2m ,则a,b,c 的大小关系为() A . a : b : c110.已知函数f x x3C . c a bD . b : c : aB . a : c : b-£mx 2,4x-3在区间1,2 1上是增函数,则实数 m 的取值范围是A . 4,5】B . 2,4111.已知函数 f (x )=J3区4 x , 02'' 若关于x 的方程If x 2 ■ a -1fx-a=0有7—x 2 —2x 1,x 乞 0个不等实根,则实数 a 的取值范围是()A . -2,1B . 2,41D. -::,4】C . -2,-112. 3已知函数f x = -x1a ,-,e 与g x =31 nx 的图象上存在关于 _ex 轴对称的B .C .16.设f ' x是奇函数f x的导函数,f-2 = 0,当x . 0时,xf'x-f x 0,则使f x . 0成立的x的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)(一)必考题:共60分17. (本小题满分12分)在ABC中,角A,B,C所对的边分别为a,b,c且a2• b2=c2• ... 3ab .(1)求角C的值;(2)若:ABC为锐角三角形,且c = 1 ,求3a -b的取值范围•18. (本小题满分12分)商丘市大型购物中心-- 万达广场将于2018年7月6日全面开业,目前正处于试营业阶段,某按摩椅经销商为调查顾客体验按摩椅的时间,随机调查了50名顾客,体验时间(单位:分钟)落在各个小组的频数分布如下表:体验时间[12.5,15.5)[15.5,18.5)[18.5,21.5)[21.5,24.5)[24.5,27.5)[27.5,30.5)[30.5,33.5 )频数389121053(1)求这50名顾客体验时间的样本平均数x,中位数m,众数n ;(2)已知体验时间为[15.5,18.5)的顾客中有2名男性,体验时间为[27.5,30.5)的顾客中有3名男性,为进一步了解顾客对按摩椅的评价,现随机从体验时间为[15.5,18.5)和[27.5,30.5)的顾客中各抽一人进行采访,求恰抽到一名男性的概率.19. (本小题满分12分)如图,三棱柱ABC-AQG 中,AC =CB , AB=A A , - BAA1 = 60°(1)证明:AB _ AC ;(2)若平面ABC —平面AA1B1B , AB =CB =2,求点A到平面BB1C1C的距离.20. (本小题满分12分)已知三点A -2,1 , B 2,1 , O 0,0 ,曲线C上任意一点M x,y 满足|M A M B OM OA)O B(1)求C的方程;(2)已知点P 0,-1 ,动点Q X o,y o -2 :::X o ::: 2在曲线C上,曲线C在Q处的切线I与直线PA, PB都相交,交点分别为D,E,求ABQ 与 :PDE的面积的比值.21. (本小题满分12分)已知函数f x =1 nx, g x =e x.(1)求函数y = f x - x的单调区间与极值;(2)求证:在函数f x和g x的公共定义域内,g x;;「f(x)・2恒成立.(二)选考题:共10分,请考生在第22、23题中任选一题作答.如果多做,则按所做第一题计分•22. (本小题满分10分)在直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系。

河南省郑州一中2017-2018学年高二下学期期末复习理科数学试卷-含答案

河南省郑州一中2017-2018学年高二下学期期末复习理科数学试卷-含答案

一中2017-2018学年下学期高二期末复习试卷理科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2018·遵化期中]i 是虚数单位,复数1i z =+,则22z z+=( ) A .1i --B .1i -+C .1i +D .1i -2.[2018·潍坊检测]观察下列各式:1a b +=,223a b +=,334a b +=,447a b +=,5511a b +=,L ,则88a b +=( )A .18B .29C .47D .763.[2018·牡丹江一中]若()42f x x x=-,则()1f '等于( ) A .1-B .2C .3D .64.[2018·伊春二中]4名同学分别报名参加数、理、化竞赛,每人限报其中的1科,不同的报名方法种数( ) A .24B .4C .34D .435.[2018·山东师范附中]在二项式521x x ⎛⎫- ⎪⎝⎭的展开式中,含4x 的项的系数是( )A .10-B .10C .5-D .5此卷只装订不密封班级 姓名 准考证号 考场号 座位号6.[2018·重庆期末]根据如下样本数据:A .5a =B .变量x 与y 线性正相关C .当11x =时,可以确定3y =D .变量x 与y 之间是函数关系7.[2018·棠湖中学]已知随机变量ξ服从正态分布()20N σ,,若()20.023P ξ>=, 则()22P ξ≤≤=﹣( ) A .0477.B .0625.C .0954.D .0977.8.[2018·济南一中]下列关于函数()()22e x f x x x =-的判断正确的是( ) ①()0f x >的解集是{}|02x x <<;②(f 极小值,f是极大值;③()f x 没有最小值,也没有最大值. A .①③B .①②③C .②D .①②9.[2018·重庆一模]如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方案共有( )种A .120B .260C .340D .42010.[2018·西城14中]口袋中装有大小、轻重都无差别的5个红球和4个白球,每一次从袋中摸出2个球,若颜色不同,则为中奖.每次摸球后,都将摸出的球放回口袋中,则3次摸球恰有1次中奖的概率为( )A .80243B .100243C .80729D .10072911.[2018·赤峰二中]口袋中有5个形状和大小完全相同的小球,编号分别为0,1,2,3,4,从中任取3个球,以ξ表示取出球的最小号码,则E ξ=( ) A .045.B .05.C .0.55D .0.612.[2018·天津一中]已知定义在R 上的可导函数()y f x =的导函数为()f x ',满足()()f x f x <',且()02f =,则不等式)A .(),0-∞B .()0,+∞C .(),2-∞D .()2,+∞第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.[2018·黑龙江期中]若复数()()3i 2i a -+是纯虚数,则实数a =___________. 14.[2018·长春十一中]已知下列命题:①在线性回归模型中,相关指数2R 表示解释变量x 对于预报变量y 的贡献率,2R 越接近于1,表示回归效果越好;②两个变量相关性越强,则相关系数的绝对值就越接近于1;③在回归直线方程ˆ0.52yx =-+中,当解释变量x 每增加一个单位时,预报变量ˆy 平均减少05.个单位;④对分类变量X 与Y ,它们的随机变量2K 的观测值k 说,k 越小,“X 与Y 有关系”的把握程度越大.其中正确命题的序号是__________.15.[2018·三明质检]设()9210012101241b x x a a x a x a x x x ⎛⎫+-=+++++ ⎪⎝⎭L ,则10120210222a a a a ++++=L _______. 16.[2018·福建师范附中]已知函数()()1ln f x x a x a x=-+∈R 在其定义域上不单调,则a 的取值范围是__________.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(10分)[2018·辽宁实验中学]已知()*n ∈N ,在()2nx +的展开式中,第二项系数是第(1)求展开式中二项系数最大项;(2)若()()()()20122111nnn x a a x a x a x +=+++++++L ,求①12n a a a +++L 的值;②122n a a na +++L 的值.18.(12分)[2018·大庆实验中学]已知函数()2ln f x x ax x =+-,a ∈R . (1)若1a =,求曲线()y f x =在点()()11f ,处的切线方程; (2)若函数()f x 在[]13,上是减函数,求实数a 的取值范围;19.(12分)[2018·牡丹江一中]2017年5月14日,第一届“一带一路”国际高峰论坛在北京举行,为了解不同年龄的人对“一带一路”关注程度,某机构随机抽取了年龄在1575-岁之间的100人进行调查,经统计“青少年”与“中老年”的人数之比为9:11.路”是否和年龄段有关?(2)现从抽取的青少年中采用分层抽样的办法选取9人进行问卷调查.在这9人中再选取3人进行面对面询问,记选取的3人中关注“一带一路”的人数为X,求X的分布列及数学期望.,其中c d=+++.n a b临界值表:20.(12分)[2018·孝感八校]现有5名男生、2名女生站成一排照相,(1)两女生要在两端,有多少种不同的站法?(2)两名女生不相邻,有多少种不同的站法?(3)女生甲不在左端,女生乙不在右端,有多少种不同的站法?21.(12分)[2018·榆林模拟]2018年2月22日,在韩国平昌冬奥会短道速滑男子500米比赛中,中国选手武大靖凭着连续打破世界纪录的优异表现,为中国代表队夺得了本届冬奥会的首枚金牌,也创造了中国男子冰上竞速项目在冬奥会金牌零的突破.根据短道速滑男子500米的比赛规则,运动员自出发点出发进入滑行阶段后,每滑行一圈都要依次经过4个直道与弯道的交接口()1,2,3,4kA k=.已知某男子速滑运动员顺利通过每个交接口的概率均为34,摔倒的概率均为14.假定运动员只有在摔倒或到达终点时才停止滑行,现在用X表示该运动员滑行最后一圈时在这一圈内已经顺利通过的交接口数.(1)求该运动员停止滑行时恰好已顺利通过3个交接口的概率;(2)求X的分布列及数学期望()E X.22.(12分)[2018·福建师范附中]设函数()()ln 1f x x a x =-+,()a ∈R , (1)讨论函数()f x 的单调性;(2)当函数()f x 有最大值且最大值大于31a -时,求a 的取值范围.理科数学 答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】C【解析】由复数1i z =+,可得()()2221i 221i 12i 12i 1i 1i 1i 11z z -+=++=+-+=+-=+++. 故选C . 2.【答案】C【解析】1a b +=Q ,223a b +=,334a b +=,447a b +=,5511a b +=,L ,∴通过观察发现,从第三项起,等式右边的常数分别为其前两项等式右边的常数的和,6611718a b ∴+=+=,77181129a b +=+=,88291847a b +=+=.故选C .3.【答案】D 【解析】()42f x x x =-Q ,()3224f x x x∴=+',()1426f '∴=+=.故选D . 4.【答案】D【解析】根据题意,4名同学分别报名参加数、理、化竞赛,每人都有3种选择方法, 则不同的报名方法种数有433333⨯⨯⨯=种.故选D . 5.【答案】B【解析】根据所给的二项式写出展开式的通项()()521031551C 1C rrr rr rr T x xx --+⎛⎫=-=-⋅ ⎪⎝⎭, 令1034r -=,解得2r =,解得()224351C 10T x =-⋅=,即4x 的系数为10.故选B .6.【答案】A【解析】由题意可得,357964x +++==,6321144a ay ++++==,回归方程过样本中心点,则11 1.4612.44a +=-⨯+,求解关于实数a 的方程可得5a =,由1.40ˆb=-<可知变量x 与y 线性负相关;当11x =时,无法确定y 的值;变量x 与y 之间是相关关系,不是函数关系.故选A . 7.【答案】C【解析】由题意可知正态分布的图象关于直线0x =对称,则()()220023P P ξξ<=>=., 8.【答案】D【解析】由()()2202e 02002x f x x x x x x >⇒->⇒->⇒<<,故①正确;()()2e 2xf x x '=-,由()0f x '=得x =()0f x '<得x >或x < 由()0f x '>得x ()f x ∴的单调减区间为(,-∞和)+∞,单调增区间为(.()f x ∴的极大值为f,极小值为(f ,故②正确;x <Q 时,()0f x <恒成立.()f x ∴无最小值,但有最大值f,故③不正确.故选D . 9.【答案】D【解析】由题意可知上下两块区域可以相同,也可以不同, 则共有5431354322180240420⨯⨯⨯⨯+⨯⨯⨯⨯=+=.故选D .10.【答案】A【解析】每次摸球中奖的概率为114529C C 20536C 9==,由于是有放回地摸球, 故3次摸球相当于3次独立重复实验, 所以3次摸球恰有1次中奖的概率2135580C 199243P ⎛⎫=⨯⨯-= ⎪⎝⎭.故选A . 11.【答案】B【解析】()2435C 305C P ξ===,()2335C 3110C P ξ===,()3511210C P ξ===,331101205510102E ξ=⨯+⨯+⨯==..故选B . 12.【答案】B,从而()F x 为R 上的单调增函数,有()02F =,而即为()2F x >,从而其解集为()0,+∞.故选B .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.【答案】23-【解析】()()()3i 2i 326i a a a -+=++-为纯虚数,则320 60a a +=-⎧⎨⎩≠,解得23a =-. 故答案为23-.14.【答案】①②③【解析】①相关指数2R 表示解释变量x 对于预报变量y 的贡献率,2R 越接近于1,表示回归效果越好,是正确的;②两个变量相关性越强,则相关系数r 的绝对值就越接近于1,是正确的;③在回归直线方程0.ˆ52x y=-+中,当解释变量x 每增加一个单位时,预报变量ˆy 平均减少05.个单位是正确的,因为回归方程,并不是样本点都落在方程上,故只能是估计值,所以说是平均增长;④对分类变量X 与Y ,它们的随机变量2K 的观测值k 说,k 越小,“X 与Y 有关系”的把握程度越小,故原命题错误; 故答案为①②③. 15.【答案】5【解析】由题易知()999b C 11=⨯-=-,令12x =,可得1012021032b 222a a a a =+++++L , 101202105222a a a a ∴++++=L .故答案为5. 16.【答案】2a > 【解析】()()1ln 0f x x a x x x =-+>Q ,()211a f x x x∴=--+'.①若函数()f x 在()0+∞,上单调递增,则()2110a f x x x =--+≥'在()0,+∞上恒成立,1a x x ∴≥+在()0,+∞上恒成立,由于1y x x=+在()0,+∞上无最大值, ∴函数()f x 在()0+∞,上不单调递增.②若函数()f x 在()0+∞,上单调递减,则()2110af x x x =--+≤'在()0+∞,上恒成立,1a x x ∴≤+在()0+∞,上恒成立,又因为12x x +≥,所以当且仅当1x x=,即1x =时等号成立, 2a ∴≤.综上可得,当函数()f x 在其定义域上不单调时,实数a 的取值范围是()2+∞,.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.【答案】(1)333346C 2160T x x ==;(2)63;192. 【解析】(1,解得6n =, ∴展开式中二项式系数最大项为333346C 2160T x x ==.(2)①()()()()()66260126211111x x a a x a x a x ⎡⎤⎣+=++=+++++++⎦L , 令0x =,得6016264a a a +++==L ,又令1x =-,得01a =. 1263n a a a +++=L ,②()()()()()66260126211111x x a a x a x a x ⎡⎤+=++=+++++++⎣⎦L ,两边求导,得()()()511262211n n x a a x na x -+=+++++L ,令0x =,得122192n a a na +++=L . 18.【答案】(1)20x y -=;(2)173⎛⎤-∞- ⎥⎝⎦,.【解析】(1)当1a =时,()2ln f x x x x =+-,所以()121f x x x+'=-,()12f '=, 又因为()12f =,所以曲线()y f x =在点()()11f ,处的切线方程为20x y -=.(2)因为函数在[]13,上是减函数,所以()212120x ax f x x a x x +-'=+-=≤在[]13,上恒成立.做法一:令()221h x x ax =+-,有()()1030h h ⎧≤⎪⎨≤⎪⎩,得1173a a ≤-⎧⎪⎨≤-⎪⎩.故173a ≤-.∴实数a 的取值范围为173⎛⎤-∞- ⎥⎝⎦,.做法二:即2210x ax +-≤在[]13,上恒成立,则12a x x≤-在[]13,上恒成立, 令()12h x x x =-,显然()h x 在[]13,上单调递减,则()()min 3a h x h ≤=,得173a ≤-. ∴实数a 的取值范围为173⎛⎤-∞- ⎥⎝⎦,.19.【答案】(1)有99%的把握认为关注“一带一路”和年龄段有关;(2)()1E X =. 【解析】(1)依题意可知抽取的“青少年”“中老年”共有1004555-=人.完成的22⨯列联表如:()2 6.6350.01P K >=Q ,9.091 6.635>,∴有99%的把握认为关注“一带一路”和年龄段有关.(2)根据题意知,选出关注的人数为3,不关注的人数为6,在这9人中再选取3人进行面对面询问,X 的取值可以为0,1,2,3,所以X 的分布列为:20.【答案】(1)240;(2)3600;(3)3720.【解析】(1)两端的两个位置,女生任意排,中间的五个位置男生任意排,2525A A 240⋅=(种). (2)把男生任意全排列,然后在六个空中(包括两端)有顺序地插入两名女生,5256A A 3600⋅=(种).(3)采用去杂法,在七个人的全排列中,去掉女生甲在左端的66A 个,再去掉女生乙在右端的66A 个,但女生甲在左端同时女生乙在右端的55A 种排除了两次,要找回一次. 765765A 2A A 3720∴-+=(种). 21.【答案】(1)27256;(2)见解析. 【解析】(1)由题意可知3312744256P ⎛⎫=⨯= ⎪⎝⎭.(2)X 的所有可能值为0,1,2,3,4. 则()()31,2,3,44k P A k ==,且1A ,2A ,3A ,4A 相互独立. 故()()1104P X P A ===,()()1231314416P X P A A ==⋅=⨯=, ()()212331924464P X P A A A ⎛⎫==⋅⋅=⨯= ⎪⎝⎭,()()312343127344256P X P A A A A ⎛⎫==⋅⋅⋅=⨯= ⎪⎝⎭,()()4123438144256P X P A A A A ⎛⎫==⋅⋅⋅== ⎪⎝⎭.从而X 的分布列为:()0123441664256256256E X ∴=⨯+⨯+⨯+⨯+⨯=. 22.【答案】(1)见解析;(2)()10-,.【解析】(1)()()ln 1(0)f x x a x x =-+>Q ,()()()1111a x f x a x x-+'∴=-+=. ①当10a +≤,即1a ≤-时,()0f x '>,∴函数()f x 在()0,+∞上单调递增. ②当10a +>,即1a >-时,令()0f x '=,解得11x a =+, 当101x a <<+时,()0f x '>,()f x 单调递增, 当11x a >+时,()0f x '<,()f x 单调递减. 综上,当1a ≤-时,函数()f x 在()0,+∞上单调递增;当1a >-时,函数()f x 在10,1a ⎛⎫ ⎪+⎝⎭上单调递增,在1,1a ⎛⎫+∞ ⎪+⎝⎭上单调递减.(2)由(1)得若1a ≤-,则()f x 单调递增,无最值. 若1a >-,则当11x a =+时,()f x 取得最大值,且()max 11ln111f x f a a ⎛⎫==- ⎪++⎝⎭. Q 函数()f x 的最大值大于31a -,1ln1311a a ∴->-+,即()ln 130a a ++<, 令()()()ln 131g a a a a =++>-,则()g a 在()1-+∞,上单调递增, 又()00g =,∴当10a -<<时()()00g a g <=, 故a 的取值范围为()10-,.。

河南省郑州市2017-2018学年高二下学期期末数学试卷(理科) Word版含解析

河南省郑州市2017-2018学年高二下学期期末数学试卷(理科) Word版含解析

2017-2018学年河南省郑州市高二(下)期末数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分.在每小题所给的四个答案中,只有一项是符合题目要求的)1.已知复数z满足z+3i﹣3=6﹣3i,则z=()A.9 B.3﹣6i C.﹣6i D.9﹣6i2.函数f(x)=2x+1在(1,2)内的平均变化率()A.3 B.2 C.1 D.03.将5本不同的数学用书放在同一层书架上,则不同的放法有()A.50 B.60 C.120 D.904.在2013年9月15日,某市物价部门对本市的5家商场的某种商品的一天销售量及其价5x yy=﹣3.2x+a,则a=()A.﹣24 B.35.6 C.40.5 D.405.下列说法错误的是()A.自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系B.在线性回归分析中,相关系数r的值越大,变量间的相关性越强C.在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高D.在回归分析中,R2为0.98的模型比R2为0.80的模型拟合的效果好6.设(2﹣x)6=a0+a1x+a2x+…+a6x6则|a1|+|a2|+…+|a6|的值是()A.665 B.729 C.728 D.637.若x=2是函数f(x)=x(x﹣m)2的极大值点,则m的值为()A.3 B.6 C.2或6 D.28.由曲线y2=2x和直线y=x﹣4所围成的图形的面积()A.21 B.16 C.20 D.189.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出2件.在第一次摸出正品的条件下,第二次也摸到正品的概率是()A.B.C.D.10.对于R上的可导函数f(x),若a>b>1且有(x﹣1)f′(x)≥0,则必有()A.f(a)+f(b)<2f(1)B.f(a)+f(b)≤2f(1)C.f(a)+f(b)≥2f(1)D.f(a)+f(b)>2f(1)11.以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角性”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数为()A.2017×22015B.2017×22014C.2016×22015D.2016×2201412.定义在R上的函数f(x)满足:f(x)+f′(x)>1,f(0)=4,则不等式e x f(x)>e x+3(其中e为自然对数的底数)的解集为()A.(0,+∞)B.(﹣∞,0)∪(3,+∞)C.(﹣∞,0)∪(0,+∞)D.(3,+∞)二、填空题(共4小题,每小题5分,满分20分)13.若随机变量ξ~N(2,1),且P(ξ>3)=0.158 7,则P(ξ>1)=.14.已知函数f(x)=+x+1有两个极值点,则实数a的取值范围是.15.把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有种.16.观察下列等式:+=1+++=12+++++=39…则当m<n且m,n∈N时,=(最后结果用m,n表示)三、解答题(共6小题,满分70分.解答时应写出文字说明、证明过程或演算步骤)17.已知(+)n展开式中的倒数第三项的系数为45.求:(1)含x5的项;(2)系数最大的项.18.已知数列{a n}满足S n+a n=2n+1.(1)写出a1,a2,a3,并推测a n的表达式;(2)用数学归纳法证明所得的结论.19.某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖,若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望.20.已知函数f(x)=x3+(1﹣a)x2﹣a(a+2)x+b(a,b∈R).(Ⅰ)若函数f(x)的图象过原点,且在原点处的切线斜率是﹣3,求a,b的值;(Ⅱ)若函数f(x)在区间(﹣1,1)上不单调,求a的取值范围.21.近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重,大气污染可引起心悸、呼吸困难等心肺疾病,为了解某市心肺疾病是否与性别有关,在某医院随机的对入院已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为,(1)请将上面的列联表补充完整;(2)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;(3)已知在患心肺疾病的10位女性中,有3位又患有胃病,现在从患心肺疾病的10位女性中,选出3名进行其它方面的排查,记选出患胃病的女性人数为ξ,求ξ的分布列、数学期望以及方差.22.已知f(x)=ax﹣lnx,x∈(0,e],g(x)=,其中e是自然常数,a∈R.(1)讨论a=1时,函数f(x)的单调性和极值;(2)求证:在(1)的条件下,f(x)>g(x)+;(3)是否存在实数a使f(x)的最小值是3?若存在,求出a的值;若不存在,说明理由.2015-2016学年河南省郑州市高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分.在每小题所给的四个答案中,只有一项是符合题目要求的)1.已知复数z满足z+3i﹣3=6﹣3i,则z=()A.9 B.3﹣6i C.﹣6i D.9﹣6i【考点】复数代数形式的乘除运算.【分析】直接移向变形得答案.【解答】解:由z+3i﹣3=6﹣3i,得z=6﹣3i+3﹣3i=9﹣6i.故选:D.2.函数f(x)=2x+1在(1,2)内的平均变化率()A.3 B.2 C.1 D.0【考点】变化的快慢与变化率.【分析】求出在区间(1,2)上的增量△y=f(2)﹣f(1),再利用平均变化率的公式,求出平均变化率.【解答】解:函数f(x)在区间(1,2)上的增量为:△y=f(2)﹣f(1)=2×2+1﹣3=2,所以f(x)在区间(1,2)上的平均变化率为:==2.故选:B.3.将5本不同的数学用书放在同一层书架上,则不同的放法有()A.50 B.60 C.120 D.90【考点】计数原理的应用.【分析】本题属于排列问题,全排即可.【解答】解:5本不同的数学用书,全排列,故有A55=120种,故选:C4.在2013年9月15日,某市物价部门对本市的5家商场的某种商品的一天销售量及其价5x yy=﹣3.2x+a,则a=()A.﹣24 B.35.6 C.40.5 D.40【考点】线性回归方程.【分析】先求出横标和纵标的平均数,根据a=y﹣bx,把所求的平均数和方程中出现的b的值代入,求出a的值,题目中给出公式,只要代入求解即可得到结果.【解答】解:==10,==8,∵y=﹣3.2x+a,∴a=3.2x+y=3.2×10+8=40.故选D.5.下列说法错误的是()A.自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系B.在线性回归分析中,相关系数r的值越大,变量间的相关性越强C.在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高D.在回归分析中,R2为0.98的模型比R2为0.80的模型拟合的效果好【考点】相关系数.【分析】A根据相关关系的定义,判断A正确;B线性回归分析的相关系数r的绝对值越接近1,线性相关性越强,判断B错误;C一组数据拟合程度的好坏,是残差点分布的带状区域宽度越狭窄,其模型拟合的精度越高,判断C正确;D用相关指数R2刻画回归效果时,R2的值越大说明模型拟合效果越好,由此判断D正确.【解答】解:对于A,根据相关关系的定义,即可判断自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系是相关关系,∴A正确;对于B,线性回归分析中,相关系数r的绝对值越接近1,两个变量的线性相关性越强,反之,线性相关性越弱,∴B错误;对于C,残差图中,对于一组数据拟合程度的好坏评价,是残差点分布的带状区域宽度越狭窄,其模型拟合的精度越高,∴C正确;对于D,回归分析中,用相关指数R2刻画回归效果时,R2的值越大说明模型拟合效果越好,∴R2为0.98的模型比R2为0.80的模型拟合效果好,D正确.故选:B.6.设(2﹣x)6=a0+a1x+a2x+…+a6x6则|a1|+|a2|+…+|a6|的值是()A.665 B.729 C.728 D.63【考点】二项式定理的应用.【分析】由二项式定理可知a0,a2,a4,a6均为正数,a1,a3,a5均为负数,可得|a0|+|a1|+|a2|+…+|a6|=a0﹣a1+a2﹣a3+a4﹣a5+a6,把x=﹣1,x=0代入已知式子计数可得结果.【解答】解:∵(2﹣x)6=a0+a1x+a2x+…+a6x,由二项式定理可知a0,a2,a4,a6均为正数,a1,a3,a5均为负数,令x=﹣1可得:∴|a0|+|a1|+|a2|+…+|a6|=a0﹣a1+a2﹣a3+a4﹣a5+a6=(2+1)6=729,x=0时,a0=26=64.∴|a1|+|a2|+…+|a6|=665.故选:A.7.若x=2是函数f(x)=x(x﹣m)2的极大值点,则m的值为()A.3 B.6 C.2或6 D.2【考点】利用导数研究函数的极值.【分析】由题意可知:求导,f′(2)=0,求得m的值,再分别利用函数极值的判断,求得m的值.【解答】解:f(x)=x(x﹣m)2=x3﹣2mx2+m2x,则f′(x)=3x2﹣4mx+m2,x=2是函数f(x)的极大值点,f′(2)=0,12﹣8m+m2=0,解得m=2或6,当m=2时,f(x)=x(x﹣2)2,f′(x)=3x2﹣8x+4,f′(x)>0,解得:x>2或x<,f′(x)<0,解得:<x<2,∴f(x)的单调递增区间为:(﹣∞,),(2,+∞),单调递减区间为:(,2),∴x=是f(x)的极大值,x=2是f(x)的极小值;当m=6时,f(x)=x(x﹣6)2,f′(x)=3x2﹣24x+36,f′(x)>0,解得:x>6或x<2,f′(x)<0,解得:2<x<6,∴f(x)的单调递增区间为:(﹣∞,2),(6,+∞),单调递减区间为:(2,6),∴x=2是f(x)的极大值,x=6是f(x)的极小值;所以m=6,故答案选:B.8.由曲线y2=2x和直线y=x﹣4所围成的图形的面积()A.21 B.16 C.20 D.18【考点】定积分在求面积中的应用.【分析】先求出曲线y2=2x 和直线y=x﹣4的交点坐标,从而得到积分的上下限,然后利用定积分表示出图形面积,最后根据定积分的定义求出即可.【解答】解:由解得曲线y2=2x 和直线y=x﹣4的交点坐标为:(2,﹣2),(8,4)选择y为积分变量∴由曲线y2=2x 和直线y=x﹣4所围成的图形的面积S=(y+4﹣y2)=(y2+4y﹣4=18,y3)|﹣2故选:D.9.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出2件.在第一次摸出正品的条件下,第二次也摸到正品的概率是()A.B.C.D.【考点】条件概率与独立事件.【分析】因为第一次抽出正品,所以剩下的9件中有5件正品,所以第二次也摸到正品的概率是,据此解答即可.【解答】解:设“第一次摸出正品”为事件A,“第二次摸出正品”为事件B,则事件A和事件B相互独立,在第一次摸出正品的条件下,第二次也摸到正品的概率为:P(B|A)===.故选:D.10.对于R上的可导函数f(x),若a>b>1且有(x﹣1)f′(x)≥0,则必有()A.f(a)+f(b)<2f(1)B.f(a)+f(b)≤2f(1)C.f(a)+f(b)≥2f(1)D.f(a)+f(b)>2f(1)【考点】利用导数研究函数的单调性.【分析】由不等式,通过分类讨论可以得出f(x)的单调性,即可得出f(a),f(b),f(1)的大小关系.【解答】解:由(x﹣1)f′(x)≥0可以得知,若(x﹣1)f′(x)>0,则有以下两种情况:①当x>1时,有f′(x)>0;②当x<1时,有f′(x)<0,∴可以得知当x>1时,f(x)单调递增,当x<1时,f(x)单调递减,∵a>b>1,∴f(a)>f(b)>f(1)∴f(a)+f(b)>2f(1),而当(x﹣1)f′(x)=0时,可以得知,f(a)=f(b)=f(1),∴f(a)+f(b)=2f(1),综上,可得f(a)+f(b)≥2f(1),故选:C.11.以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角性”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数为()A.2017×22015B.2017×22014C.2016×22015D.2016×22014【考点】归纳推理.【分析】数表的每一行都是等差数列,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014,第2016行只有M,由此可得结论【解答】解:由题意,数表的每一行都是等差数列,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014,故第1行的第一个数为:2×2﹣1,第2行的第一个数为:3×20,第3行的第一个数为:4×21,…第n行的第一个数为:(n+1)×2n﹣2,第2016行只有M,则M=(1+2016)•22014=2017×22014故选:B.12.定义在R上的函数f(x)满足:f(x)+f′(x)>1,f(0)=4,则不等式e x f(x)>e x+3(其中e为自然对数的底数)的解集为()A.(0,+∞)B.(﹣∞,0)∪(3,+∞)C.(﹣∞,0)∪(0,+∞)D.(3,+∞)【考点】利用导数研究函数的单调性;导数的运算.【分析】构造函数g(x)=e x f(x)﹣e x,(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解【解答】解:设g(x)=e x f(x)﹣e x,(x∈R),则g′(x)=e x f(x)+e x f′(x)﹣e x=e x[f(x)+f′(x)﹣1],∵f(x)+f′(x)>1,∴f(x)+f′(x)﹣1>0,∴g′(x)>0,∴y=g(x)在定义域上单调递增,∵e x f(x)>e x+3,∴g(x)>3,又∵g(0)═e0f(0)﹣e0=4﹣1=3,∴g(x)>g(0),∴x>0故选:A.二、填空题(共4小题,每小题5分,满分20分)13.若随机变量ξ~N(2,1),且P(ξ>3)=0.158 7,则P(ξ>1)=0.8413.【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据随机变量ξ~N(2,1),得到正态曲线关于x=2对称,由P(ξ>1)=P(ξ<3),即可求概率.【解答】解:∵随机变量ξ~N(2,1),∴正态曲线关于x=2对称,∵P(ξ>3)=0.1587,∴P(ξ>1)=P(ξ<3)=1﹣0.1587=0.8413.故答案为:0.841314.已知函数f(x)=+x+1有两个极值点,则实数a的取值范围是(﹣∞,﹣1)∪(1,+∞).【考点】利用导数研究函数的极值.【分析】求出函数的导数,令导数为0,由题意可得,判别式大于0,解不等式即可得到.【解答】解:函数f(x)=+x+1的导数f′(x)=x2+2ax+1由于函数f(x)有两个极值点,则方程f′(x)=0有两个不相等的实数根,即有△=4a2﹣4>0,解得,a>1或a<﹣1.故答案为:(﹣∞,﹣1)∪(1,+∞)15.把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有36种.【考点】排列、组合的实际应用;排列、组合及简单计数问题.【分析】分3步进行分析:①用捆绑法分析A、B,②计算其中A、B相邻又满足A、C相邻的情况,即将ABC看成一个元素,与其他产品全排列,③在全部数目中将A、B相邻又满足A、C相邻的情况排除即可得答案.【解答】解:先考虑产品A与B相邻,把A、B作为一个元素有种方法,而A、B可交换位置,所以有2=48种摆法,又当A、B相邻又满足A、C相邻,有2=12种摆法,故满足条件的摆法有48﹣12=36种.故答案为:36.16.观察下列等式:+=1+++=12+++++=39…则当m<n且m,n∈N时,=n2﹣m2(最后结果用m,n表示)【考点】归纳推理.【分析】通过观察,第一个式子为m=0,n=1.第二个式子为m=2,n=4.第三个式子为m=5,n=8,然后根据结果值和m,n的关系进行归纳得到结论.【解答】解:当m=0,n=1时,为第一个式子+=1,此时1=12﹣0,当m=2,n=4时,为第二个式子+++=12,此时12=42﹣22当m=5,n=8时,为第三个式子+++++=39,此时39,=82﹣52由归纳推理可知,=n2﹣m2.故答案为:n2﹣m2三、解答题(共6小题,满分70分.解答时应写出文字说明、证明过程或演算步骤)17.已知(+)n展开式中的倒数第三项的系数为45.求:(1)含x5的项;(2)系数最大的项.【考点】二项式定理的应用.【分析】(1)由题意知=45,求得n=10,在二项展开式的通项公式中,令x的幂指数等于0,求得k的值,可得含x3的项.(2)本题即求二项式系数最大的项,利用通项公式求得结果.【解答】解:(1)由题意知=45,∴n=10,T k+1=•,令=5,得k=2.所以含x3的项为T3=•x3=45x3.(2)系数最大的项,即二项式系数最大的项,即T6=•=252•.18.已知数列{a n}满足S n+a n=2n+1.(1)写出a1,a2,a3,并推测a n的表达式;(2)用数学归纳法证明所得的结论.【考点】数列递推式;数学归纳法.【分析】(1)取n=1,2,3,分别求出a1,a2,a3,然后仔细观察,总结规律,猜测a n的值.(2)用数学归纳法进行证明,①当n=1时,成立;②假设n=k时,成立,即a k=2﹣,当n=k+1时,a1+a2+…+a k+a k+1+a k+1=2(k+1)+1,a k+1=2﹣,当n=k+1时,成立.故a n=2﹣都成立.【解答】解:(1)当n=1,时S1+a1=2a1=3∴a1=当n=2时,S2+a2=a1+a2+a2=5∴a2=,同样令n=3,则可求出a3=∴a1=,a2=,a3=猜测a n=2﹣(2)①由(1)已得当n=1时,成立;②假设n=k时,成立,即a k=2﹣,当n=k+1时,a1+a2+…+a k+2a k+1=2(k+1)+1,且a1+a2+…+a k=2k+1﹣a k∴2k+1﹣a k+2a k+1=2(k+1)+1=2k+3,∴2a k+1=2+2﹣,即a k+1=2﹣,即当n=k+1时,成立.根据①②得n∈N+,a n=2﹣都成立.19.某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖,若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(1)记事件A1={从甲箱中摸出一个球是红球},事件A2={从乙箱中摸出一个球是红球},事件B1={顾客抽奖1次获一等奖},事件A2={顾客抽奖1次获二等奖},事件C={顾客抽奖1次能获奖},利用A1,A2相互独立,,互斥,B1,B2互斥,然后求出所求概率即可.(2)顾客抽奖1次可视为3次独立重复试验,判断X~B.求出概率,得到X的分布列,然后求解期望.【解答】解:(1)记事件A1={从甲箱中摸出一个球是红球},事件A2={从乙箱中摸出一个球是红球},事件B1={顾客抽奖1次获一等奖},事件B2={顾客抽奖1次获二等奖},事件C={顾客抽奖1次能获奖},由题意A1,A2相互独立,,互斥,B1,B2互斥,且B1=A1A2,B2=+,C=B1+B2,因为P(A1)=,P(A2)=,所以,P(B1)=P(A1)P(A2)==,P(B2)=P()+P()=+==,故所求概率为:P(C)=P(B1+B2)=P(B1)+P(B2)=.(2)顾客抽奖1次可视为3次独立重复试验,由(1)可知,顾客抽奖1次获一等奖的概率为:所以.X~B.于是,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.XE(X)=3×=.20.已知函数f(x)=x3+(1﹣a)x2﹣a(a+2)x+b(a,b∈R).(Ⅰ)若函数f(x)的图象过原点,且在原点处的切线斜率是﹣3,求a,b的值;(Ⅱ)若函数f(x)在区间(﹣1,1)上不单调,求a的取值范围.【考点】利用导数研究函数的单调性;导数的几何意义.【分析】(Ⅰ)先求导数:f′(x)=3x2+2(1﹣a)x﹣a(a+2),再利用导数求出在x=0处的导函数值,再结合导数的几何意义即可求出切线的斜率.列出关于a,b等式解之,从而问题解决.(Ⅱ)根据题中条件:“函数f(x)在区间(﹣1,1)不单调,”等价于“导函数f′(x)在(﹣1,1)既能取到大于0的实数,又能取到小于0的实数”,由于导函数是一个二次函数,有两个根,故问题可以转化为到少有一根在区间(﹣1,1)内,先求两根,再由以上关系得到参数的不等式,解出两个不等式的解集,求其并集即可;【解答】解析:(Ⅰ)由题意得f′(x)=3x2+2(1﹣a)x﹣a(a+2)又,解得b=0,a=﹣3或a=1(Ⅱ)函数f(x)在区间(﹣1,1)不单调,等价于导函数f′(x)[是二次函数],在(﹣1,1有实数根但无重根.∵f′(x)=3x2+2(1﹣a)x﹣a(a+2)=(x﹣a)[3x+(a+2)],令f′(x)=0得两根分别为x=a与x=若a=即a=﹣时,此时导数恒大于等于0,不符合题意,当两者不相等时即a≠﹣时有a∈(﹣1,1)或者∈(﹣1,1)解得a∈(﹣5,1)且a≠﹣综上得参数a的取值范围是(﹣5,﹣)∪(﹣,1)21.近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重,大气污染可引起心悸、呼吸困难等心肺疾病,为了解某市心肺疾病是否与性别有关,在某医院随机的对入院已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为,(1)请将上面的列联表补充完整;(2)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;(3)已知在患心肺疾病的10位女性中,有3位又患有胃病,现在从患心肺疾病的10位女性中,选出3名进行其它方面的排查,记选出患胃病的女性人数为ξ,求ξ的分布列、数学期望以及方差.【分析】(1)根据在全部50人中随机抽取1人抽到患心肺疾病的概率为,可得患心肺疾病的人数,即可得到列联表;(2)利用公式求得K2,与临界值比较,即可得到结论.(3)在患心肺疾病的10位女性中,有3位又患有胃病,记选出患胃病的女性人数为ξ,则ξ服从超几何分布,即可得到ξ的分布列、数学期望以及方差.【解答】解:(1)根据在全部50人中随机抽取1人抽到患心肺疾病生的概率为,可得患心肺疾病的为30人,故可得(2)因为K2=,即K2==,所以K2≈8.333又P(k2≥7.879)=0.005=0.5%,所以,我们有99.5%的把握认为是否患心肺疾病是与性别有关系的.(3)现在从患心肺疾病的10位女性中,选出3名进行胃病的排查,记选出患胃病的女性人数为ξ,则ξ=0,1,2,3.故P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)=,则Eξ=1×+2×+3×=0.9,Dξ=×(0﹣0.9)2+×(1﹣0.9)2+×(2﹣0.9)2+×(3﹣0.9)2=0.4922.已知f(x)=ax﹣lnx,x∈(0,e],g(x)=,其中e是自然常数,a∈R.(1)讨论a=1时,函数f(x)的单调性和极值;(2)求证:在(1)的条件下,f(x)>g(x)+;(3)是否存在实数a使f(x)的最小值是3?若存在,求出a的值;若不存在,说明理由.【考点】利用导数研究函数的单调性;利用导数研究函数的极值;导数在最大值、最小值问题中的应用.【分析】(1)当a=1时,求函数的定义域,然后利用导数求函数的极值和单调性.(2)利用(1)的结论,求函数f(x)的最小值以及g(x)的最大值,利用它们之间的关系证明不等式.(3)利用导数求函数的最小值,让最小值等于3,解参数a.【解答】解:(1)因为,所以当0<x<1时,f'(x)<0,此时函数f(x)单调递减.当1<x≤e时,f'(x)>0,此时函数f(x)单调递增.所以函数f(x)的极小值为f(1)=1.(2)因为函数f(x)的极小值为1,即函数f(x)在(0,e]上的最小值为1.又,所以当0<x<e时,g'(x)>0,此时g(x)单调递增.所以g(x)的最大值为g(e)=,所以,所以在(1)的条件下,f(x)>g(x)+.(3)假设存在实数a,使f(x)=ax﹣lnx,x∈(0,e],有最小值3,则,①当a≤0时,f'(x)<0,f(x)在(0,e]上单调递减,,(舍去),此时函数f(x)的最小值不是3.②当0时,f(x)在(0,]上单调递减,f(x)在(,e]上单调递增.所以f,满足条件.③当时,f(x)在(0,e]上单调递减,,(舍去),此时函数f(x)的最小值是不是3.综上可知存在实数a=e2,使f(x)的最小值是3.2016年8月2日。

【期末试卷】河南省郑州一中2017-2018学年高二下学期期末复习英语试卷Word版含答案

【期末试卷】河南省郑州一中2017-2018学年高二下学期期末复习英语试卷Word版含答案

一中2017-2018学年下学期高二年级期末复习试卷英语注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷第一部分听力(共两节,满分30 分)(略)第二部分阅读理解(共两节,满分40分)第一节(共15小题:每小题2分,满分30分)阅读下列短文,从每题所给的四个选项(A、B、C和D)中选出最佳选项,并在答题卡上将该项涂黑。

AWelcome to Arundel Castle which is situated in West Sussex, England. The castle has a history of nearly 1000 years and has welcomed visitors traveling from all over the world. Arundel Castle also plays a starring role in many films.The GardensThe White Garden is planted with soft white Iceberg Roses, and Snow White Lilies.The Rose Garden is newly planted with lovely old-fashioned English roses that are at their very best in June and July.The Organic Kitchen Garden produces a wide range of seasonal fruits and vegetables, pears, cherries and apples.The Castle ShopIn the Castle Shop, you will discover a wide and interesting range of gift ideas for everyone. It offers gifts and souvenirs designed to appeal to all tastes and pockets. Foods, china, books, and stationery (文具)are all available. Many are sold in this Castle Shop only.At Arundel Castle we pride ourselves on supporting local suppliers and actively encourage environmentally friendly products.The Arundel Festival 2014Saturday 16th to Monday 25th AugustThe annual Arundel Festival gets bigger and better every year. It is one of the most amazing, diverse and easily accessible arts festivals in the UK, offering a mix of visual arts, music, theatre and street entertainment.ParkingCoaches and mini-buses can drop off at the main Castle entrance in Mill Road and park in the main town car park that is opposite the Castle entrance. Please inform us when making your booking of how many parking permits are required.21. What can you do when visiting the castle?A. See how the local gifts are being made.B. Get old-fashioned English roses as gifts.C. Buy eco-friendly products in the Castle Shop.D. Get seasonal fruits and vegetables free of charge.22. How long does the Arundel Festival last this year?A. 10 daysB. One weekC. 16 daysD. One month23. Where can you park the coach?A. In Mill RoadB. At the main Castle entranceC. Inside the CastleD. In the main town car parkBOn a cloudless summer day, 13-year-old Charlie Finlayson was ready for a long hike with his father, David.Around noon, David was inching his way across a cliff 800 feet above the valley, searching for aline of cracks that would lead them to the top. Charlie stood on a rock a dozen yards to the right as he fed rope to his dad. Reaching up, David missed his step. In the next moment, he heard a sharp crack from above as something larger broke loose.When Charlie saw his father sailing through the air alongside the huge rocks that had struck him, he pulled the rope fiercely.“Tell me it’s OK,” Charlie begged, struggling to control his fear.“I think I broke my leg,” David told him. “And we must get off this mountain.” He proposed a plan: Charlie would lower David half a rope length at a time, then lower himself to the same level, and at a new place, begin again.As hours passed, they came to the base of the cliff, and David was shaking with cold and exhaustion.Worried that David would die if he fell asleep, Charlie kept the conversation going; they talked about past travels. Eventually Charlie allowed himself to catnap, checking on his father each time he awoke. When the sun rose on their camp, Charlie was relieved to see that his father was awake.Just after dawn, Charlie headed off on the trail toward the volunteers’ cabin 12 miles away, bringing back a helicopter that would carry his father to safety.“Charlie’s as strong as anyone I know,” says his father, “I’m so proud of him.”24. What happened to David when he climbed up?A. He missed his step and broke his leg.B. He lost his way across the cliff.C. He caught sight of a sharp crack from above.D. He stood on a rock a dozen yards from the cliff.25. How did Charlie feel at his father’s sailing through the air?A. Puzzled.B. Fearful.C. Relieved.D. Proud.26. What does the underlined word “catnap” in Paragraph 7 mean?A. become less calmB. continue talkingC. comfort himselfD. take a short sleep27. What might be the best title for the passage?A. A Father and His Brave SonB. An Accident Happened in a ValleyC. A Story on a Cloudless Summer DayD. A Boy Saved His Father’s Life from CliffCLots of people like a good fright at Halloween. Yet, the most frightening thing of all about the night is that twice as many children are killed while out and about on Hallween compared to any other day of the year, according to a study by Safe Kids Worldwide. It can also be a worrying time for others, espe cially elderly people living alone. Bu many people think it’s just harmless fun.But is it harmless fun?Police forces across Britain are giving warnings about Halloween night. They are asking all those wishing to celebrate Halloween this year to respect t hose who don’t want to join in.Some forces, like West Mercia Police, have produced “Sorry, No Trick or Treat” posters which can be downloaded from their website, and put up in windows. They want people to send them to the old or anyone who may be frightened by ghosts(鬼)knocking on their doors.A spokesman said: “Children should not call on houses where the posters are put up, neither should they call on strangers, as this can put young people at risk and also make some house owners anxious, especially thos e who are elderly or living alone.”The police want all trick or treaters to remember that disturbing other people or throwing objects at their homes or cars are all criminal offences(刑事罪). “What may start off as a bit of fun could end up with someone gett ing a criminal record,” they warn. “Parents may want to consider having a Halloween party at home, instead.”Kent Police are warning young people never to go into the home of someone they don’t know----and to remember not to frighten people.Warwickshire Police are also warning that tricks may seem like harmless fun but can cause trouble to others. They say behaviour such as throwing eggs can quickly cross the line between beinganti-social and causing criminal damage. This can result in fines of £2,500 for small offences.28. What has the study made by Safe Kids Worldwide found?A. Halloween brings people no funB. Halloween night puts some kids at riskC. kids are involved in criminal offencesD. kids are afraid of Halloween29. Why are British police forces making efforts to?A. Control anti-social behavioursB. Put an end to trick or treatC. Make Halloween safe and trouble-freeD. Punish those who frighten others30. Why are the “Sorry, No Trick or Treat” posters designed?A. To express disagreement with HalloweenB. To ask people to respect the elderlyC. To warn little kids to behave themselvesD. To make some people free from harm31. Which of the following things is encouraged by the police during Halloween?A. Having a Halloween party at homeB. Inviting the elderly to join in the celebrationC. Going trick or treating from door to doorD. Giving strangers a good frightDSometimes the toughest thing about feelings is sharing them with others.Sharing your feelings helps you whether your feelings are wonderful or terrible.Sharing also helps you to get closer to people you care about and who care about you.But how?You can’t tell your friends what’s inside your backpack if you don’t know what’s in there yourself.Feelings are the same way.Before you can share them with anyone,you have to figure out what feelings you have.Making a list of your feelings can help.You can do this in your mind or by writing it out or evenby drawing pictures.Is something bothering you? Does it make you frustrated or terrified? Do you feel this emotion only once in a while or much of the time?The way a person feels inside is important.If you keep feelings locked inside,it can even make you feel sick! But if you talk with someone who cares for you,you will almost always start to feel better.It doesn’t mean your problems and worries magically disappear,but at least someone else knows what’s bothering you and can help you find solutions.Your mom and dad want to know if you have problems and what’s happening in your life.But w hat if a kid doesn’t want to talk with parents? Then find another trusted adult,like a relative or a teacher at schoo1.Maybe this person can help you talk with your parents about your problem or concern.Once you know who you can talk with,you'll want to pick a time and place to talk.You can talk publicly in your family.But some kids are more private than others and they will feel shy about sharing their feelings.Then find a quiet place or write it down on a piece of paper.A kid doesn’t have to share every feeling he or she has.32. What does the passage mainly tell us?A. The importance of feelings.B. How to figure out your feelings.C. How to share your feelings.D. The people sharing your feelings.33. What can we learn from Paragraph 2?A. Kids ca n’t tell their friends about their backpack.B. Kids should know about themselves first before sharing.C. Kids need to find out what others think of them first.D. Kids’feelings are the same in a way.34. What might happen after sharing your feelings with others?A. You’11 recover from your illness.B. Your worries will magically disappear.C. You’11 like more private talks.D. You will feel relieved.35. Where is this passage probably taken from?A. A science fiction.B. A parents’brochure.C. A children’s magazine.D. A notice board.第二节(共 5 小题,每小题 2 分,满分10 分)根据短文内容,从短文后的选项中选出能填入空白处的最佳选项,选项中有两项为多余选项。

2017-2018学年河南省顶级名校高二(下)期末数学试卷(文科)(解析版)

2017-2018学年河南省顶级名校高二(下)期末数学试卷(文科)(解析版)

2017-2018学年河南省顶级名校高二(下)期末数学试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合A={0,1},B={z|z=x+y,x∈A,y∈A},则B的子集个数为()A.3B.4C.7D.82.(5分)若x>2m2﹣3是﹣1<x<4的必要不充分条件,则实数m的取值范围是()A.[﹣3,3]B.(﹣∞,﹣3]∪[3,+∞)C.(﹣∞,﹣1]∪[1,+∞)D.[﹣1,1]3.(5分)命题“∀x∈[﹣2,+∞),x+3≥l“的否定为()A.∃x0[﹣2,+∞),x0+3<1B.∃x0[﹣2,+∞),x0+3≥lC.∀x∈[﹣2,+∞),x+3<1D.∀x∈(﹣∞,﹣2),x+3≥l4.(5分)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是()A.[﹣2,2]B.[﹣1,1]C.[0,4]D.[1,3]5.(5分)已知函数f(x)=5|x|,g(x)=ax2﹣x(a∈R),若f[g(1)]=1,则a=()A.1B.2C.3D.﹣16.(5分)若函数f(x)=(a>0且a≠1)的值域是[4,+∞),则实数a的取值范围是()A.(0,)B.[,1)C.(1,2)D.(1,2]7.(5分)若函数f(x)=是奇函数,则使f(x)>3成立的x的取值范围为()A.(﹣∞,﹣1)B.(﹣1,0)C.(0,1)D.(1,+∞)8.(5分)若a>b>0,0<c<1,则()A.log a c<log b c B.log c a<log c bC.a c<b c D.c a>c b9.(5分)已知定义在R上的函数f(x)=2|x﹣m|﹣1(m为实数)为偶函数,记a=f(log0.53),b=f(log25),c=f(2m),则a,b,c的大小关系为()A.a<b<c B.a<c<b C.c<a<b D.c<b<a10.(5分)已知函数f(x)=x3﹣mx2+4x﹣3在区间[1,2]上是增函数,则实数m的取值范围是()A.[4,5]B.[2,4]C.(﹣∞,﹣1]∪[1,+∞)D.(﹣∞,4]11.(5分)已知函数,若关于x的方程f2(x)+(a﹣1)f(x)﹣a=0有7个不等的实数根,则实数a的取值范围是()A.[1,2]B.(1,2)C.(﹣2,﹣1)D.[﹣2,﹣1] 12.(5分)已知函数f(x)=﹣x3+1+a(≤x≤e,e是自然对数的底)与g(x)=3lnx的图象上存在关于x轴对称的点,则实数a的取值范围是()A.[0,e3﹣4]B.[0,+2]C.[+2,e3﹣4]D.[e3﹣4,+∞)二、填空题(本大题共4小题,每小题5分,共20分13.(5分)函数f(x)=的定义域是.14.(5分)设2a=3b=m,且=2,则m=15.(5分)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是.16.(5分)设f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣2)=0,当x>0时,xf′(x)﹣f(x)>0,则使得f(x)>0成立的x的取值范围是.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤)(一)必考题:共60分17.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且a2+b2=c2+ab.(Ⅰ)求角C的值;(Ⅱ)若b=2,c=1,求△ABC的面积;(Ⅲ)若△ABC为锐角三角形,且c=1,求a﹣b的取值范围.18.(12分)商丘市大型购物中心﹣﹣万达广场将于2018年7月6日全面开业,目前正处于试营业阶段,某按摩椅经销商为调查顾客体验按摩椅的时间,随机调查了50名顾客,体验时间(单位:分钟)落在各个小组的频数分布如表:(1)求这50名顾客体验时间的样本平均数,中位数m ,众数n(2)已知体验时间为[15.5,18.5)的顾客中有2名男性,体验时间为[27.5,30.5)的顾客中有3名男性,为进一步了解顾客对按摩椅的评价,现随机从体验时间为[15.5,18.5)和[27.5,30.5)的顾客中各抽一人进行采访,求恰抽到一名男性的概率. 19.(12分)如图,三棱柱ABC ﹣A 1B 1C 1中,AC =CB ,AB =AA 1,∠BAA 1=60° (1)证明:AB ⊥A 1C(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB =2,求点A 到平面BB 1C 1C 的距离.20.(12分)已知三点A (﹣2,1),B (2,1),O (0,0),曲线C 上任意一点M (x ,y )满足||=•(+)+2(1)求C 的方程;(2)已知点P (0,﹣1),动点Q (x 0,y 0)(﹣2<x 0<2)在曲线C 上,曲线C 在Q 处的切线l 与直线P A ,PB 都相交,交点分别为D ,E ,求△ABQ 与△PDE 的面积的比值. 21.(12分)已知函数f (x )=lnx ,g (x )=e x(1)求函数y =f (x )﹣x 的单调区间与极值;(2)求证:在函数f (x )和g (x )的公共定义域内,g (x )﹣f (x )>2. 四、解答题(共2小题,满分10分)22.(10分)在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立坐标系.已知点A 的极坐标为(,),直线的极坐标方程为ρcos (θ﹣)=a ,且点A 在直线上.(1)求a 的值及直线的直角坐标方程;(2)圆C的参数方程为(α为参数),试判断直线与圆的位置关系.23.已知函数f(x)=|2x﹣a|+|x﹣1|,a∈R.(Ⅰ)若不等式f(x)≤2﹣|x﹣1|有解,求实数a的取值范围;(Ⅱ)当a<2时,函数f(x)的最小值为3,求实数a的值.2017-2018学年河南省顶级名校高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:由题意可知,集合B={z|z=x+y,x∈A,y∈A}={0,1,2},则B的子集个数为:23=8个,故选:D.2.【解答】解:x>2m2﹣3是﹣1<x<4的必要不充分条件,∴(﹣1,4)⊆(2m2﹣3,+∞),∴2m2﹣3≤﹣1,解得﹣1≤m≤1,故选:D.3.【解答】解:因为全称命题的否定是特称命题,所以“∀x∈[﹣2,+∞),x+3≥l“的否定为,∃x0[﹣2,+∞),x0+3<1故选:A.4.【解答】解:∵函数f(x)为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f(x)在(﹣∞,+∞)单调递减,﹣1≤f(x﹣2)≤1,∴f(1)≤f(x﹣2)≤f(﹣1),∴﹣1≤x﹣2≤1,解得:x∈[1,3],故选:D.5.【解答】解:∵g(x)=ax2﹣x(a∈R),∴g(1)=a﹣1,若f[g(1)]=1,则f(a﹣1)=1,即5|a﹣1|=1,则|a﹣1|=0,解得a=1,故选:A.6.【解答】解:当x≤2时,f(x)=﹣x+6≥4,要使f(x)的值域是[4,+∞),则当x>2时,f(x)=3+log a x≥4恒成立,即log a x≥1,若0<a<1,则不等式log a x≥1不成立,当a>1时,则由log a x≥1=log a a,则a≤x,∵x>2,∴a≤2,即1<a≤2,故选:D.7.【解答】解:∵f(x)=是奇函数,∴f(﹣x)=﹣f(x)即整理可得,∴1﹣a•2x=a﹣2x∴a=1,∴f(x)=∵f(x))=>3∴﹣3=>0,整理可得,,∴1<2x<2解可得,0<x<1故选:C.8.【解答】解:∵a>b>0,0<c<1,∴log c a<log c b,故B正确;∴当a>b>1时,0>log a c>log b c,故A错误;a c>b c,故C错误;c a<c b,故D错误;故选:B.9.【解答】解:∵f(x)为偶函数;∴f(﹣x)=f(x);∴2|﹣x﹣m|﹣1=2|x﹣m|﹣1;∴|﹣x﹣m|=|x﹣m|;(﹣x﹣m)2=(x﹣m)2;∴mx=0;∴m=0;∴f(x)=2|x|﹣1;∴f(x)在[0,+∞)上单调递增,并且a=f(|log0.53|)=f(log23),b=f(log25),c=f(0);∵0<log23<log25;∴c<a<b.故选:C.10.【解答】解:函数f(x)=x3﹣mx2+4x﹣3,可得f′(x)=x2﹣mx+4,函数f(x)在区间[1,2]上是增函数,可得x2﹣mx+4≥0,在区间[1,2]上恒成立,可得m≤x+,x+≥2=4,当且仅当x=2,时取等号、可得m≤4.故选:D.11.【解答】解:函数的图象如图:关于f2(x)+(a﹣1)f(x)﹣a=0有7个不等的实数根,即[f(x)+a][f(x)﹣1]=0有7个不等的实数根,f(x)=1有3个不等的实数根,∴f(x)=﹣a必须有4个不相等的实数根,由函数f(x)图象可知﹣a∈(1,2),∴a∈(﹣2,﹣1).故选:C.12.【解答】解:根据题意,若函数f(x)=﹣x3+1+a(≤x≤e,e是自然对数的底)与g (x)=3lnx的图象上存在关于x轴对称的点,则方程﹣x3+1+a=﹣3lnx在区间[,e]上有解,﹣x3+1+a=﹣3lnx⇔a+1=x3﹣3lnx,即方程a+1=x3﹣3lnx在区间[,e]上有解,设函数g(x)=x3﹣3lnx,其导数g′(x)=3x2﹣=,又由x∈[,e],g′(x)=0在x=1有唯一的极值点,分析可得:当≤x≤1时,g′(x)<0,g(x)为减函数,当1≤x≤e时,g′(x)>0,g(x)为增函数,故函数g(x)=x3﹣3lnx有最小值g(1)=1,又由g()=+3,g(e)=e3﹣3;比较可得:g()<g(e),故函数g(x)=x3﹣3lnx有最大值g(e)=e3﹣3,故函数g(x)=x3﹣3lnx在区间[,e]上的值域为[1,e3﹣3];若方程a+1=x3﹣3lnx在区间[,e]上有解,必有1≤a+1≤e3﹣3,则有0≤a≤e3﹣4,即a的取值范围是[0,e3﹣4];故选:A.二、填空题(本大题共4小题,每小题5分,共20分13.【解答】解:由,解得:﹣1<x≤2,且x≠0.∴函数f(x)=的定义域是{x|﹣1<x≤2,且x≠0}.故答案为:{x|﹣1<x≤2,且x≠0}.14.【解答】解:由2a=m,3b=m,(m>0)可得log2m=a,log3m=b,∴,.∵=2,即log m2+log m3=2,∴log m6=2.那么m2=6.∴m=故答案为:.15.【解答】解:∵二次函数f(x)=x2+mx﹣1的图象开口向上,对于任意x∈[m,m+1],都有f(x)<0成立,∴,即,解得﹣<m<0,故答案为:(﹣,0).16.【解答】解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0时总有xf′(x)﹣f(x)>0成立,即当x>0时,g′(x)>0,∴当x>0时,函数g(x)为增函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数,∴x<0时,函数g(x)是减函数,又∵g(﹣2)==0=g(2),∴x>0时,由f(x)>0,得:g(x)>g(2),解得:x>2,x<0时,由f(x)>0,得:g(x)<g(﹣2),解得:x>﹣2,∴f(x)>0成立的x的取值范围是:(﹣2,0)∪(2,+∞).故答案为:(﹣2,0)∪(2,+∞).三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤)(一)必考题:共60分17.【解答】解:(Ⅰ)由余弦定理可得c2=a2+b2﹣2ab cos C,且a2+b2=c2+ab,∴cos C===,∵0<C<π,∴C=,(Ⅱ)由正弦定理可得,=,∴sin B==1,∴B=∴A=∴S△ABC=bc sin A=×2×1×=;(Ⅲ)由正弦定理可得,====2,∴a=2sin A,b=2sin B,∴a﹣b=2sin A﹣2sin B=2sin A﹣2sin(﹣A)=sin A﹣cos A=2sin(A﹣),∵<A<,∴<A﹣<,∴<2sin(A﹣)<,∴a﹣b的取值范围为(1,)18.【解答】解:(1)样本平均数:=0.06×14+0.16×17+0.18×20+0.24×23+0.20×26+0.10×29+0.06×32=22.7,………(3分)中位数m=21.5+3×=22.75,…………………………(5分)众数n=23.…………………………(7分)(2)记体验时间为[15.5,18.5)的8名顾客为a1y,a2y,a3,a4,a5,a6,a7,a8,其中为a1y,a2y男性,体验时间为[27.5,30.5)的5名顾客为b1y,b2y,b3y,b4,b5,其中b1y,b2y,b3y为男性,记“恰抽到一名男性”为事件A,………………………………(8分)所有可能抽取结果列举如下:(b1y,a1y),(b1y,a2y),(b1y,a3),(b1y,a4),(b1y,a5),(b1y,a6),(b1y,a7),(b1y,a8),(b2y,a1y),(b2y,a2y),(b2y,a3),(b2y,a4),(b2y,a5),(b2y,a6),(b2y,a7),(b2y,a8),(b3y,a1y),(b3y,a2y),(b3y,a3),(b3y,a4),(b3y,a5),(b3y,a6),(b3y,a7),(b3y,a8),(b4,a1y),(b4,a2y),(b4,a3),(b4,a4),(b4,a5),(b4,a6),(b4,a7),(b4,a8),(b5,a1y),(b5,a2y),(b5,a3),(b5,a4),(b5,a5),(b5,a6),(b5,a7),(b5,a8),共40个,…………………………………………(9分)其中事件A包含的所有可能结果有共22个;…………………………………………(10分)所以恰抽到一名男性的概率P(A)==.……………………………………(12分)19.【解答】(1)证明:取AB的中点O,连接OC,OA1,A1B.因为CA=CB,所以OC⊥AB.由于AB=AA1,∠BAA1=60°,故△AA1B为等边三角形,所以OA1⊥AB.因为OC∩OA1=O,所以AB⊥平面OA1C,又A1C⊂平面OA1C,故AB⊥A1C﹣﹣﹣﹣﹣﹣﹣﹣(4分)(2)解:由(1)知OC⊥AB,OA1⊥AB.又平面ABC⊥平面AA1B1B,交线为AB,所以OC⊥平面AA1B1B,故OA,OA1,OC两两互相垂直.…………………………………………(6分)连接OB1,CB1,因为AC=CB=AB=AA1=2,∠BAA1=60°,所以OC=,由余弦定理得OB1=,所以CB1=,…………………………(8分)在△CBB1中由余弦定理得,cos∠CBB1=﹣,sin∠CBB1=,………………(9分)设点A到平面BB 1C1C的距离为h,由,得,,所以h=.20.【解答】解:(1)依题意可得,,,.由已知得,化简得曲线C的方程:x2=4y;(2)直线P A的方程是y=﹣x﹣1,直线PB的方程是y=x﹣1,曲线C在点Q处的切线l的方程为:,它与y轴的交点为N(0,﹣),由于﹣2<x0<2,因此﹣1<<1,﹣1<≤0.联立,可得;联立,可得,则x E﹣x D=2,又|PN|=﹣,∴,.∴.21.【解答】解:(1)函数h(x)=f(x)﹣x=lnx﹣x的定义域为(0,+∞),h′(x)=﹣1=,故当x∈(0,1)时,h′(x)>0,当x∈(1,+∞)时,h′(x)<0,故函数h(x)的单调增区间为(0,1),单调减区间为(1,+∞).函数的极大值为f(1)﹣1=ln1﹣1=﹣1,无极小值.(2)证明:函数f(x)和g(x)的公共定义域内(0,+∞),g(x)﹣f(x)=e x﹣lnx=(e x﹣x)﹣(lnx﹣x),设u(x)=e x﹣x,则u(x)在(0,+∞)上单调递增,故u(x)>u(0)=1;设v(x)=lnx﹣x,当x=1时有极大值点,∴v(x)≤v(1)=﹣1;故g(x)﹣f(x)=u(x)﹣v(x)>2.在函数f(x)和g(x)的公共定义域内,g(x)﹣f(x)>2.四、解答题(共2小题,满分10分)22.【解答】解:(1)由点A(,)在直线ρcos(θ﹣)=a上,可得a=cos0=,所以直线的方程可化为ρcosθ+ρsinθ=2,从而直线的直角坐标方程为x+y﹣2=0,(2)由已知得圆C的直角坐标方程为(x﹣1)2+y2=1,所以圆心为(1,0),半径r=1,∴圆心到直线的距离d==<1,所以直线与圆相交.23.【解答】解:(Ⅰ)由题f(x)≤2﹣|x﹣1|,即为.而由绝对值的几何意义知,﹣﹣﹣﹣﹣﹣﹣(2分)由不等式f(x)≤2﹣|x﹣1|有解,∴,即0≤a≤4.∴实数a的取值范围[0,4].﹣﹣﹣﹣﹣﹣﹣(5分)(Ⅱ)函数f(x)=|2x﹣a|+|x﹣1|的零点为和1,当a<2时知,∴﹣﹣﹣﹣﹣﹣﹣(7分)如图可知f(x)在单调递减,在单调递增,∴,得a=﹣4<2(合题意),即a=﹣4.﹣﹣﹣﹣﹣﹣﹣(10分)。

河南省郑州市第一中学2017-2018学年高二下学期期中考试数学(文)试题+Word版含解析

河南省郑州市第一中学2017-2018学年高二下学期期中考试数学(文)试题+Word版含解析

Hale Waihona Puke C.都是奇数或至少有两个偶数
D.
至少有两个偶数
【答案】 D
【解析】试题分析:由于命题“自然数 a、 b、c 中恰有一个偶数”的否定是“自然数 a、b、c
中都是奇数或至少有两个偶数”,
考点:反证法
7. 在极坐标系中,两条曲线

的交点为 ,则
()
A. 4 B.
C. 2 D. 1
【答案】 C
【解析】分析:联立极坐标方程,然后结合勾股定理求解弦长即可
法,其关键是准确应用解析几何中有关曲线的定义.
11. 对于大于 1 的自然数 的三次幂可用奇数进行以下方式的“分裂”:


,…已知 的“分裂”数中有一个是 333,则 为( )
A. 16 B. 17 C. 18 D. 19
【答案】 C
【解析】分析:由题意找到分裂数的性质,然后结合题意确定 详解:由 23=3+5,分裂中的第一个数是: 3=2×1+1, 33=7+9+11,分裂中的第一个数是: 7=3×2+1, 43=13+15+17+19,分裂中的第一个数是: 13=4×3+1,

年份
2012
收入 (万元) 8.2
支出 (万元) 6.2
2013 8.6 7.5
2014 10.0 8.0
2015 11.3 8.5
2016 11.9 9.8
A. 11.4 万元 B. 11.8 万元 C. 12.0 万元 D. 12.2 万元
【答案】 B
【解析】分析:首先求得样本中心点,然后确定回归方程,最后进行预测即可
,二维测度(面积)

郑州市2017—2018学年下学期期末考试高二文科数学试题及答案

郑州市2017—2018学年下学期期末考试高二文科数学试题及答案

郑州市2017-2018学年下期高二数学(文科)评分参考一、选择题:1---12 BDCAD CBCCB AB二、填空题: 13. ②; 14. 35; 15. [0,2]; 16. ①②④.三、计算题:17、解:(I )设z =x +y i(x ,y ∈R ),则z +2i =x +(y +2)i ,由题意得y =-2. ……2分 ∵z 2-i =x -2i 2-i =15(x -2i)(2+i)=15(2x +2)+15(x -4)i.由题意得x =4,……4分∴z =4-2i. …………5分(.II ..).∴(..z .+.m .i)..2.=.(12...+.4.m .-.m .2.).+.8(..m .-.2)i..... ……..………6....分.由于..(.z .+.m .i)..2.在复平面上对应的点在第一象限,...............∴.24120,8(2)0,m m m ⎧-++>⎨->⎩解得..2.<.m .<.6...∴.实数..m .的取值范围是......(2,6)....... ……………10.......分. 18.解: (I)由男女生各200人及等高条形图可知耳鸣的男生有200×0.3=60人,耳鸣的女生有200×0.5=100人,所以无耳鸣的男生有200-60=140(人), 无耳鸣的女生有200-100=100(人),所以2×2列联表如下: ………4分……………6分(II)由公式计算K 2的观测值:2400(60100140100)16.667200200160240k ⨯⨯-⨯=≈⨯⨯⨯>10.828, ……………10分所以能在犯错误的概率不超过0.001的前提下认为性别与耳鸣有关. ………12分 19..(选修...4.-.4.:坐标系与参数方程)..........解. (.I .).直线..l .的普通方程为......2.x .+.y .-.2.a .=.0.,. ……………3......分. 圆C 的普通方程为x 2+y 2=16. ……………6分 (II)因为直线l 与圆C 有公共点,故圆C 的圆心到直线l 的距离d =|-2a |5≤4. ……………9分解得-25≤a ≤2 5 . ……………12分选修..4-5...:不等式选讲......解. (1)∵|.....a .-.b .|.+.|.b .-.c .|≥|...a .-.b .+.b .-.c .|.=.|.a .-.c .|...当且仅当(a -b )(b -c )≥0取“=”,∴|a -b |+|b -c ||a -c |≥1, ……………3分∴f (x )≤1,即|2x -1|≤1,∴-1≤2x -1≤1,∴x ∈[0,1]. ……………6分(2)①⎩⎪⎨⎪⎧2x -1≥0,2x -1≤3x 或②⎩⎪⎨⎪⎧2x -1<0,1-2x ≤3x . ……………9分 由.①.得.x .≥.1.2.,由..②.得.1.5.≤.x .<.1.2... 综上,原不等式的解集为⎩⎨⎧⎭⎬⎫x |x ≥15.. ……………12分20.证明:(1)左-右=ab +1-(a +b ) ……………2分=(a -1)(b -1). ……………4分∵|a |<1,|b |<1,故a -1<0,b -1<0,即(a -1)(b -1) >0.得证.……………6分 (2)∵|a |<1,|b |<1,|c |<1,据(1)得(ab )·c +1>ab +c ,……………8分∴.abc ...+.2.=.[(..ab ..)·.c .+.1]..+.1>(...ab ..+.c .).+.1.=.(.ab ..+.1)..+.c .>.a .+.b .+.c ...………12.....分. 21..(选修...4.-.4.:坐标...系与参数方程).......解:..(1)...由圆..C .的极坐标方程为....... ρ.=.2.2.cos(....θ.+.π.4.).,得.. ρ.2.=.2.2.(.2.2.ρ.cos ...θ.-.2.2.ρ.sin ...θ.).,. ……………2......分. 把.⎩⎪⎨⎪⎧x .=.ρ.cos ...θ.,.y .=.ρ.sin ...θ.代入可得圆.....C .的直角坐标方程为........x .2.+.y .2.-.2.x .+.2.y .=.0.,. 即.(.x .-.1)..2.+.(.y .+.1)..2.=.2... .. ……………4......分.∴.圆心坐标为.....(1..,-..1)..,. ∴.圆心的极坐标为.......(.2.,.7π..4.). ..……………6......分.(2)...由题意,得直线.......l .的直角坐标方程为........2.2.x .-.y .-.1.=.0... ∴.圆心..(1..,-..1)..到直线...l .的距离...d .=.|.2.2.+.1.-.1|...2.2..2.+..-.1..2.=.2.2.3.,. ………8....分. ∴.AB ..=.2.r .2.-.d .2. =.2.2.-.8.9.=.2.10..3... 点.P .到直线...l .的距离的最大值为........r .+.d .=.2.+.2.2.3.=.5.2.3.,. ……………10.......分.∴.S .max ...=.1.2.×.2.10..3.×.5.2.3.=.1.0.5.9.. . ……………12.......分. 选修..4-5...:不等式选讲......解. (1)...当.x .≥.1.2.时,..2.x .-.1.+.x .+.3≥2...x .+.4.,. ∴.x .≥2..;. ……………2......分. 当-..3.<.x .<.1.2.时,.. 1.-.2.x .+.x .+.3≥2...x .+.4.,. ∴.-.3.<.x .≤0..;. ……………4......分.当.x .≤.-.3.时,..1.-.2.x .-.x .-.3≥2...x .+.4.,. ∴.x .≤.-.3...综上,原不等式的解集..........A .=.{.x .|.x .≤0..,或..x .≥2}..... ……………6......分. (2)...当.x .≤.-.2.时,..|2..x .-.a .|.+.|.x .+.3|≥0≥2......x .+.4.成立.... ……………8......分. 当.x .>-..2.时,..|2..x .-.a .|.+.|.x .+.3|..=.|2..x .-.a .|.+.x .+.3≥2...x .+.4.,即..|2..x .-.a .|≥..x .+.1.,. 得.x .≥.a .+.1.或.x .≤.a .-.1.3.,所以...a .+.1≤..-.2.或.a .+.1≤..a .-.1.3.,.得.a .≤.-.2.,. ………11.....分. 综上,...a .的.取值范围为.....(.-.∞.,-..2].... ……………12.......分.22解:(1)21c xy C e =适宜. ……………………2分(2)由21c xy C e =得21ln ln ,y C x C =+令21ln ,,ln ,y k C C βα===……………………4分由图表中的数据可知3513ˆˆ,.14044βα===- ……………………6分 13ˆ.44kx ∴=- y ∴关于x 的回归方程为344.x y e-= ……………………8分(3)当28x =时,由回归方程得ˆ1096.630.472333,y=÷≈,ˆ0.082333 2.810194.z =⨯-+= ……………………11分 即年宣传费为28万元时,年销售量量的预报值约为2333t ,年利润的预报值约为194万元. ……………………12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年河南省郑州一中高二下学期6月期末复习文科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2018·三明质检]已知集合,,()A.B.C.D.2.[2018·乐山四校联考]峨眉山市2017年各月的平均气温数据的茎叶图如下,则这组数据的中位数是()A.19 B.20 C. D.233.[2018·昆明质检]若复数是纯虚数,且(,是虚数单位),则()A.1 B.2 C.D.4.[2018·银川二中]如图,分别以,为圆心,正方形的边长为半径圆弧,交成图中阴影部分,现向正方形内投入1个质点,则该点落在阴影部分的概率为()A.B.C.D.5.[2018·湘潭模拟]若双曲线的一条渐近线与直线垂直,则此双曲线的实轴长为()A.2B.4C.18D.366.[2018·南昌二中]如图,各棱长均为的正三棱柱,、分别为线段、上的动点,且平面,则这样的有()A.1条B.2条C.3条D.无数条7.[2018·榆林模拟]已知实数,满足,则的最大值与最小值之和为()A.B.C.D.18.[2018·漳州质检]函数的图象大致为()A.B.C.D.9.[2018·济南一中]下列关于函数的判断正确的是()①的解集是;②极小值,是极大值;③没有最小值,也没有最大值.A.①③B.①②③C.②D.①②10.[2018·三明质检]我国古代著名的“物不知数”问题:“今有物其数大于八,二二数之剩一,三三数之剩一,五五数之剩二,问物几何?”即“已知大于八的数,被二除余一,被三除余一,被五除余二,问该数为多少?”为解决此问题,现有同学设计了如图所示的程序框图,则框图中的“”处应填入()A.B.C. D.11.[2018·长郡中学]在中,内角,,的对边分别为,,,若的面积为,且,则()A.B.C.D.12.[2018·玉林高中]已知椭圆的左、右顶点分别为,,为椭圆的右焦点,圆上有一动点,不同于,两点,直线与椭圆交于点,则的取值范围是()A.B.C.D.第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.[2018·昆明检测]已知向量,,,若,则________.14.[2018·清江中学]曲线在处的切线的方程为________.15.[2018·嘉兴一中]已知,则_________.16.[2018·潍坊二模]一个几何体的三视图如图所示,则该几何体的外接球的体积为_________.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)[2018·大庆实验中学]等比数列中,已知,.(1)求数列的通项公式;(2)若,分别为等差数列的第8项和第32项,求数列的通项公式及前项和.18.(12分)[2018·天一大联考]如图(1)所示,长方形中,,是的中点,将沿折起,使得,如图(2)所示,在图(2)中,(1)求证:平面;(2)若,求三棱锥的体积.19.(12分)[2018·烟台适应]某中学为调查该校学生每周参加社会实践活动的情况,随机收集了若干名学生每周参加社会实践活动的时间(单位:小时),将样本数据绘制如图所示的频率分布直方图,且在内的学生有1人.(1)求样本容量,并根据频率分布直方图估计该校学生每周参加社会实践活动时间的平均值;(2)将每周参加社会实践活动时间在内定义为“经常参加社会实践”,参加活动时间在内定义为“不经常参加社会实践”.已知样本中所有学生都参加了青少年科技创新大赛,有13人成绩等级为“优秀”,其余成绩为“一般”,其中成绩优秀的13人中“经常参加社会实践活动”的有12人.请将列联表补充完整,并判断能否在犯错误的概率不超过的前提下认为青少年科技创新大赛成绩“优秀”与经常参加社会实践活动有关;(3)在(2)的条件下,如果从样本中“不经常参加社会实践”的学生中随机选取两人参加学校的科技创新班,求其中恰好一人成绩优秀的概率.参考公式和数据:,.一般优秀合计不经常参加经常参加12合计1320.(12分)[2018·南阳一中]在平面直角坐标系中,与点关于直线对称的点位于抛物线上.(1)求抛物线的方程;(2)过点作两条倾斜角互补的直线交抛物线于,两点(非点),若过焦点,求的值.21.(12分)[2018·夏邑一中]已知函数,曲线在点处的切线方程为.(1)求,的值;(2)证明:.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分。

22.(10分)[2018·湛江二模] 选修4-4:坐标系与参数方程在直角坐标系中,点,直线的参数方程为(为参数),以原点为极点,轴的非负半轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)设直线与曲线的两个交点分别为、,求的值.23.(10分)[2018·岳阳一中]选修4-5:不等式选讲设函数,.(1)证明:;(2)若不等式的解集是非空集,求的范围.文科数学答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】C【解析】由集合中的不等式变形得,解得或,即,则.故选C.2.【答案】B【解析】由题意得,这组数据是:08,09,12,15,18,20,20,23,23,28,31,32.根据中位数的定义,可知其中位数为20.故选B.3.【答案】A【解析】根据复数是纯虚数,设.,,即.,,.故选A.4.【答案】B【解析】设正方形的面积为1,阴影部分由两个弓形构成,每个弓形的面积为,故所求的概率为.故选B.5.【答案】C【解析】由双曲线的方程,可得一条渐近线的方程为,所以,解得,所以双曲线的实轴长为.故选C.6.【答案】D【解析】由题意得.在上分别取,,使,过,作,,垂足分别为,,则,,故,.,,,可得平面.平面,平面平面.由于平面,所以平面,从而满足条件的有无数条.故选D.7.【答案】C【解析】作出可行域,如图内部(含边界),作直线,平移直线,当过时取得最大值10,当过时取得最小值,两者之和为.故选C.8.【答案】A【解析】易知的定义域为,且,即函数是奇函数,图象关于原点对称,故排除选项C、D;又,故排除选项B,故选A.9.【答案】D【解析】由,故①正确;,由得,由得或,由得,的单调减区间为和,单调增区间为.的极大值为,极小值为,故②正确;时,恒成立.无最小值,但有最大值,故③不正确.故选D.10.【答案】A【解析】由题意,判断框内应该判断的值是否同时能被二除余一,被三除余一,即判断是否为整数.故选A.11.【答案】B【解析】,,,,(舍去),,.故选B.12.【答案】D【解析】由题意得,,,.设点的坐标为,则.,又且,或,故的取值范围为.选D.第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.【答案】30【解析】向量,,若,,,,,,,.14.【答案】【解析】的导数为,可得在点处的切线斜率为,即有在点处的切线方程为.故答案为.15.【答案】【解析】,,即,.16.【答案】【解析】由三视图知该几何体为四棱锥,记作,如图所示:其中平面,,平面为边长为1的正方形,将此四棱锥补成正方体,易知正方体的体对角线即为外接球直径.外接球的直径为,即.该几何体的外接球的体积为.故答案为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.【答案】(1);(2),.【解析】(1)设的公比为,由已知得,解得,所以.(2)由(1)得,,则,,设的公差为,则有,解得,,数列前项和.18.【答案】(1)见解析;(2).【解析】(1)在长方形中,因为,是的中点,所以,从而,所以.又因为,,所以平面.(2)因为,所以,因为是的中点,所以,.设点到平面的距离为,由(1)知平面,因为,所以,所以,所以.19.【答案】(1),小时;(2)见解析;(3).【解析】(1)由题意得活动时间在的频率为,又因为参加社会实践活动的时间在内的有1人,所以样本容量.根据频率分布直方图,该校学生每周参加社会实践活动时间的平均值为:(小时).(2)由题意得“不经常参加社会实践”的学生有人,所以列联表如下:由表中数据可得.所以在犯错误的概率不超过的前提下可以认为“青少年科技创新大赛成绩优秀与经常参加社会实践活动有关系”.(3)由(2)知不经常参加社会实践活动的有5人,其中成绩优秀的有1人.设成绩优秀的编号为1,成绩一般的学生有4人,编号依次为,,,.所有参加培训的情况有:,,,,,,,,,,共10种.恰好一人成绩优秀的情况有:,,,,共4种.所以由古典概型计算公式得所求概率为.20.【答案】(1);(2).【解析】(1)设,则,解之得,代入得,所以抛物线的方程为.(2)显然直线的斜率是存在的,设直线的方程,设直线的方程,设,,联立方程消元,得,,,,故,同理,,,若,因为,,若,同理可求.21.【答案】(1);(2)见解析.【解析】(1)解:由已知得,因为,所以.(2)证明:由(1)知,所以.设,,要证,即要证在恒成立.因为,所以在上为增函数,在上为减函数,所以.①又,所以在上为减函数,在上为增函数,所以.②由于不等式①,②不能同时取等号,故,所以成立.22.【答案】(1),;(2).【解析】(1)消去参数可得直线的普通方程为,即,极坐标化为直角坐标可得曲线的直角坐标方程为,即.(2)点在直线:上,将直线的参数方程代入曲线的直角坐标方程,得,,设两根为,,,,故与异号,,..23.【答案】(1)2;(2).【解析】(1)函数,,则.(2),.当时,,则,当时,,则,当时,,则,于是的值域为.由不等式的解集是非空集,即,解得,由于,则的取值范围是.。

相关文档
最新文档