2018届高考数学(理)二轮专题复习: 专题六 解析几何 1-6-2 Word版含答案

合集下载

2018年高考数学(理)二轮复习讲练测专题1.6解析几何(练)含解析

2018年高考数学(理)二轮复习讲练测专题1.6解析几何(练)含解析

2018年高考数学(理)二轮复习讲练测专题六 解析几何1.练高考1.【2017课标3,理5】已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为( )A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 【答案】B故选B.2.【2017天津,文12】设抛物线24y x =的焦点为F ,准线为l .已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A.若120FAC ∠=︒,则圆的方程为 .【答案】22(1)(1x y ++-=【解析】3.【2017山东,理14】在平面直角坐标系xOy 中,双曲线()222210,0x y a b a b -=>>的右支与焦点为F 的抛物线()220x px p =>交于,A B 两点,若4AF BF OF +=,则该双曲线的渐近线方程为 .【答案】22y x =±4.【2017课标1,理】已知双曲线C :22221x y a b-=(a>0,b>0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A与双曲线C 的一条渐近线交于M 、N 两点.若∠MAN=60°,则C 的离心率为________.【答案】3【解析】试题分析:5.【2017天津,理19】设椭圆22221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (I )求椭圆的方程和抛物线的方程;(II )设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △的面积为62AP 的方程. 【答案】 (1)22413y x +=, 24y x =.(2)3630x y +-=,或3630x y --=. 【解析】(Ⅱ)解:设直线AP 的方程为1(0)x my m =+≠,与直线l 的方程1x =-联立,可得点2(1,)P m --,故2(1,)Q m-.将1x my =+与22413y x +=联立,消去x ,整理得22(34)60m y my ++=,解得0y =,或2634my m -=+.由点B 异于点A ,可得点222346(,)3434m m B m m -+-++.由2(1,)Q m-,可得直线BQ 的方程为22262342()(1)(1)()03434m m x y m m m m --+-+-+-=++,令0y =,解得222332m x m -=+,故2223(,0)32m D m -+.所以2222236||13232m m AD m m -=-=++.又因为APD△6221626232||m m m ⨯⨯=+,整理得23|20m m -+=,解得6||3m =,所以63m =±. 所以,直线AP 的方程为3630x -=,或3630x -=.6.【2017山东,理21】在平面直角坐标系xOy 中,椭圆E :22221x y a b +=()0a b >>2,焦距为2.(Ⅰ)求椭圆E 的方程;(Ⅱ)如图,动直线l :13y k x =交椭圆E 于,A B 两点,C 是椭圆E 上一点,直线OC 的斜率为2k ,且12k k =,M 是线段OC 延长线上一点,且:2:3MC AB =,M 的半径为MC ,,OS OT 是M 的两条切线,切点分别为,S T .求SOT ∠的最大值,并求取得最大值时直线l 的斜率.【答案】(I )2212x y +=.(Ⅱ)SOT ∠的最大值为3π,取得最大值时直线l 的斜率为12k =.(Ⅱ)设()()1122,,,A x y B x y ,联立方程2211,23x y y k x ⎧+=⎪⎪⎨⎪=⎪⎩得()22114210k x x +--=,由题意知0∆>,且()1121222111,21221x x x x k k +==-++,所以121AB x =-=.由题意可知圆M 的半径r为1r =由题设知122k k =,所以212k =因此直线OC 的方程为12y =.联立方程2211,22,4x y y x k ⎧+=⎪⎪⎨⎪=⎪⎩得2221221181,1414k x y k k ==++,因此 2221211814k OC x y k +=++2.练模拟1.直线3y kx =+被圆()()22234x y -+-=截得的弦长为 ) A .566ππ或B .33ππ-或C .66ππ-或D .6π 【答案】A【解析】圆()()22234x y -+-=的圆心()3,2,半径2=r ,圆心()3,2到直线y kx =+直线3y kx =+被圆()()2223x y -+-=2.【2018届湖北省稳派教育高三上第二次联考】 已知椭圆()222210x y a b a b +=>>的半焦距为c ,且满足220c b ac -+<,则该椭圆的离心率e 的取值范围是__________.【答案】10,2⎛⎫ ⎪⎝⎭【解析】∵220c b ac -+<,∴()2220c a c ac --+<,即2220c a ac -+<,∴22210c c a a -+<,即2210e e +-<,解得112e -<<。

专题06 解析几何理-2018年高考题和高考模拟题数学(理)分项版汇编 Word版含解析

专题06 解析几何理-2018年高考题和高考模拟题数学(理)分项版汇编 Word版含解析

6.解析几何1.【2018年浙江卷】双曲线的焦点坐标是A. (−,0),(,0)B. (−2,0),(2,0)C. (0,−),(0,)D. (0,−2),(0,2) 2.【2018年理数天津卷】已知双曲线的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点. 设A,B到双曲线同一条渐近线的距离分别为和,且,则双曲线的方程为A. B. C. D.3.【2018年理北京卷】在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线的距离,当θ,m变化时,d的最大值为A. 1B. 2C. 3D. 44.【2018年理新课标I卷】已知双曲线C:,O为坐标原点,F为C的右焦点,过F的直线与C 的两条渐近线的交点分别为M、N.若OMN为直角三角形,则|MN|=A. B. 3 C. D. 45.【2018年理新课标I卷】设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则=A. 5B. 6C. 7D. 86.【2018年全国卷Ⅲ理】设是双曲线()的左、右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为A. B. 2 C. D.7.【2018年全国卷Ⅲ理】直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是A. B. C. D.8.【2018年理数全国卷II】已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为A. B. C. D.9.【2018年理数全国卷II】双曲线的离心率为,则其渐近线方程为A. B. C. D.10.【2018年浙江卷】已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m=___________时,点B横坐标的绝对值最大.11.【2018年理数天津卷】已知圆的圆心为C,直线(为参数)与该圆相交于A,B两点,则的面积为___________.12.【2018年理北京卷】已知椭圆,双曲线.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为__________;双曲线N的离心率为__________.13.【2018年江苏卷】在平面直角坐标系中,A为直线上在第一象限内的点,,以AB为直径的圆C与直线l交于另一点D.若,则点A的横坐标为________.14.【2018年江苏卷】在平面直角坐标系中,若双曲线的右焦点到一条渐近线的距离为,则其离心率的值是________.15.【2018年浙江卷】如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.(Ⅰ)设AB中点为M,证明:PM垂直于y轴;(Ⅱ)若P是半椭圆x2+=1(x<0)上的动点,求△PAB面积的取值范围.16.【2018年理数天津卷】设椭圆(a>b>0)的左焦点为F,上顶点为B. 已知椭圆的离心率为,点A的坐标为,且.(I)求椭圆的方程;(II)设直线l:与椭圆在第一象限的交点为P,且l与直线AB交于点Q. 若(O为原点) ,求k的值.17.【2018年理北京卷】已知抛物线C:=2px经过点(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.(Ⅰ)求直线l的斜率的取值范围;(Ⅱ)设O为原点,,,求证:为定值.18.【2018年江苏卷】如图,在平面直角坐标系中,椭圆C过点,焦点,圆O 的直径为.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于两点.若的面积为,求直线l的方程.19.【2018年理新课标I卷】设椭圆的右焦点为,过的直线与交于两点,点的坐标为.(1)当与轴垂直时,求直线的方程;(2)设为坐标原点,证明:.20.【2018年全国卷Ⅲ理】已知斜率为的直线与椭圆交于,两点,线段的中点为.(1)证明:;(2)设为的右焦点,为上一点,且.证明:,,成等差数列,并求该数列的公差.21.【2018年理数全国卷II】设抛物线的焦点为,过且斜率为的直线与交于,两点,.(1)求的方程;(2)求过点,且与的准线相切的圆的方程.优质模拟试题22.【江西省南昌市2018届三模】“在两条相交直线的一对对顶角内,到这两条直线的距离的积为正常数的点的轨迹是双曲线,其中这两条直线称之为双曲线的渐近线”.已知对勾函数是双曲线,它到两渐近线距离的积是,根据此判定定理,可推断此双曲线的渐近线方程是()A. 与B. 与C. 与D. 与23.【江西省重点中学协作体2018届二模】设分别是双曲线的左、右焦点,是的右支上的点,射线平分,过原点作的平行线交于点,若,则双曲线的离心率为()A. B. C. D.24.【山东省济南市2018届二模】已知抛物线,过抛物线上两点分别作抛物线的两条切线为两切线的交点为坐标原点若,则直线与的斜率之积为()A. B. C. D.25.【山东省济南市2018届二模】设椭圆的左、右焦点分别为,点.已知动点在椭圆上,且点不共线,若的周长的最小值为,则椭圆的离心率为()A. B. C. D.26.【南省郑州市2018届三模】已知为椭圆上一个动点,过点作圆的两条切线,切点分别是,则的取值范围为()A. B. C. D.27.【河北省唐山市2018届三模】已知是抛物线上任意一点,是圆上任意一点,则的最小值为()A. B. 3 C. D.28.【福建省厦门市2018届三模】若双曲线的渐近线与圆无交点,则的离心率的取值范围为__________.29.【河南省洛阳市2018届三模】已知抛物线,点,在抛物线上,且横坐标分别为,,抛物线上的点在,之间(不包括点,点),过点作直线的垂线,垂足为.(1)求直线斜率的取值范围;(2)求的最大值.30.【湖南省益阳市2018届5月统考】已知直线经过抛物线的焦点且与此抛物线交于,两点,,直线与抛物线交于,两点在轴的两侧.(1)证明:为定值;(2)求直线的斜率的取值范围;(3)已知函数在()处取得最小值,求线段的中点到点的距离的最小值(用表示).6.解析几何答案1.【2018年浙江卷】双曲线的焦点坐标是A. (−,0),(,0)B. (−2,0),(2,0)C. (0,−),(0,)D. (0,−2),(0,2)【答案】B点睛:由双曲线方程可得焦点坐标为,顶点坐标为,渐近线方程为.2.【2018年理数天津卷】已知双曲线的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点. 设A,B到双曲线同一条渐近线的距离分别为和,且,则双曲线的方程为A. B. C. D.【答案】C【解析】分析:由题意首先求得A,B的坐标,然后利用点到直线距离公式求得b的值,之后求解a的值即可确定双曲线方程.详解:设双曲线的右焦点坐标为(c>0),则,由可得:,不妨设:,双曲线的一条渐近线方程为:,据此可得:,,则,则,双曲线的离心率:,据此可得:,则双曲线的方程为.本题选择C选项.点睛:求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a,b,c,e及渐近线之间的关系,求出a,b的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为,再由条件求出λ的值即可.3.【2018年理北京卷】在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线的距离,当θ,m变化时,d的最大值为A. 1B. 2C. 3D. 4【答案】C点睛:与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化.4.【2018年理新课标I卷】已知双曲线C:,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若OMN为直角三角形,则|MN|=A. B. 3 C. D. 4【答案】B【解析】分析:首先根据双曲线的方程求得其渐近线的斜率,并求得其右焦点的坐标,从而得到,根据直角三角形的条件,可以确定直线的倾斜角为或,根据相关图形的对称性,得知两种情况求得的结果是相等的,从而设其倾斜角为,利用点斜式写出直线的方程,之后分别与两条渐近线方程联立,求得,利用两点间距离同时求得的值.详解:根据题意,可知其渐近线的斜率为,且右焦点为,从而得到,所以直线的倾斜角为或,根据双曲线的对称性,设其倾斜角为,可以得出直线的方程为,分别与两条渐近线和联立,求得,所以,故选B.点睛:该题考查的是有关线段长度的问题,在解题的过程中,需要先确定哪两个点之间的距离,再分析点是怎么来的,从而得到是直线的交点,这样需要先求直线的方程,利用双曲线的方程,可以确定其渐近线方程,利用直角三角形的条件得到直线的斜率,结合过右焦点的条件,利用点斜式方程写出直线的方程,之后联立求得对应点的坐标,之后应用两点间距离公式求得结果.5.【2018年理新课标I卷】设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则=A. 5B. 6C. 7D. 8【答案】D详解:根据题意,过点(–2,0)且斜率为的直线方程为,与抛物线方程联立,消元整理得:,解得,又,所以,从而可以求得,故选D.点睛:该题考查的是有关直线与抛物线相交求有关交点坐标所满足的条件的问题,在求解的过程中,首先需要根据题意确定直线的方程,之后需要联立方程组,消元化简求解,从而确定出,之后借助于抛物线的方程求得,最后一步应用向量坐标公式求得向量的坐标,之后应用向量数量积坐标公式求得结果,也可以不求点M、N的坐标,应用韦达定理得到结果.6.【2018年全国卷Ⅲ理】设是双曲线()的左、右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为A. B. 2 C. D.【答案】C点睛:本题主要考查双曲线的相关知识,考查了双曲线的离心率和余弦定理的应用,属于中档题。

2018届高考数学(理)热点题型:解析几何(Word版,含答案解析,全站免费)

2018届高考数学(理)热点题型:解析几何(Word版,含答案解析,全站免费)

双曲线的渐近线方程为 y=±bax,
2b 由题意得 a2+ b2= 3,②
联立 ①② 解得 b= 3,a=1,
2
所求双曲线的方程为 x2-y3= 1,选 D.
(2)设点 B 为椭圆的左焦点,点 M(2,1)在椭圆内,那么 |BM|+|AM|+|AC|≥ |AB|+ |AC|=2a,所以 |AM |+|AC|≥ 2a- |BM|,而 a= 4,|BM|= ( 2+ 3)2+1= 26,所
M 的纵坐标
1 yM=- 4,
x= பைடு நூலகம்,
所以点 M 在定直线 y=- 14上.
②由①知直线 l 的方程为 y=mx-m22,
m2
m2
令 x=0,得 y=- 2 ,所以 G 0,- 2 ,

P
m2 m, 2
,F
1 0, 2
,D
2m3 4m2+
1,
-m2 2(4m2+
1)

所以
S1=
12·
( |GF|·m=
【类题通法】 (1)在椭圆和双曲线中,椭圆和双曲线的定义把曲线上的点到两个焦
点的距离联系在一起,可以把曲线上的点到一个焦点的距离转化为到另一个焦点
的距离, 也可以结合三角形的知识, 求出曲线上的点到两个焦点的距离 . 在抛物线
中,利用定义把曲线上的点到焦点的距离转化为其到相应准线的距离,再利用数
形结合的思想去解决有关的最值问题 .
0),因为过 F1 且倾斜角为 45°的直线 l 的斜率为 1,所以直线 l 的方程为 y=x+ 2,
y=x+ 2,
则原点到
| l 的距离 d=
2| =1,故 ②正确;③设 A(x1,y1),B(x2,y2),由

2018届高三数学理二轮复习课件:专题六 解析几何1.6.3 精品

2018届高三数学理二轮复习课件:专题六 解析几何1.6.3 精品

=
1
1 k2
|y1-y2|及根与系数的关系,“设而不求”;有关
焦点弦长问题,要牢记圆锥曲线定义的运用,以简化运算.
(3)涉及弦中点的问题,牢记“点差法”是联系中点坐 标和弦所在直线的斜率的好方法. (4)求参数范围的问题,牢记“先找不等式,有时需要找 出两个量之间的关系,然后消去另一个量,保留要求的 量”.不等式的来源可以是Δ>0或圆锥曲线的有界性或 题目条件中的某个量的范围等.
4
处的切线方程为y-a=- a(x+2 )a,
即 ax+y+a=0.
(2)存在符合题意的点P,证明如下: 设P(0,b)为符合题意的点,M(x1,y1),N(x2,y2),直线 PM,PN的斜率分别为k1,k2. 将y=kx+a代入C的方程得x2-4kx-4a=0. 故x1+x2=4k,x1x2=-4a.
x
2 0
y12
x
2 0
8
x12
8(1
x02 ) 16 x12
x02 x02
8(1
x12 16
)
8 8 0.
所以,F1M⊥F2N,所以直线F1M与直线F2N的交点G在
以F1F2为直径的圆上.
【加固训练】
已知椭圆C:
x2 a2
y2 b2
1(a>b>0)的离心率e=
2 ,短轴长
2
为2 2.
(1)求椭圆C的标准方程. (2)如图,椭圆左顶点为A,过原点O的直线(与坐标轴不 重合)与椭圆C交于P,Q两点,直线PA,QA分别与y轴交于 M,N两点.试问以MN为直径的圆是否经过定点(与直线PQ 的斜率无关)?请证明你的结论.
【解析】(1)由短轴长为2 ,2得b= ,2

2018高考数学理二轮专题复习课件-第二篇 专题满分突破 专题六 解析几何:6.1.1 精品

2018高考数学理二轮专题复习课件-第二篇 专题满分突破 专题六 解析几何:6.1.1 精品

= 33,即圆心坐标为±33,0,r2=|AC|2=12+ 332=43.所以圆
的方[程答为案x] ±
332+y2=43,选 (1)D (2)C
C.
[方法规律] 解决此类问题要根据所给条件选择适当的方 程形式.解决与圆有关的问题一般有两种方法:(1)几何法:通 过研究圆的性质、直线和圆、圆与圆的位置关系,进而求得圆的
B≠0 时,该直线的斜率为-AB;当 B=0 时,该直线的斜率不存 在.
2.直线的方程 (1)点斜式方程:y-y0=k(x-x0) (2)斜截式方程:y=kx+b
(3)两点式方程:yy2--yy11=xx2--xx11 (4)截距式方程:ax+by=1 (5)一般式方程:Ax+By+C=0(A2+B2≠0). 3.距离公式 (1)点到直线的距离:d=|Ax0+A2B+y0B+2 C|. (2)两平行线间的距离:d= |CA1-2+CB2|2.
(2)f′(x)=-abeax,令 x=0,则 f′(0)=-ab,又 f(0)=-1b, 则切线的方程为 y+1b=-abx,即 ax+by+1=0.∵切线与圆 x2+ y2=1 相切,∴ a21+b2=1,∴a2+b2=1,∵a>0,b>0,∴2(a2
+b2)≥(a+b)2,∴a+b≤ 2,当且仅当 a=b= 22时等号成立, ∴a+b 的最大值是 2.
答案:B
6.已知圆 C:x2+y2+2x-4y+3=0. (1)若圆 C 的切线在 x 轴和 y 轴上的截距相等,求此切线的 方程;
(2)从圆 C 外一点 P(x1,y1)向该圆引一条切线,切点为 M, O 为坐标原点,且有|PM|=|PO|,求使|PM|取得最小值时点 P 的 坐标.
解:(1)将圆 C 配方,得(x+1)2+(y-2)2=2.

2018高考数学理二轮专题复习课件-第二篇 专题满分突破 专题六 解析几何:6.1.2 精品

2018高考数学理二轮专题复习课件-第二篇 专题满分突破 专题六 解析几何:6.1.2 精品

由于 k1≠k2,k1,k2>0 得 1+k12+k22+a2(2-a2)k12k22=0,
因此k112+1k122+1=1+a2(a2-2). ① 因为①式关于 k1,k2 的方程有解的充要条件是 1+a2(a2-2)>1,
所以 a> 2.
因此,任意以点 A(0,1)为圆心的圆与椭圆至多有 3 个公共点
由此易知
C1 与
C2
的公共点的坐标为±
6,32,
所以49a2+b62=1,②
联立①②得 a2=9,b2=8,故 C2 的方程为y92+x82=1.
(2)如图所示,设 A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4).
因为A→C与B→D同向,且|AC|=|BD|,所以A→C=B→D,从而 x3- x1=x4-x2,
[答案] (1)B (2)C
[方法规律] 求解圆锥曲线标准方程的方法是“先定型,后 计算”
(1)定型,就是指定类型,也就是确定圆锥曲线的焦点位置, 从而设出标准方程.
(2)计算,即利用待定系数法求出方程中的 a2,b2 或 p.另外, 当焦点位置无法确定时,抛物线常设为 y2=2ax 或 x2=2ay(a≠0), 椭圆常设 mx2+ny2=1(m>0,n>0),双曲线常设为 mx2-ny2=
(1)求椭圆 C 的方程; (2)求F→2P·F→2Q的取值范围.
故选 A. 答案:A
4.一个焦点为( 26,0)且与双曲线y42-x92=1 有相同渐近线
的双曲线方程是( ) A.1y82 -x82=1 B.1x82 -y82=1 C.1x62 -1y02 =1 D.1y62 -1x02 =1
解析:设所求双曲线方程为y42-x92=t(t≠0),因为一个焦点 为( 26,0),所以|13t|=26,又焦点在 x 轴上,所以 t=-2,即 双曲线方程为1x82 -y82=1.选 B.

2018届高三数学(理)二轮复习专题集训:专题六 解析几何6.1 Word版含解析

2018届高三数学(理)二轮复习专题集训:专题六 解析几何6.1 Word版含解析

A 级1.在等腰三角形MON 中,MO =MN ,点O (0,0),M (-1,3),点N 在x 轴的负半轴上,则直线MN 的方程为( )A .3x -y -6=0B .3x +y +6=0C .3x -y +6=0D .3x +y -6=0解析: 因为MO =MN ,所以直线MN 的斜率与直线MO 的斜率互为相反数,所以k MN=-k MO =3,所以直线MN 的方程为y -3=3(x +1),即3x -y +6=0,选C.答案: C2.已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( ) A.53 B .213C.253D .43解析: 设圆的一般方程为x 2+y 2+Dx +Ey +F =0,∴⎩⎨⎧1+D +F =0,3+3E +F =0,7+2D +3E +F =0,∴⎩⎪⎨⎪⎧D =-2,E =-433,F =1,∴△ABC 外接圆的圆心为⎝⎛⎭⎫1,233,故△ABC 外接圆的圆心到原点的距离为1+⎝⎛⎭⎫2332=213.答案: B3.过点P (-2,2)作直线l ,使直线l 与两坐标轴在第二象限内围成的三角形面积为8,这样的直线l 一共有( )A .3条B .2条C .1条D .0条解析: 由题意可知直线l 方程为x a +yb =1(a <0,b >0),于是⎩⎨⎧-2a +2b =1,12(-a )·b =8,解得-a=b =4,故满足条件的直线l 一共有1条,故选C.答案: C4.在平面直角坐标系内,过定点P 的直线l :ax +y -1=0与过定点Q 的直线m :x -ay +3=0相交于点M ,则|MP |2+|MQ |2=( )A.102B .10C .5D .10解析: 由题意知P (0,1),Q (-3,0),∵过定点P 的直线ax +y -1=0与过定点Q 的直线x -ay +3=0垂直,∴MP ⊥MQ ,∴|MP |2+|MQ |2=|PQ |2=9+1=10,故选D.答案: D5.已知抛物线C 1:x 2=2y 的焦点为F ,以F 为圆心的圆C 2交C 1于A ,B ,交C 1的准线于C ,D ,若四边形ABCD 为矩形,则圆C 2的方程为( )A .x 2+⎝⎛⎭⎫y -122=3 B .x 2+⎝⎛⎭⎫y -122=4 C .x 2+(y -1)2=12D .x 2+(y -1)2=16解析: 如图,连接AC ,BD ,由抛物线的定义与性质可知圆心坐标为F ⎝⎛⎭⎫0,12, 而|F A |=|AD |=|FB |为圆的半径r , 于是A ⎝⎛⎭⎫32r ,12+12r ,而A 在抛物线上,故⎝⎛⎭⎫32r 2=2⎝⎛⎭⎫12+12r , ∴r =2,故选B. 答案: B6.已知点A (-1,0),过点A 可作圆x 2+y 2-mx +1=0的两条切线,则m 的取值范围是________.解析: 由题意得点A (-1,0)在圆外,所以1+m +1>0,所以m >-2,又⎝⎛⎭⎫x -m22+y 2=m 24-1表示圆,所以m 24-1>0⇒m >2或m <-2,所以m >2. 答案: (2,+∞)7.(2017·惠州市第三次调研考试)已知直线y =ax 与圆C :x 2+y 2-2ax -2y +2=0交于两点A ,B ,且△CAB 为等边三角形,则圆C 的面积为________.解析: x 2+y 2-2ax -2y +2=0⇒(x -a )2+(y -1)2=a 2-1,因此圆心C 到直线y =ax的距离为32a 2-1=|a 2-1|a 2+1,所以a 2=7,圆C 的面积为π(a 2-1)2=6π.答案: 6π8.已知圆O :x 2+y 2=1,直线x -2y +5=0上动点P ,过点P 作圆O 的一条切线,切点为A ,则|P A |的最小值为________.解析: 过O 作OP 垂直于直线x -2y +5=0,过P 作圆O 的切线P A ,连接OA ,易知此时|P A |的值最小.由点到直线的距离公式,得|OP |=|1×0-2×0+5|12+22= 5.又|OA |=1,所以|P A |min =|OP |2-|OA |2=2. 答案: 29.已知两直线l 1:ax -by +4=0,l 2:(a -1)x +y +b =0.求分别满足下列条件的a ,b 的值.(1)直线l 1过点(-3,-1),并且直线l 1与l 2垂直;(2)直线l 1与直线l 2平行,并且坐标原点到l 1,l 2的距离相等. 解析: (1)∵l 1⊥l 2,∴a (a -1)+(-b )·1=0,即a 2-a -b =0.① 又点(-3,-1)在l 1上, ∴-3a +b +4=0.② 由①②得,a =2,b =2.(2)由题意知当a =0或b =0时不成立. ∵l 1∥l 2,∴a b =1-a ,∴b =a 1-a ,故l 1和l 2的方程可分别表示为(a -1)x +y +4(a -1)a =0,(a -1)x +y +a1-a =0,又原点到l 1与l 2的距离相等, ∴4⎪⎪⎪⎪a -1a =⎪⎪⎪⎪a 1-a ,∴a =2或a =23,∴a =2,b =-2或a =23,b =2.10.已知圆C 过点P (1,1),且与圆M :(x +2)2+(y +2)2=r 2(r >0)关于直线x +y +2=0对称.(1)求圆C 的方程;(2)设Q 为圆C 上的一个动点,求PQ →·MQ →的最小值.解析: (1)设圆心C (a ,b ),则⎩⎪⎨⎪⎧a -22+b -22+2=0,b +2a +2=1,解得⎩⎪⎨⎪⎧a =0,b =0.则圆C 的方程为x 2+y 2=r 2, 将点P 的坐标代入得r 2=2, 故圆C 的方程为x 2+y 2=2. (2)设Q (x ,y ),则x 2+y 2=2,且PQ →·MQ →=(x -1,y -1)·(x +2,y +2)=x 2+y 2+x +y -4=x +y -2, 令x =2cos θ,y =2sin θ,则PQ →·MQ →=x +y -2=2(sin θ+cos θ)-2 =2sin ⎝⎛⎭⎫θ+π4-2. 所以PQ →·MQ →的最小值为-4.B 级1.(2017·湖南省五市十校联考)已知函数f (x )=x +sin x (x ∈R ),且f (y 2-2y +3)+f (x 2-4x +1)≤0,则当y ≥1时,yx +1的取值范围是( ) A.⎣⎡⎦⎤14,34 B .⎣⎡⎦⎤14,1 C .[1,32-3]D .⎣⎡⎭⎫13,+∞ 解析: 函数f (x )=x +sin x (x ∈R )为奇函数,又f ′(x )=1+cos x ≥0,所以函数f (x )在实数范围内单调递增,则f (x 2-4x +1)≤f (-y 2+2y -3),即(x -2)2+(y -1)2≤1,当y ≥1时表示的区域为半圆及其内部,令k =y x +1=yx -(-1),其几何意义为过点(-1,0)与半圆相交或相切的直线的斜率,斜率最小时直线过点(3,1),此时k min =13-(-1)=14,斜率最大时直线刚好与半圆相切,圆心到直线的距离d =|2k -1+k |k 2+1=1(k >0),解得k max =34,故选A. 答案: A2.已知圆C :(x -1)2+(y -2)2=2,若等边△P AB 的一边AB 为圆C 的一条弦,则|PC |的最大值为________.解析: 已知圆C :(x -1)2+(y -2)2=2,所以圆心为C (1,2),半径r =2,若等边△P AB的一边AB 为圆C 的一条弦,则PC ⊥AB .在△P AC 中,∠APC =30°,由正弦定理得|AC |sin 30°=|PC |sin ∠P AC,所以|PC |=22sin ∠P AC ≤22,故|PC |的最大值为2 2.答案: 2 23.已知点M (-1,0),N (1,0),曲线E 上任意一点到点M 的距离均是到点N 的距离的3倍.(1)求曲线E 的方程;(2)已知m ≠0,设直线l 1:x -my -1=0交曲线E 于A ,C 两点,直线l 2:mx +y -m =0交曲线E 于B ,D 两点.当CD 的斜率为-1时,求直线CD 的方程.解析: (1)(坐标法)设曲线E 上任意一点的坐标为(x ,y ), 由题意得(x +1)2+y 2=3·(x -1)2+y 2, 整理得x 2+y 2-4x +1=0, 即(x -2)2+y 2=3为所求.(2)(参数法)由题意知l 1⊥l 2,且两条直线均恒过点N (1,0). 设曲线E 的圆心为E ,则E (2,0),设线段CD 的中点为P , 连接EP ,ED ,NP ,则直线EP :y =x -2. 设直线CD :y =-x +t ,由⎩⎪⎨⎪⎧y =x -2,y =-x +t ,解得点P ⎝⎛⎭⎫t +22,t -22. 由圆的几何性质,知|NP |=12|CD |=|ED |2-|EP |2,而|NP |2=⎝⎛⎭⎫t +22-12+⎝⎛⎭⎫t -222,|ED |2=3,|EP |2=⎝ ⎛⎭⎪⎫|2-t |22,解得t =0或t =3,所以直线CD 的方程为y =-x 或y =-x +3.4.(2017·全国卷Ⅲ)已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,-2),求直线l 与圆M 的方程. 解析: (1)证明:设A (x 1,y 1),B (x 2,y 2),l :x =my +2,由⎩⎪⎨⎪⎧x =my +2,y 2=2x 可得y 2-2my -4=0,则y 1y 2=-4. 又x 1=y 212,x 2=y 222,故x 1x 2=(y 1y 2)24=4.因此OA 的斜率与OB 的斜率之积为y 1x 1·y 2x 2=-44=-1,所以OA ⊥OB ,故坐标原点O 在圆M 上. (2)由(1)可得y 1+y 2=2m , x 1+x 2=m (y 1+y 2)+4=2m 2+4, 故圆心M 的坐标为(m 2+2,m ), 圆M 的半径r =(m 2+2)2+m 2.由于圆M 过点P (4,-2),因此AP →·BP →=0, 故(x 1-4)(x 2-4)+(y 1+2)(y 2+2)=0, 即x 1x 2-4(x 1+x 2)+y 1y 2+2(y 1+y 2)+20=0. 由(1)可知y 1y 2=-4,x 1x 2=4, 所以2m 2-m -1=0, 解得m =1或m =-12.当m =1时,直线l 的方程为x -y -2=0,圆心M 的坐标为(3,1),圆M 的半径为10, 圆M 的方程为(x -3)2+(y -1)2=10.当m =-12时,直线l 的方程为2x +y -4=0,圆心M 的坐标为⎝⎛⎭⎫94,-12,圆M 的半径为854, 圆M 的方程为⎝⎛⎭⎫x -942+⎝⎛⎭⎫y +122=8516.。

2018年高考数学(理)二轮复习讲练测专题1.6解析几何(讲)含解析

2018年高考数学(理)二轮复习讲练测专题1.6解析几何(讲)含解析

2018年高考数学(理)二轮复习讲练测专题六 解析几何考向一 直线与圆【高考改编☆回顾基础】2x +y =0垂直的直线方程为________. 【答案】y=12x【解析】因为直线2x +y =0的斜率为-2,所以所求直线的斜率为12,所以所求直线方程为y =12x.2.【弦长问题】【2016·全国卷Ⅰ改编】设直线y =x +22与圆C :x 2+y 2-22y -2=0相交于A ,B 两点,则|AB|=________. 【答案】2 33.【直线与圆,圆与圆的位置关系】【2016·山东卷改编】已知圆M :x 2+y 2-2ay =0(a>0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是________. 【答案】相交 【解析】由垂径定理得a 22+(2)2=a 2,解得a 2=4,∴圆M :x 2+(y -2)2=4,∴圆M 与圆N 的圆心距d =(0-1)2+(2-1)2=2.∵2-1<2<2+1,∴两圆相交.4.【椭圆的几何性质、直线与圆的位置关系】【2017课标3,改编】已知椭圆C:22221x y a b+=,(a>b>0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为 .【解析】【命题预测☆看准方向】从近五年的高考试题来看,高考的重点是求圆的方程、求与圆有关的轨迹方程、直线与圆的位置关系、弦长问题、切线问题、圆与圆的位置关系,圆与圆锥曲线的交汇问题是高考的热点,经常以选择题、解答题的形式出现.另外,从高考试题看,涉及直线、圆的问题有与圆锥曲线等综合命题趋势.复习中应注意围绕圆的方程、直线与圆的位置关系、圆与圆的位置关系等,其中经常考查的是圆与圆位置关系中的动点轨迹,直线与圆的位置关系中的弦长问题、切线问题、参数的取值范围等.【典例分析☆提升能力】【例1】【2018届北京丰台二中高三上学期期中】已知点()2,0P 及圆22:6440C x y x y +-++=.(Ⅰ)设过P 的直线1l 与圆C 交于M , N 两点,当4MN =时,求以MN 为直径的圆Q 的方程.(Ⅱ)设直线10ax y -+=与圆C 交于A , B 两点,是否存在实数a ,使得过点P 的直线l ,垂直平分弦AB ?若存在,求出实数a 的值;若不存在,请说明理由.【答案】(1) ()2224x y -+= (2) 不存在实数a ,使得过点()2,0P 的直线2l 垂直平分弦AB .【解析】试题分析:(1)由利用两点间的距离公式求出圆心C 到P 的距离,再根据弦长|MN|的一半及半径,利用勾股定理求出弦心距d ,发现|CP|与d 相等,所以得到P 为MN 的中点,所以以MN 为直径的圆的圆心坐标即为P 的坐标,半径为|MN|的一半,根据圆心和半径写出圆的方程即可;(2)把已知直线的方程代入到圆的方程中消去y 得到关于x 的一元二次方程,因为直线与圆有两个交点,所以得到△>0,列出关于a 的不等式,求出不等式的解集即可得到a 的取值范围,利用反证法证明证明即可.(Ⅱ)把直线10ax y -+=及1y ax =+代入圆C 的方程,消去y ,整理得:()()2216190ax a x ++-+=,由于直线10ax y -+=交圆C 于A , B 两点,故()()223613610a a ∆=--+>,即20a ->,解得0a <.则实数a 的取值范围是(),0-∞. 设符合条件的实数a 存在,由于2l 垂直平分弦AB ,故圆心()3,2C -必在直线2l 上, 所以2l 的斜率2PC k =,所以12AB k a ==, 由于()1,02∉-∞, 故不存在实数a ,使得过点()2,0P 的直线2l 垂直平分弦AB .【趁热打铁】【2018届江苏省兴化市楚水实验学校、黄桥中学、口岸中学三校高三12月联考】经过点()2,0且圆心是直线2x =与直线4x y +=的交点的圆的标准方程为__________. 【答案】()()22224x y -+-=【解析】直线2x =与直线4x y +=的交点为()2,2 即圆心为()2,2,因为圆经过点()2,0所以半径为2,故圆的标准方程为()()22224x y -+-= 故答案为()()22224x y -+-=【例2】已知圆C 经过点A(0,2),B(2,0),圆C 的圆心在圆x 2+y 2=2的内部,且直线3x +4y +5=0被圆C 所截得的弦长为2 3.点P 为圆C 上异于A ,B 的任意一点,直线PA 与x 轴交于点M ,直线PB 与y 轴交于点N. (1)求圆C 的方程;(2)若直线y =x +1与圆C 交于A 1,A 2两点,求BA 1→·BA 2→; (3)求证:|AN|·|BM|为定值.【答案】(1)x 2+y 2=4.(2)3.(3)证明:见解析.(2)将y =x +1代入x 2+y 2=4得2x 2+2x -3=0. 设A 1(x 1,y 1),A 2(x 2,y 2), 则x 1+x 2=-1,x 1x 2=-32.∴BA 1→·BA 2→=(x 1-2)(x 2-2)+y 1y 2=x 1x 2-2(x 1+x 2)+4+(x 1+1)(x 2+1)=2x 1x 2-(x 1+x 2)+5=-3+1+5=3. (3)证明:当直线PA 的斜率不存在时,|AN|·|BM|=8. 当直线PA 与直线PB 的斜率都存在时,设P(x 0,y 0), 直线PA 的方程为y =y 0-2x 0x +2,令y =0得M ⎝ ⎛⎭⎪⎫2x 02-y 0,0.直线PB 的方程为y =y 0x 0-2(x -2),令x =0得N ⎝ ⎛⎭⎪⎫0,2y 02-x 0.∴|AN|·|BM|=⎝ ⎛⎭⎪⎫2-2y 02-x 0⎝ ⎛⎭⎪⎫2-2x 02-y 0=4+4⎣⎢⎡⎦⎥⎤y 0x 0-2+x 0y 0-2+x 0y 0(x 0-2)(y 0-2) = 4 + 4·y 20 -2y 0 + x 20 -2x 0 + x 0 y 0 (x 0 -2)(y 0 -2) = 4 + 4·4-2y 0 -2x 0 + x 0 y 0(x 0 -2)(y 0 -2) = 4 +4×4-2y 0 -2x 0 + x 0 y 04-2y 0 -2x 0 + x 0 y 0 = 8, 故|AN|·|BM|为定值8.【趁热打铁】(1)已知圆C 的方程为x 2+y 2+8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的取值范围为________________.(2)已知圆C :x 2+y 2-ax +2y -a +4=0关于直线l 1:ax +3y -5=0对称,过点P(3,-2)的直线l 2与圆C 交于A ,B 两点,则弦长|AB|的最小值为________________. 【答案】(1)-43≤k≤0 (2)2 3.(2)圆C :x 2+y 2-ax +2y -a +4=0,其圆心C 为⎝ ⎛⎭⎪⎫a 2,-1,半径r =12a 2+4a -12.∵圆C 关于直线l 1:ax +3y -5=0对称,∴a22-3-5=0,解得a =±4.当a =-4时,半径小于0,不合题意,舍去. ∴a =4,则圆心C 为(2,-1),半径r = 5.由|PC|=2<5,可知点P 在圆内,则当弦长|AB|最小时,直线l 2与PC 所在直线垂直. 此时圆心C 到直线l 2的距离d =|PC|=2, 弦长|AB|=2r 2-d 2=23, 即所求最小值为2 3.【方法总结☆全面提升】1.要注意几种直线方程的局限性,点斜式、斜截式方程要求直线不能与x 轴垂直,两点式方程要求直线不能与坐标轴垂直,而截距式方程不能表示过原点的直线,也不能表示垂直于坐标轴的直线.2.求解与两条直线平行或垂直有关的问题时,主要是利用两条直线平行或垂直的充要条件,即若斜率存在时,“斜率相等”或“互为负倒数”;若出现斜率不存在的情况,可考虑用数形结合的方法去研究.3.求圆的方程一般有两类方法:(1)几何法,通过圆的性质、直线与圆、圆与圆的位置关系,求得圆的基本量和方程; (2)代数法,即用待定系数法先设出圆的方程,再由条件求得各系数.4.直线与圆的位置关系: (1)代数法.将圆的方程和直线的方程联立起来组成方程组,利用判别式Δ来讨论位置关系:Δ>0⇔相交;Δ=0⇔相切;Δ<0⇔相离;(2)几何法.把圆心到直线的距离d 和半径r 的大小加以比较:d<r ⇔相交;d =r ⇔相切;d>r ⇔相离. 优先选用几何法.【规范示例☆避免陷阱】【典例】已知过原点的动直线l 与圆221:650C x y x +-+=相交于不同的两点A,B.①求圆1C 的圆心坐标.②求线段AB 的中点M 的轨迹C 的方程.③是否存在实数k,使得直线L:y=k(x-4)与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由. 【规范解答】: ①由22650x y x +-+=,得(x-3)2+y 2=4, 从而可知圆C 1的圆心坐标为(3,0).②设线段AB 的中点M(x,y), 由弦的性质可知C 1M ⊥AB,即C 1M ⊥OM.故点M 的轨迹是以OC 1为直径的圆,该圆的圆心为C ,半径r=|OC 1|=3=,其方程为+y 2=,即x 2+y 2-3x=0. 又因为点M 为线段AB 的中点,所以点M 在圆C 1内,所以<2.又x 2+y 2-3x=0,所以x> 易知x≤3,所以<x≤3.所以线段AB 的中点M 的轨迹C 的方程为x 2+y 2-3x=0【反思提高】处理有关圆的问题,要特别注意圆心、半径及平面几何知识的应用,如经常用到弦心距、半径、弦长的一半构成的直角三角形,利用圆的一些特殊几何性质解题,往往使问题简化. 【误区警示】1.求轨迹方程常用的方法有直接法、定义法、相关点法(坐标代入法)等,解决此类问题时要读懂题目给出的条件,进行合理转化,准确得出结论.本题确定轨迹方程,易于忽视横坐标的限制范围.2.涉及直线与圆的位置关系时,应多考虑圆的几何性质,利用几何法进行运算求解往往会减少运算量.考向二 椭圆、双曲线、抛物线【高考改编☆回顾基础】1.【椭圆的方程及其几何性质】【2017·江苏卷改编】椭圆E :x 2a 2+y 2b 2=1(a>b>0)的离心率为12,椭圆的半焦距为c 且a 2=4c ,则椭圆E 的标准方程为____________. 【答案】x 24+y23=1【解析】因为椭圆E 的离心率为12,所以e =c a =12,又a 2=4c,所以a =2,c =1,于是b =a 2-c 2=3,因此椭圆E 的标准方程是x 24+y23=1.2.【双曲线的方程及其几何性质】【2017·全国卷Ⅲ】双曲线x 2a 2-y 29=1(a >0)的一条渐近线方程为y =35x ,则a =________. 【答案】5【解析】令x 2a 2-y 29=0,得双曲线的渐近线方程为y =±3a x ,∵双曲线x 2a 2-y 29=1(a>0)的一条渐近线方程为y =35x ,∴a =5.3. 【抛物线方程及其几何性质】【2017课标1,改编】已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB|+|DE|的最小值为 . 【答案】16【命题预测☆看准方向】从近五年的高考试题来看,圆锥曲线的定义、标准方程、几何性质等是高考考查的重点,也是高考命题的基本元素.考查的角度有:对圆锥曲线的定义的理解及定义的应用,求圆锥曲线的标准方程,求圆锥曲线的离心率以及向量、直线、圆锥曲线的小综合. 考查的重点是依据圆锥曲线的几何性质求离心率;根据圆锥曲线的定义求标准方程;圆锥曲线与向量的小综合;两种圆锥曲线间的小综合;直线与圆锥曲线的小综合;圆锥曲线的综合应用等.【典例分析☆提升能力】【例1】【2017课标II ,理9】若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( )A .2B 32 D .233【答案】A 【解析】【趁热打铁】【2018届吉林省实验中学高三上第五次月考(一模)】F 1,F 2分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过F 1的直线l 与双曲线的左、右两支分别交于A 、B 两点.若△ABF 2是等边三角形,则该双曲线的离心率为357 【答案】D【解析】设AB m =,则112212,24AF BF BF a AF AF a m a =-==+∴=,由余弦定理得()()222022464264cos60287,7c a a a a a e e =+-⨯⨯⨯=∴== 选D.【例2】【2017课标II ,理】设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

限时规范训练十六 圆锥曲线的定义、性质,直线与圆锥曲线
限时40分钟,实际用时
分值80分,实际得分
一、选择题(本题共12小题,每小题5分,共60分)
1.若实数k 满足0<k <9,则曲线x 225-y 29-k =1与曲线x 225-k -y 2
9=1的( )
A .焦距相等
B .实半轴长相等
C .虚半轴长相等
D .离心率相等
解析:选A.由25+(9-k )=(25-k )+9,知两曲线的焦距相等.
2.(2017²宁夏银川质检)抛物线y 2
=8x 的焦点到双曲线x 2
-y 2
3=1的渐近线的距离是( )
A.12
B.
32
C .1
D. 3
解析:选D.由抛物线y 2
=8x ,有2p =8⇒p =4,焦点坐标为(2,0),双曲线的渐近线方程为y =±3x ,不妨取其中一条3x -y =0,由点到直线的距离公式,有d =|3³2-0|
3+1=3,故选
D.
3.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 2
3
=1
有公共焦点.则C 的方程为( )
A.x 28-y 2
10=1
B.x 24-y 25=1
C.x 25-y 2
4
=1 D.x 24-y 2
3
=1 解析:选B.∵双曲线的一条渐近线方程为y =52x ,则b a =52


又∵椭圆x 212+y 2
3=1与双曲线有公共焦点,易知c =3,则a 2+b 2=c 2
=9, ②
由①②解得a =2,b =5,则双曲线C 的方程为x 24-y 2
5
=1,故选B.
4.已知抛物线y 2
=2px 的焦点F 与双曲线x 27-y 2
9=1的右焦点重合,抛物线的准线与x 轴的
交点为K ,点A 在抛物线上且|AK |=2|AF |,则△AFK 的面积为( )
A .4
B .8
C .16
D .32
解析:选D.因为抛物线y 2
=2px 的焦点F 与双曲线x 27-y 2
9=1的右焦点(4,0)重合,所以p =
8.设A (m ,n ),
又|AK |=2|AF |,所以m +4=|n |, 又n 2
=16m ,解得m =4,|n |=8, 所以△AFK 的面积为S =1
2
³8³8=32.
5.(2017²安徽合肥模拟)已知双曲线x 2
-y 2
3=1的左顶点为A 1,右焦点为F 2,P 为双曲线右
支上一点,则PA 1→²PF 2→
的最小值为( )
A .-2
B .-8116
C .1
D .0
解析:选A.设点P (x ,y ),其中x ≥1.依题意得A 1(-1,0),F 2(2,0),则有y 2
3=x 2-1,y 2=3(x
2
-1),
PA 1→²PF 2→
=(-1-x ,-y )²(2-x ,-y )
=(x +1)(x -2)+y 2
=x 2
+3(x 2
-1)-x -2
=4x 2
-x -5=4⎝ ⎛⎭⎪⎫x -182
-8116
,其中x ≥1.
因此,当x =1时,PA 1→
²PF 2→
取得最小值-2,选A.
6.(2017²浙江宁波模拟)点A 是抛物线C 1:y 2
=2px (p >0)与双曲线C 2:x 2a 2-y 2
b
2=1(a >0,b
>0)的一条渐近线的交点,若点A 到抛物线C 1的准线的距离为p ,则双曲线C 2的离心率等于( )
A. 2
B. 3
C. 5
D. 6
解析:选C.取双曲线的一条渐近线为y =b
a
x ,
联立⎩⎪⎨⎪⎧
y 2
=2px ,y =b
a
x ⇒⎩⎪⎨⎪⎧
x =2pa 2
b
2,
y =2pa
b ,
故A ⎝ ⎛⎭⎪⎫2pa 2
b
2,2pa b .
因为点A 到抛物线C 1的准线的距离为p .
所以p 2+2pa 2
b 2=p ,
所以a 2b 2=14
.
所以双曲线C 2的离心率e =c
a

a 2+
b 2
a 2
= 5. 7.(2017²山东德州一模)已知抛物线y 2
=8x 与双曲线x 2a
2-y 2
=1(a >0)的一个交点为M ,F
为抛物线的焦点,若|MF |=5,则该双曲线的渐近线方程为( )
A .5x ±3y =0
B .3x ±5y =0
C .4x ±5y =0
D .5x ±4y =0
解析:选A.抛物线y 2
=8x 的焦点为F (2,0),准线方程为x =-2,设M (m ,n ),则由抛物线
的定义可得|MF |=m +2=5,解得m =3,由n 2
=24,可得n =±2 6.将M (3,±26)代入双曲线x 2
a
2
-y 2
=1(a >0),可得9a 2-24=1(a >0),解得a =35,故双曲线的渐近线方程为y =±53x ,即5x ±3y
=0.故选A.
8.(2016²高考全国卷Ⅲ)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2
b 2=1(a >b >0)的左焦点,A ,
B 分别为
C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )
A.13
B.12
C.23
D.34
解析:选A.由题意可知直线AE 的斜率存在,设为k ,直线AE 的方程为y =k (x +a ),令x =0可得点E 坐标为(0,ka ),所以OE 的中点H 坐标为⎝

⎭⎪⎫
0,ka 2,又右顶点B (a,0),所以可得直线
BM 的斜率为-k 2,可设其方程为y =-k 2x +k
2a ,联立⎩⎪⎨⎪⎧
y =k x +a ,y =-k 2x +k 2a ,可得点M 横坐标为-a
3

又点M 的横坐标和左焦点相同,所以-a 3=-c ,所以e =13
.
9.已知双曲线的标准方程为x 29-y 2
16
=1,F 为其右焦点,A 1,A 2分别是实轴的左、右端点,设
P 为双曲线上不同于A 1,A 2的任意一点,直线A 1P ,A 2P 与直线x =a 分别交于M ,N 两点,若FM →²FN

=0,则a 的值为( )。

相关文档
最新文档