TP4057高品质 500mA电流 单节锂电充电板
LTH7锂电池充放电芯片方案

前言:LTH7是单节锂电池充电电路芯片,PW4054,负责将USB口的5V电源,转换降压适合3.7V的锂电池充电,并提供一个LED指示灯,指示充电长亮和充满灭灯的控制系统,并具有电池电压检测电路,实时检测电池电压,充满即停止充电。
搭配锂电池如:3.7V的18650,3.7V的聚合物锂电池等等如果是3.8V的锂电池,请使用PW4065了。
锂电池有3大电路系统,出了锂电池充电电路PW4054芯片(LTH7)外,还要其他2大基础电路。
在锂电池上,需要三个电路系统:1,锂电池保护电路,2,锂电池充电电路,3,锂电池输出电路。
边充电边放电,从这里可以看出是锂电池充电电路与锂电池两者一起给锂电池输出电路供电。
内容目录:1,单节的锂电池保护电路单节为3.7V锂电池(也叫4.2V)和3.8V锂电池(也叫4.35V)2,单节的锂电池充电电路3,单节的锂电池输出电路锂电池转换稳压输出为:1.2V,3.3V,5V,12V等等4,两节的锂电池保护电路两节串联7.4V锂电池(也叫8.4V)5,两节的锂电池充电电路6,两节的锂电池输出电路两节锂电池转换稳压输出:3.3V,5V,12V等等7,三节的锂电池保护电路三节串联11.1V锂电池(也叫12.6V)8,三节的锂电池充电电路9,三节的锂电池输出电路三节锂电池转换稳压输出:3V,5V,12V,20V等等内容:1,单节的锂电池保护电路:即锂电池保护板,控制锂电池的过放电和过充电功能(过充电充电IC也会有)有的锂电池厂家出厂就自带了保护板了(大部分是默认没带保护板),有的锂电池没,就需要锂电池保护IC了。
常用锂电池保护IC如:DW01B,特点:外置MOS(8205A6或者8205A8),由于是外置MOS,过充电电流和过放电电流可通过很多个MOS并联来提高,这是最常见的,采用SOT23-6封装。
PW3130,特点:内置MOS,电路简单,过充电电流和过放电电流是3A,适合功率不大电子产品,采用SOT23-5封装。
tp4057中文资料_数据手册_参数

ITRIKL VTRIKL VTRHYS
VUV VUVHYS VMSD VASD ITERM VPROG
参数 输入电源电压
输入电源电流
稳定输出(浮充)电压
BAT 引脚电流 (除说明外 Vbat=4.0v)
涓流充电电流 涓流充电门限电压 涓流充电迟滞电压 VCC 欠压闭锁门限 VCC 欠压闭锁迟滞 手动停机门限电压 VCC-VBAT 闭锁门限电压 C/10 终止电流门限
充电时,BAT 引脚上的瞬变负载会使 PROG 引脚电压在 DC 充电电流降至设定值的 1/10 之间短暂地降至 100mV 以下。终止比较
器上的 1.8ms 滤波时间( tTERM )确保这种性
质的瞬变负载不会导致充电循环过早终止。一 旦平均充电电流降至设定值的 1/10 以下, TP4057 即终止充电循环并停止通过 BAT 引脚 提供任何电流。在这种状态下,BAT 引脚上
·蜂窝电话、PDA、MP3播放器
·无需 MOSFET、检测电阻器或隔离二极管;
·蓝牙应用
·用于单节锂离子电池
典型应用
·恒定电流/恒定电压操作,并具有可在无过热危 500mA 单节锂离子电池充电器
险的情况下实现充电速率最大化的热调节功能;
·可直接从 USB 端口给单节锂离子电池充电;
·精度达到±1%的 4.2V 预设充电电压;
充电电流与环境温度的关 系曲线
再充电电压门限与温度的关 系曲线
功率 FET“导通”电阻与温 度的关系曲线
引脚功能
CHRG (引脚 1):漏极开路输出的充电状 态指示端。当充电器向电池充电时,CHRG 管脚被内部开关拉到低电平,表示充电正在 进行;否则 CHRG 管脚处于高阻态。 GND(引脚 2):地 BAT(引脚 3):充电电流输出。该引脚向 电池提供充电电流并将最终浮充电压调节 至 4.2V。该引脚的一个精准内部电阻分压器 设定浮充电压,在停机模式中,该内部电阻 分压器断开。 VCC(引脚 4):正输入电源电压。该引脚向 充电器供电。VCC 的变化范围在 4V 至 9V 之 间,并应通过至少一个 1μF 电容器进行旁 路。当 VCC 降至 BAT 引脚电压的 30mV 以 内,TP4057 进入停机模式,从而使 IBAT 降
拓微集成 TP4065 3mA-600mA线性锂离子电池充电器 手册说明书

南京拓微集成电路有限公司NanJing Top Power ASIC Corp.数据手册DATASHEETTP4065(3mA-600mA线性锂离子电池充电器)TP4065 线性锂离子电池充电器产品简介TP4065是一款完整的单节锂电池充电器,世界首创带电池正负极反接保护、输入电源正负极反接保护的单芯片,兼容大小3mA-600mA充电电流。
采用涓流、恒流、恒压控制,SOT23-5封装与较少的外部元件数目使得TP4065成为便携式应用的理想选择。
TP4065可以适合USB电源和适配器电源工作。
由于采用了内部PMOSFET架构,加上防倒充电路,所以不需要外部检测电阻器和隔离二极管。
热反馈可对充电电流进行自动调节,以便在大功率操作或高环境温度条件下对芯片温度加以限制。
充满电压可分为两档:4.35V、4.2V。
充电电流可通过一个电阻器进行外部设置。
当电池达到预设电压之后,充电电流降至设定值1/10,TP4065将自动终止充电。
当输入电压(交流适配器或USB电源)被拿掉时,TP4065自动进入一个低电流状态,电池漏电流在1μA以下。
TP4065的其他特点包括电源自适应、欠压闭锁、自动再充电和一个用于指示充电状态的引脚。
产品特点•兼容大小3mA-600mA的可编程充电电流;• V CC输入端反接保护;•锂电池正负极反接保护;•用于单节锂离子电池;•电源自适应;•具有可在无过热危险的情况下实现充电速率最大化的热调节功能;•带涓流、恒流、恒压控制;•可直接从USB端口给电池充电;•精度达到±1%的预设充电电压;•最高输入可达8.0V;•自动再充电;• 1个充电状态开漏输出引脚;• C/10充电终止;•待机模式下的供电电流为65μA;•软启动限制了浪涌电流;•采用5引脚SOT-23封装。
应用·微型锂电池、充电座、移动电源·蜂窝电话、PAD、MP3播放器·蓝牙应用典型应用:图1 500mA 单节锂电池充电器注:建议接R1耗散电阻,可获得较大的充电电流,又可提高整机的可靠性。
SV4057规格书 SV4057datasheet

符号 VIN
含义 充电输入工作电压
IVIN
充电输入功耗
VFLOAT
浮充电压
IBAT
电池端口电流
VTRKL
ITRKL VUV
VMSD VASD
ITERM
VPROG VRECHG
TCC tRECHG tTERM
ILED
涓流充电阈值 迟滞 涓流充电电流 输入欠压阈值 迟滞 PROG输入停机阈值 VIN-VBAT启动阈值 VIN-VBAT关停阈值
单位 V V °C °C
°C/W V V
最小 4.5
-40
最大 5.5 0.8 +85
单位 V A °C
2 Shanghai Sov an Electronic Technology Co. Ltd.
Rev 03, May . 2017
电气特性
未特殊指定时的条件为VIN = 5V, TA = 25°C.
状态 充电 充满 输入欠压
CHRG 灯 亮 灭 灭
STDBY 灯 灭 亮 灭
无电池无电容
VCC
BAT
RIN 0.4Ω
VCC
BAT PROG
SV4057
RPROG
Figure 3. 热分担电阻设置
稳定性 SV4057 系统采用铄梵充电管理专利技术,确
保在整个充电周期内环路是稳定的,外围不需要做 特别处理以防止稳定性问题。 USB热 插 拔
充电电流 工作环境温度
符号 /CHRG
GND BAT VIN /STDBY PROG
SV4057
简述 充电时输出低
地 充电输出,即电池端
充电输入电源 充满待机时输出低 充电电流配置电阻连接脚
最小 GND-0.3 GND-0.3
TP4056特点

特点·高达1000mA的可编程充电电流·无需MOSFET、检测电阻器或隔离二极管·用于单节锂离子电池、采用SOP封装的完整线性充电器·恒定电流/恒定电压操作,并具有可在无过热危险的情况下实现充电速率最大化的热调节功能·精度达到±1%的4.2V预设充电电压·用于电池电量检测的充电电流监控器输出·自动再充电·充电状态双输出、无电池和故障状态显示·C/10充电终止·待机模式下的供电电流为55uA·2.9V涓流充电·软启动限制了浪涌电流·电池温度监测功能·采用8引脚SOP-PP封装TEMP(引脚1):电池温度检测输入端。
将TEMP管脚接到电池的NTC传感器的输出端。
如果TEMP管脚的电压小于输入电压45%或者大于输入电压的80%,意味着电池温度过低或过高,则充电被暂停。
如果TEMP 直接接GND,电池温度检测功能取消,其他充电功能正常。
PROG(引脚2):恒流充电电流设置和充电电流监测端。
从PROG管脚连接一个外部电阻到地端可以对充电电流进行编程。
在预充电阶段,此管脚的电压被调制在0.1V;在恒流充电阶段,此管脚的电压被固定在1V。
客户应用中,可根据需求选取合适大小的RPROGRPROG与充电电流的关系确定可参考下表:GND(引脚3):电源地。
Vcc (引脚4):输入电压正输入端。
此管脚的电压为内部电路的工作电源。
当Vcc与BAT管脚的电压差小于30mV时,TP4056将进入低功耗的停机模式,此时BAT 管脚的电流小于2uABAT(引脚5):电池连接端。
将电池的正端连接到此管脚。
在芯片被禁止工作或者睡眠模式,BAT管脚的漏电流小于2uA。
BAT管脚向电池提供充电电流和4.2V 的限制电压.STDBY(引6):电池充电完成指示端。
当电池充电完成时STDBY被内部开关拉到低电平,表示充电完成。
南京拓微TP4056 TP4057使用中常见的问题与解答

关于南京拓微TP4056 TP4057使用中常见的问题与解答Q1:TP4057的输入端电压到底是多少啊?A:由于是线性芯片,建议芯片全功率工作且不外加散热条件下输入电压在5.3V以内。
Q2:TP4057在输入端电压6V或者更高时,芯片温度很烫而且测量输入端电流时也没有标称之高,会不会损害芯片呢?A:因为安装此类TP4057芯片封装自身散耗热量值为0.5W左右,外加上pcb散热,同时锂电池充电平台大部分时间在3.9V以上,而且在基于线性芯片,在高压差输入、出时,会将其中压差散耗在芯片自身。
例如输入6V 电池电压在3.9V 单个TP4057在设置最多输出电流下所要承受的散耗热功率为(6V-3.9V)*0.5A=1.05W。
由于芯片自身有过温保护设计,当启动之后最直接的表现就是降低输出电流值,以此做到芯片的自身保护。
不建议长期这样使用,虽然芯片不会受损,但是充电效率大大降低。
解决方法是:1、可以在输入端串入耗散电阻2、降低输入端电压Q3:TP4057的截止电压是多少,可以改为充铁锂电池吗?A:也就是+-1%,不能改为充铁锂电池Q4:转灯绿灯了还会有涓流充电吗?有没有特殊情况在转绿灯之后还在充电?A:正常的TP4057转绿灯之后输出端就没有电流了。
有,在多芯片并联充电池,可能由于安装失误把截止电压过低的芯片放在了负责控制转灯电路的焊接位置上。
例如左边红圈里的那颗转灯截止电压在4.180V 右边紫圈那颗截止电压在4.200V,由于转灯控制有左边管理,转灯电压在4.180V 但是如果不马上拿下来,再"涓流"充一下电池电压还会上升。
所以在制作此类多路并联充电电路时这个情况是需要注意的。
Q5:TP4057充电电流能不能自由调节啊?因为充容量较小的电池需要。
A:完全可以,可以更改图中红框中电阻阻值Q6:TP4057输出端可以反接,那么输出端短路会怎样呢?A:TP4057输出端可以反接,但是建议输入、出端电压差值最好不要超过10V,这样有可能损坏芯片。
TP4057 600mA 锂电池充电器 V2.1 产品说明书

概述TP4057 是一款单节锂离子电池恒流/恒压线性充电器,简单的外部应用电路非常适合便携式设备应用,适合 USB 电源和适配器电源工作,内部采用防倒充电路,不需要外部隔离二极管。
热反馈可对充电电流进行自动调节,以便在大功率操作或高环境温度条件下对芯片温度加以限制。
TP4057充电截止电压为 4.2V ,充电电流可通过外部电阻进行设置。
当充电电流降至设定值的 1/10 时,TP4057 将自动结束充电过程。
当输入电压被移掉后,TP4057 自动进入低电流待机状态,将待机电流降至 3uA 。
特点∙ 最大充电电流:600mA∙ 无需MOSFET 、检测电阻器和隔离二极管 ∙ 智能热调节功能可实现充电速率最大化 ∙ 智能再充电功能 ∙ 预充电压:4.2V±1% ∙ C/10充电终止 ∙ 2.9V 涓流充电阈值∙ 单独的充电、结束指示灯控制信号 ∙封装形式:SOT23-6L应用∙ 手机、PDA 、MP3/MP4 ∙ 蓝牙耳机、GPS ∙充电座∙数码相机、Mini 音响等便携式设备典型应用电路管脚SOT23-6L 定购信息极限参数(注1)注1电气参数(注2,3)注3:规格书的最小、最大规范范围由测试保证,典型值由设计、测试或统计分析保证。
内部框图工作原理TP4057是专门为一节锂离子电池或锂聚合物电池而设计的线性充电器,芯片集成功率晶体管,充电电流可以用外部电阻设定,最大持续充电电流可达1A,不需要另加阻流二极管和电流检测电阻。
TP4057包含两个漏极开路输出的状态指示端,充电状态指示输出端CHRG和充电完成指示输出端STDBY 。
充电时管脚CHRG输出低电平,表示充电正在进行。
如果电池电压低于2.9V,TP4057用小电流对电池进行预充电。
当电池电压超过2.9V时,采用恒流模式对电池充电,充电电流由PROG管脚和GND之间的电阻R PROG确定。
当电池电压接近4.2V电压时,充电电流逐渐减小,TP4057进入恒压充电模式。
TP4057最简单的锂电池充电方案

TP4057最简单的锂电池充电方案以下是使用TP4057进行锂电池充电的最简单方案:1.原理图首先,我们需要根据TP4057的使用手册来绘制锂电池充电电路的原理图。
原理图包括TP4057芯片、锂电池、外部电阻和一个充电指示灯。
你可以使用一种电路设计软件来完成原理图的设计。
2.PCB布局将原理图转化为PCB布局是非常重要的一步。
你需要将芯片、电阻和其他元件正确地放置在电路板上,并将它们之间的连线连接起来。
在布局的过程中,你需要保证信号和电源线之间的隔离,并按照电流和电源线的规范进行布线。
3.制作电路板一旦PCB布局完成,你可以使用PCB制作工具将电路布线转化为实体电路板。
这可以通过去PCB厂商下订单或者自己使用切割机器和化学法来完成。
4.焊接元件当你获得了电路板后,你需要使用焊接技术将芯片、电阻和其他元件连接到电路板上。
确保焊接质量良好,以保证电路的稳定性。
5.连接电池将锂电池连接到电路板上的电池接口上。
确保极性正确,防止反接。
6.连接充电指示灯将充电指示灯连接到电路板上,并确保其工作正常。
7.测试和调试在将锂电池放入电路板上后,可以通过连接电源来测试电路的工作情况。
确保TP4057正常工作,电池正在充电,并且充电指示灯能够正确显示充电状态。
8.调整充电电流如果你想改变充电电流,你可以更改外部电阻的值。
根据TP4057的手册,选择合适的电阻值并进行更换。
以上就是使用TP4057进行锂电池充电的最简单方案。
当然,根据实际需求,你还可以添加更多的功能和保护措施来提高充电的安全性和效率。
但无论使用何种方案,确保充电过程中关注安全,并遵循相关的规范和标准。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
TP4057高品质500mA电流单节锂电充电板
TP4057高品质500mA电流单节锂电充电板电池反接不会烧片,适合DIY万能充18650锂电池专用充电器
独家转灯芯片精度为0.5%(4.18V—4.22V之间)更高精度更好保护电池,延长电池使用寿命。
直插LED最短一腿为绿色插入板子左上角G孔,即可确定顺序。
VIN ---5V输入正极
GND ---5V输入负极
Bat+ ---接电池正极
- ---接电池负极
板载红绿贴片LED,充电时红灯亮,充满后绿灯亮,没接电池时绿灯亮。
反接电池双灯自动全灭,以提示电池接错。
去掉电池自动恢复。
prog电阻电流
20k 50mA
10k 100mA
5k 200mA
3k 300mA
2k 400mA
1.6k 500mA
其他阻值可以参照上表规律折算
权威芯片及成品检测,完美质量控制。
用料奢华,输出端10u电容。
完美可靠性保护。
更加适合玩家DIY。
性能:
输入电压:4.5-9V
充电截止电压4.2V(转灯芯片正负0.5% 4.18-4.22之间)
输出最大充电电流单颗500mA(可定制更改100-500mA之间)
三段式充电,电池在低于2.9V时,涓流预充电,充电电流50mA左右。
电池在2.9V--4.05V恒流充电
电池高于4.05V恒压充电,充电电流不断减小。
充电必备知识:
1,测试电流的电流表只能串接在充电板的5V输入端。
2,充电电流最好是电池容量的0.37C,就是容量的0.37倍,比如1000mAH的电池充电电流400这样就够了。
过大充电速度快效果就差,冲完了电池电压掉的就多!
3,充电连接导线不能过细过长。
这样连接电阻大。
太细的话冲完了电池电压掉的就多。
4,与电池连接最好接触良好。
不然冲完了电池电压掉的就多。
5,如果5V的输入电压偏高,比如5.2甚至5.5,会造成充电电流不足500mA,这是正常的。
小封装的芯片散热性不如大封装。
电压高了芯片发热会自动减小充电电流,不至芯片烧毁。
测试须知:
1、空载测试,由于输出端接了100k的上拉电阻,所以在无电池状态下,输出电压在4.5以上,根据电源电压变化。
接100k电阻主要为了电池反接后的立即自动回复。
玩家也可以自行卸掉,卸掉的板子无电池状态就是绿灯亮,红灯闪,空载电压4.1V左右跳动。
此时4.1V是给电容不停充电的中间态的跳动电压。
并不是充电关断电压,充电截止电压是
4.2V0.5%精度。
2、如果玩家想串接电流表测试电流,请一定串联在输入电源端,不能串联在电池端。
原因:电流表有检测电阻,20A档也有个小欧姆,假设为1欧姆,1A的电流上去就是1V压降,电流表分了1V,极大干扰电池充电,电流就小了,充电状态也不稳定了。
同理,玩家在处理连接测试的时候,请注意良好的连接以减小连接内阻带来的测试偏差。
3、玩家测试充电完成转灯后的值过低原因:芯片判断充电完成电压是在有充电电流的情况下采样的电池电压,电池内阻,引线内阻都会加大这个采样值,所以转灯后,再测电池一般会回落10mV左右。
个别玩家连接内阻过大,会引起电池电压回落过大。
请玩家以充电即
将结束,而没有转灯的时候检测电池电压作为芯片充电关断电压才是合理的。
具体简单的方法可以在充电结束转灯完成后,万用表电压档连接电池,重新插拔电源端,芯片会重新充电循环一次,在转灯前看电池电压。
--------------------------------------------------------------------------------
充电芯片在电池电压较高情况下上电池不充电情况说明
充电管理芯片都具备充电的电池充满后电压回落至4.05V自动再启动之功能。
这一功能的设计是为了始终保证电池的较高的充电饱和电压。
由于实际应用中,芯片连接电池的BAT 管脚接一10u电容。
在无电池接入的情况下,芯片自动把这个BAT端的小电容看做一个微小的电池进行充电工作(电池和电容都是容性负载,特性相同)。
这样会使得芯片的工作状态进入自动再充电状态。
由于此状态是比较BAT端电位是否低于4.05V,而不是关断电压4.2V,这就造成当客户连接一个比较满的电池高于4.05V的电池时,芯片不作出充电动作。
去掉BAT管脚的10u电容可以解决这一问题,客户可以简单测试验证,但是这个电容是为了芯片的可靠性,滤除上下电毛刺尖峰的作用,所以实际生产使用中不能去掉这一电容。
玩家可以重新上下电源一次就可以解决较满的电池。
电源的重新上下电,芯片充电时序重新开始一次循环,比较电压就是关断电压4.2V。
所以可以解决较满充电不充电的情况。