沪科版七年级数学上册第一章有理数 1.2 数轴、相反数和绝对值 同步测试题 含答案
沪科版七年级上册数学各章节经典同步训练

沪科版七年级上册数学各章节经典同步训练第一章数学常识1.1 数学基本概念同步训练一:1. 下列哪个数是正数?A. -5B. 0C. 32. 两个整数相除,若结果为小数,则该结果保留几位小数?A. 1位B. 2位C. 3位1.2 数的运算同步训练二:1. 计算:-3 + 4 × (-2)A. -11B. 1C. -52. 计算:(5 - 2) ÷ 3A. 1B. 1.66C. 0第二章代数初步2.1 代数式同步训练三:1. 填空:a + b 的相反数是______。
2. 填空:5 - 3a 的倒数是______。
2.2 代数的运算同步训练四:1. 计算:(3a - 2b) + (2a + 4b)A. 5a + 2bB. 5a - 2bC. 2a + 6b2. 计算:(4x^2 - 3x) ÷ xA. 4x - 3B. 4x + 3C. 3x - 4第三章几何基础3.1 平面几何基本概念同步训练五:1. 下列哪个图形是三角形?A. 正方形B. 圆形C. 三条线段组成的图形2. 若一个三角形的两边分别为3cm和4cm,则第三边的长度范围是多少?A. 1cm~7cmB. 1cm~5cmC. 1cm~3cm3.2 三角形的性质同步训练六:1. 在ΔABC中,AB=AC,则ΔABC是什么三角形?A. 等边三角形B. 等腰三角形C. 直角三角形2. 若一个三角形的两边分别为5cm和12cm,第三边的长度为13cm,则这个三角形是什么三角形?A. 等腰三角形B. 直角三角形C. 钝角三角形第四章方程初步4.1 一元一次方程同步训练七:1. 解方程:2x + 3 = 7A. x = 2B. x = 1C. x = 32. 解方程:3(x - 2) = 2(2x + 1)A. x = 8B. x = -1C. x = 74.2 不等式同步训练八:1. 解不等式:3x - 7 > 2A. x > 3.67B. x < 3.67C. x > 22. 解不等式组:① 2x + 3 ≥ 7② x - 4 < 1A. x ∈ [1, 5)B. x ∈ [1, 6]C. x ∈ (1, 5)。
沪科版数学七年级上册章节强化练习试题及答案(全册)

沪科版数学七年级上册1章专训一:有理数的相关概念名师点金:有理数这部分的概念比较多,如有理数的定义、数轴、相反数、绝对值等,这些概念比较难理解,概念与概念之间又容易混淆,加强对概念的理解和辨析尤为重要,而对概念的考查也是常考类型.1111有理数的概念辨析1.下列说法正确的个数是()①0是最小的整数;②一个有理数,不是正数就是负数;③若a是正数,则一a是负数;④自然数一定是正数;⑤整数包括正整数和负整数;⑥非正数就是负数和0.A.0B.1C.2D.32,写出五个有理数(不能重复),同时满足下列三个条件:①其中三个数是非正数;②其中三个数是非负数;③五个数中必须有质数和分数,这五个数可以是.3.有理数中,最大的负整数为,最小的非负数为.有理数的分类4,下列分类中,错误的是()A.有理数'负有理数、非负有理数B.'正整数、非正整数C.'奇数、偶数D.自然数正整数正整数<整数<5.下列说法中,正确的有()①一个有理数不是整数就是分数;②一个有理数不是正的,就是负的;③一个整数不是正的,就是负的;④一个分数不是正的,就是负的.A.1个B.2个C.3个D.4个6.如果按“被3除”来分,整数可分为_______________________三类.7.把下列各数填入相应的大括号内.2355—7, 3.01,—8孕6,0.3,0,2015,—YL39—10%正数]};负分数{};非负整数{}.j套壑至数轴'相反数、绝对值8.下列说法正确的是()A.所有的有理数都可以用数轴上的点来表示B.数轴上的点都用来表示有理数C.正数可用原点右边的点表示,负数可用原点左边的点表示,零不能在数轴上表示D.数轴上一个点可以表示不止一个有理数9.下列说法不正确的有()①互为相反数的两个数一定不相等;②如果两个数的绝对值相等,那么这两个数必定相等;③有理数的绝对值一定大于0;④有理数的绝对值不是负数.A.1个B.2个C.3个D.4个10.下列各组数互为相反数的是()A.|-(-3)|与|+(+3)|B.—|—3|与+|+3|C.-(-|-3|)与1—(—3)|D.-I-I-3H与—[-(-3)]11.数轴上A,B两点所表示的数如图所示,则A与B之间(不含A,B)的点所表示的数中,互为相反数的整数有()A BI I I【I I I I I I I I.I—-6-5-4-3-2-10123456(弟11题)A.1对B.2对C.3对D.4对12.若a是有理数,则下面说法正确的是()A.|a|一定是正数B.|—a|一定是正数C.—|a|一定是负数D.|a|+l一定是正数13.在数轴上,若点A和点B分别表示互为相反数的两个数(点A在点B 左边),并且这两点间的距离是10,则A,B两点所表示的数分别是.14.若a+2的相反数是一5,则a=.15.绝对值不大于4的非负整数有个.专训二:数轴、相反数、绝对值的应用名师点金:数轴是“数”与“形”结合的工具,有了数轴可以由点读数,也可以由数定点,还可以从几何意义上去理解相反数和绝对值;同时利用数轴可以求相反数,化简绝对值等.总之,这三者之间是相互依存,紧密联系的.点数对应问题题型1数轴上的整数点的问题1.某同学在做数学作业时,不小心将墨水洒在所画的数轴上,如图,被墨水污染部分的整数有个.^121^302(第[题)2.在数轴上任取一条长为2016?个单位长度的线段,则此线段在数轴上最多能包含的整数点的个数为()A.2017B.2016C.2015D.2014题型2数轴上的点对应的数的确定3.已知数轴上点A在原点左边,到原点的距离为8个单位长度,点B在原点的右边,从点A走到点B,要经过32个单位长度.(1)求A,B两点分别对应的数;(2)若点C也是数轴上的点,点C到点B的距离是点C到原点的距离的3倍,求点C所对应的数.相星务化简求值问题4.如图,已知数轴上的点A和点B分别表示互为相反数的两个数a,b,且a<b,A,B两点间的距离为*,求a,b的值.A B«0b(第4题)5.己知|15—a|+|b—12|=0,求2a—b+7的值.6.当a为何值时,|1—a|+2有最小值,并求这个最小值.7.当a为何值时,2—14—a|有最大值,并求这个最大值.8.三个有理数a,b,c在数轴上的对应点的位置如图所示,其中数a,b互为相反数.试求解以下问题:a c b(弟8题)(1)判断a,b,c的正负性;(2)化简|a-b|+2a+|b|.忑里3.实际应用问题9.一天上午,出租车司机小王在东西走向的中山路上营运,如果规定向东为正,向西为负,出租车的行车里程如下(单位:千米):+15,-3,+12,一11,一13,+3,—12,—18,请问小王将最后一位乘客送到目的地时,一共行驶了多少千米?专训三:与有理数有关的常见题型名师点金:有理数这部分内容比较丰富,要掌握好这些内容,需要从多角度练习,灵活掌握解题方法和技巧,其常见题型有:有理数与数轴、有理数与相反数、有理数与绝对值、有理数与非负性等..遴裂1有理数与数轴1.如图,数轴上所标出的点中,相邻两点间的距离相等,则点A表示的数为()A.30B.50C.60D.80o''1'100―*■(第]题)CAB'一,旧"(第3题)2.A为数轴上表示1的点,将点A在数轴上移动3个单位长度到点B,则点B表示的有理数为()A.-3B.-2C.4D.-2或43.如图,数轴上有三点A,B,C,其中A,B分别表示2,2号,且AB= AC,则点C表示的数为.4.将数轴对折,使表示一3与1的两个点重合,若此时表示一5的点与另一个表示数x的点重合,则x=.5.一只跳蚤在数轴上从原点开始,第1次向右跳1个单位长度,第2次向左跳2个单位长度,第3次向右跳3个单位长度,第4次向左跳4个单位长度,……依此规律跳下去,当它跳第20次落下时,落点处离原点的距离是个单位长度.痍夷Z有理数与相反数326.在0.75,—/—3,3,0,+5,一3这几个数中,互为相反数的有()A.0对3.1对 C.2对D.3对7.下列说法:①相反数是两个不相等的数;②数轴上原点两旁表示的数互为相反数;③若两数互为相反数,则数轴上表示它们的点到原点的距离相等;④求一个非零数的相反数,就是在这个数前面添上“一”号,其中正确的有()A.1个B.2个C.3个D.4个8.在数轴上点A表示一2,点B与点C是互不重合的两点,且B,C表示的数互为相反数,C与A之间的距离为2,求点B,C所表示的数.:攫碧3.有理数与绝对值9.(中考•包头)若回=一a,则数轴上的对应点一定在()A.原点左侧B.原点或原点左侧C.原点右侧D.原点或原点右侧10.如图,数轴上。
沪科版七年级数学上第一章《有理数》第2节《数轴、相反数和绝对值》例题与讲解

1.2数轴、相反数和绝对值1.数轴(1)数轴的概念规定了原点、正方向和单位长度的直线叫做数轴.如图所示.(2)数轴的概念包涵的意思①数轴是一条直线,可以向两端无限延伸;②数轴有三要素:原点、正方向、单位长度,三者缺一不可;③原点位置的选定,单位长度大小的确定都是根据实际而定的.一般取向右的方向为正方向.(3)数轴的画法:要正确迅速地画出数轴,可按以下步骤进行:①“画”就是先画一条水平的直线;②“取”就是在直线上选取一点表示原点(原点表示的数是0);③“选”就是选择向右的方向为正方向(用箭头表示),那么相反的方向,即从原点向左为负方向,然后选取适当的长度作为单位长度,用细短线在直线上画出;④“标”就是从原点向右,依次标出1,2,3,…;从原点向左,依次标出-1,-2,-3,….画数轴的步骤可简单归纳为“一画、二取、三选、四标”.解技巧确定数轴的单位长度画数轴时根据实际问题的需要可选取不同的距离作为单位长度,同一数轴上的单位长度必须一致.【例1】观察下列图形,数轴画得正确的是______.解析:判断一条直线是否为一数轴,关键看这条直线是否具有原点、正方向和单位长度这三要素.A没有原点,B没有正方向,C的单位长度不一致,E中负方向上所标注的数字顺序错误,只有D满足条件.答案:D辨误区画数轴常见的错误画数轴常出现的错误:(1)没有方向;(2)没有原点;(3)单位长度不一致;(4)标出的数值排列错误.2.有理数与数轴上的点之间的关系(1)数对应点:任何一个有理数,都可以用数轴上的一个点来表示.(2)在数轴上,正数和负数分别位于原点的两侧,所有正数对应的点都在数轴上原点的右侧,所有负数对应的点都在数轴上原点的左侧,与正数对称.(3)找出数轴上的点对应的有理数的步骤是:①确定点与原点的位置关系(左负右正);②确定点与原点的距离.辨误区有理数与数轴上的点的对应关系所有的有理数都可以用数轴上的点表示,但不能说数轴上所有的点都表示有理数,因为数轴上除了表示所有的有理数的点之外,还有表示所有的无理数的点(以后会学习).【例2-1】指出数轴上A,B,C,D,E,F各点分别表示什么数?分析:先确定已知点的位置是在原点的左边还是右边,再确定点对应的数值,特别是B ,E 两点,要看准它们所表示的数在哪两个数之间.解:A 表示4;B 表示2.5;C 表示1;D 表示0;E 表示-1.5;F 表示-3.【例2-2】把下列各数在数轴上表示出来:32,-5,0,3.6,-3,-12,-112.分析:第一步,画出数轴(按三要素);第二步,把这些数在数轴上的对应点找出来;0在原点,容易找到对应点.正数在原点的右边,所以32,3.6在原点的右边,且分别距原点32个单位长度、3.6个单位长度.负数在原点的左边,所以-5,-3,-12,-112在原点的左边,且分别距原点5个单位长度、3个单位长度、12个单位长度、112个单位长度.解:解技巧确定数在数轴上的对应点(1)确定有理数在数轴上的对应点,要先根据正负确定该点在原点的哪一边,然后再确定距原点多少个单位长度;(2)一般情况下,原数轴上的表示单位长度的数要标在数轴的下方,而要表示的数应标在数轴的上方.3.相反数(1)相反数的定义只有符号不同的两个数互为相反数,这就是说,其中一个是另一个的相反数,特别规定:0的相反数是0.辨误区相反数的意义①“0的相反数是0”是相反数定义的一部分,千万不能漏掉;②“只有符号不同”指的是除符号不同以外,其他完全相同,不能理解为只要符号不同的两个数就互为相反数,例如:-2和+3符号不同,但它们不互为相反数.(2)相反数的几何意义两个互为相反数的数在数轴上所表示的点在原点的两侧,与原点的距离相等.如:+3和-3,+4.4和-4.4互为相反数,在数轴上的位置如图所示:(3)相反数的表示方法一般地,数a 的相反数是-a ,这里a 表示任意一个数,它可以是正数、负数或者零.析规律相反数的表示方法在任意一个数前面添上“-”号,所得的数是原数的相反数,在一个数的前面添上一个“+”号,仍是原数.【例3】填空题:(1)-5的相反数是__________;(2)-(-6)的相反数__________;(3)__________的相反数是0.7;(4)18与__________互为相反数;(5)若a =13,则-a =__________.解析:根据相反数的意义求出各数的相反数.(1)-5的相反数为5;(2)-(-6)表示-6的相反数,即-(-6)=6,所以求-(-6)的相反数就是求6的相反数;(3)-0.7的相反数是0.7;(4)18与-18互为相反数;(5)-a 表示a 的相反数,即求13的相反数,所以-a =-13.答案:(1)5(2)-6(3)-0.7(4)-18(5)-134.绝对值(1)绝对值的概念在数轴上,表示数a 的点到原点的距离,叫做数a 的绝对值,记作|a |.表示数0的点即原点,到原点的距离是0,故|0|=0.(2)一个数的绝对值与这个数的关系①一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.②绝对值实际上和四则运算“加、减、乘、除”一样,也是一种运算,绝对值运算的本质就是要把带有绝对值符号的数化为不带绝对值符号的数(即去绝对值).注意:既可以说0的绝对值是它本身,也可以说0的绝对值是它的相反数.故绝对值是它本身的数是正数和0;绝对值是它的相反数的数是负数和0.③互为相反数的两个数的绝对值相等;绝对值相等、符号相反的两个数互为相反数.谈重点绝对值的意义绝对值是初中代数中的重要概念,从数轴上看,一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大,离原点的距离越近,绝对值越小.由于距离总是正数或零,则有理数的绝对值不可能是负数.也就是说,任何一个有理数的绝对值都是非负数,即a 取任意有理数,都有|a |≥0,所以绝对值最小的数是0.【例4-1】下列说法正确的是().A .|-5|表示-5的绝对值,等于-5B .负数的绝对值等于它本身C .-4距离原点4个单位长度,所以-4的绝对值是4D .绝对值等于它本身的数有两个,是0和1解析:绝对值是一个距离,不能为负数,故选项A 错误;负数的绝对值等于它的相反数,故选项B 错误;一个数的绝对值是它在数轴上对应点与原点的距离,C 正确;正数的绝对值都等于它本身,故选项D 错误.答案:C【例4-2】回答问题:(1)绝对值是3的数有几个?各是什么?(2)绝对值是0的数有几个?各是什么?(3)绝对值是-2的数是否存在?若存在,请写出来.分析:本题要正确理解绝对值的概念,尤其要理解绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.(1)表示到原点距离等于3的点对应的数有几个,显然,表示数3和-3的点到原点的距离都等于3,所以绝对值等于3的数有两个,它们互为相反数.(2)到原点的距离为0的点只有原点本身,它对应的数是0.(3)任意有理数的绝对值都是非负数,故不存在绝对值是-2的数.一般地,一个有理数的绝对值只有一个,但是绝对值为一个正数的有理数都有两个,它们互为相反数,没有绝对值为负数的有理数.解:(1)绝对值是3的数有两个,它们分别是3和-3.(2)绝对值是0的数只有一个,它是0.(3)绝对值是-2的数不存在.5.数轴上两点间的距离与点表示的数之间的关系(1)数轴使数和直线上的点建立了对应关系,它揭示了数和形的内在联系.正是这种联系,使得数轴上两点之间的距离与所表示的数之间存在密切关系.(2)数轴上表示数a 的点与原点之间的距离:当a 为一个正数时,它与原点的距离是a 个单位长度,当a 是负数时,它与原点的距离是|a |个单位长度;当a 是0时,距离为0.(3)注意:到某一点距离等于a (a 是正数)的点有两个,在原点的左右两侧各一个.解技巧确定数轴上两点间的距离解决此类问题的最好方法是画出数轴,并表示出所求的数,再求两点间的距离.【例5-1】如图,A ,B 两点在数轴上,点A 对应的数为2,若线段AB 的长为3,求点B 对应的数是多少?分析:由于点A 对应的数为2,说明它到原点的距离为2,又线段AB 的长为3,则点B 对应的数就很容易确定了.解:因为点A 对应的数为2,又线段AB 的长为3,所以点B 到原点的长为1.又因为点B 在原点的左边,所以点B 对应的数为-1.【例5-2】已知数轴上A ,B 表示的数互为相反数,并且A ,B 两点间的距离为6个单位长度,求A ,B 两点表示的数(A 在B 的左边).分析:互为相反数的数,位于原点的两侧,且到原点的距离相等,根据A ,B 的距离为6个单位长度,即可求出A ,B 两点表示的数.解:由点A ,B 表示的数互为相反数,且A ,B 两点间的距离为6,可知点A ,B 在原点的两侧,到原点距离都为3,又A 在B 的左边,所以A 点表示-3,B 点表示3.6.运用相反数化简符号(1)理解:①在任意-个数前面添上“-”号,新的数就是原数的相反数.如:+5的相反数表示为-(+5),而5的相反数就是-5,所以-(+5)=-5.因此运用相反数可以进行符号化简.(2)分类:简单的符号化简共有3种情况:①-(+a )=-a ;②+(-a )=-a ;③-(-a )=a .(3)延伸:①-[-(-a )]=-a ;-[+(-a )]=a 等.②-0=0,表示0的相反数是0.多重符号的结果是由“-”号的个数决定的,与“+”号无关,据此可以对带有多重符号的数进行化简.化简时“+”号的个数不影响结果,可省去;而“-”号的个数是偶数个时也可全部省去,奇数个时,结果保留一个“-”号即可.【例6-1】填空:(1)__________;(2),那么x =__________.解析:(1)∵127,因此此题实际上是求127的相反数,∴-127;(2)是已知x 的相反数求原数x 的问题,∵-x =+(-80.5)=-80.5,∴x =80.5.答案:(1)-127(2)80.5【例6-2】化简下列各符号:(1)-[-(-2)];(2)+{-[-(+5)]};(3)-{-{-…-(-6)…}}(共n 个负号).分析:化简的法则是:结果的符号与负号的个数有关,有偶数个负号时,结果为正;有奇数个负号时,结果为负.解:(1)-2;(2)5;(3)当n 为偶数时,为6;当n 为奇数时,为-6.7.绝对值的化简和计算化简绝对值符号主要根据绝对值的非负性,解题时看清楚“-”号在绝对值符号的里面还是外面.如果“-”号在绝对值符号的里面,化简时把“-”号去掉;如果“-”号在绝对值符号的外面,化简时不能把“-”号去掉.解技巧准确化简绝对值符号化简绝对值符号的关键是判断绝对值符号内的数是正数、负数或是0.【例7】化简:(1)-|-23|;(2)+|(3)|;(4)|-(-7.5)|.分析:先判断绝对值符号内数的符号,再求绝对值.解:(1)-|-23|=-23;(2)+|;(3)|=312;(4)|-(-7.5)|=7.5.8.字母表示的数的绝对值的求法应用因为用字母所表示的数既可以是正数也可以是负数,还可以是0.它具有不确定性,而求绝对值首先要考虑的就是符号,因此求字母表示的数的绝对值时,必须考虑题目中给定的条件,若有限定条件,就按限定条件求出,若没有限定条件,则要分正、负、0三种情况讨论.解技巧求字母表示的数的绝对值(1)限制型逆用求法,如:|a |=6,那么a =±6;(2)开放型分类讨论求法:如求|x |+x 的值,当x >0时,|x |=x ,所以|x |+x =x +x =2x ,当x <0时,|x |=-x ,原式=0,当x =0时,原式=0;(3)化简型求法:如:|a |=|-8|,|-a |=|-8|,|-a |=|8|都能化为|a |=|8|=8解决.【例8-1】已知a =-5,|a |=|b |,则b 的值等于().A .+5B .-5C .0D .±5解析:因为a =-5,所以|a |=5.所以|b |=5.所以b =±5.注:本题常见的思维误区是由|a |=|b |推出a =b ,错选B.事实上,由|a |=|b |,可得b =±a ,所以b =a 或b =-a ,即b =5或b =-5.答案:D【例8-2】下面推理正确的是().A .若|m |=|n |,则m =nB .若|m |=n ,则m =nC .若|m |=-n ,则m =nD .若m =n ,则|m |=|n |解析:A 中若|m |=|n |,则m =±n ;B 中若|m |=n (n 一定是非负数),则m =±n ,例如|±2|=2,此时m =±2,n =2,显然m =±n ;C 中若|m |=-n ,则m =n 或m =-n ,例如|±3|=-(-3)(n 一定是非正数),此时m =±3,n =-3,所以m =±n .答案:D 9.利用数轴解决生活中的实际问题本节知识常与运动问题结合在一起,利用数形结合将运动问题解决.这种利用数形结合解决问题的方法是中考考查的热点题型之一.数轴是一种数学工具,它使数和数轴上的点建立了对应关系,运用数轴可以直观表示点的移动,正确找出数在数轴上的对应点,会由数轴上的点的位置确定对应的数,是解决这类问题的关键.解题时,通常根据题意正确地画出数轴,在选取长度单位时,要根据题目中的实际情况来确定,再在数轴上表示点的移动过程,用箭头和竖线来表示.【例9】超市、书店、玩具店依次坐落在一条东西走向的大街上,超市在书店西边20米处,玩具店位于书店东边50米处.小明从书店出来沿街向东走了50米,接着又向东走了-80米,此时小明的位置在何处?在数轴上标出超市、书店、玩具店的位置以及小明最后的位置.分析:书店处于超市和玩具店之间,且书店与玩具店之间的距离是50米,书店与超市之间的距离是20米,这样可以画出数轴,即可表示出小明最后的位置.解决点的移动问题,可画出数轴,在数轴上表示点的移动,关键是确定原点,最后的点相对于原点来说,若在原点的右侧,表示的是正数,若在原点的左侧,则表示的是负数.解:根据题意可以画出如图所示的数轴,小明位于超市西边10米处.10.利用绝对值解决实际问题绝对值的产生来源于实际问题的需要,反过来又可以运用它解决一些实际问题.利用绝对值求距离路程问题中,当出现用“+”、“-”号表示带方向的路程,求最后实际路程时,实际上是求绝对值的和.方法:①求各个数的绝对值;②求所有数的绝对值的和;③写出答案.【例10】一天上午,出租车司机小王在东西走向的中山路上营运,如果规定向东为正,向西为负,出租车的行车里程如下(单位:千米):+15,-3,+12,-11,-13,+3,-12,-18,请问小王将最后一位乘客送到目的地时,共行驶了多少千米?分析:本题是绝对值意义在实际问题中的具体应用,有理数中的“+”和“-”在本题中表示的是方向,而它们的绝对值是小王在营运中所行驶的路程,因此求共行驶的路程应是每次行车里程绝对值之和.解:|+15|+|-3|+|+12|+|-11|+|-13|+|+3|+|-12|+|-18|=15+3+12+11+13+3+12+18=87(千米).答:小王将最后一位乘客送到目的地时共行驶了87千米.。
新沪科版七年级数学上册《有理数》单元测试题及答案解析.docx

沪科版七年级数学上册 第一章 有理数 测试题一、选择题(每小题4分,共40分)1.如果+30 m 表示向东走30 m ,那么向西走40 m 表示为( )A .+40米B .-40 mC .+30 mD .-30 m 2.若a 与5互为倒数,则a 等于( )A.15 B .5 C .-5 D .-153.小宇同学在数轴上表示-3时,由于粗心,将-3画在了它相反数的位置并确定原点,要想把数轴画正确,原点应( )A .向左移6个单位B .向右移6个单位C .向左移3个单位D .向右移3个单位4.恩施生态旅游初步形成,2011年全年实现旅游综合收入9 086 600 000元,数9 086 600 000用科学记数法精确到千万是( )A .9.09×109B .9.087×1010C .9.08×109D .9.09×108 5.下列说法正确的是( )A .带有负号的数是负数B .零既不是正数也不是负数C .若-a 是负数,则a 不一定是正数D .绝对值是本身的数是06.冰箱冷冻室的温度是-6 ℃,此时房屋内的温度为20 ℃,则房屋内的温度比冰箱冷冻室的温度高( )A .26 ℃B .14 ℃C .-26 ℃D .-14 ℃7.对于式子-(-8),下列说法:①可表示-8的相反数;②可表示-1与-8的积;③结果是8;④与(-2)3相等.其中错误的是( )A .②③④B .②④C .④D .①②③④ 8.在(-2)2,-(-3),-|-4|,-23,0中,负数共有( )A .3个B .2个C .1个D .0个 9.下列运算中错误的是( )A .(-6)×(-5)×(-3)×(-2)=180B .(-938)÷(-3)=-278C .(-3)×13÷(-13)×3=9D .12×(13-14)=110.填在下面各正方形中的四个数字之间有相同的规律,则m 的值是( )A .38B .52C .66D .74二、填空题(每小题5分,共20分) 11.比较下列各对数的大小.-15____-7;-π____-3.14.12.近似数0.034万精确到____位,用科学记数法表示为____. 13.按照下图操作,若输入x 的值是5,则输出的值是____ .14.为了求1+2+22+23+…+2100的值,可令S =1+2+22+23+…+2100,则2S =2+22+23+24+…+2101,因此2S -S =2101-1,所以S =2101-1,即1+2+22+23+…+2100=2101-1,仿照以上推理计算1+3+32+33+…+32 014的值是____.三、解答题(共90分)15.(8分)将下列各数填入相应的括号里.-3 -(-4) -227 12% 0 -|-5| -22(1)负数的集合:;{ } (2)整数的集合:;{ } (3)正分数的集合:;{ } (4)非负数的集合:{ }.16.(8分)把下列各数在数轴上表示出来,并用“>”将它们连接起来.-|-3|,0,2.5,-22,-(-2),-21217.(16分)计算:(1)(-56)+(+7)+150+(+93)+(-44);(2)-12 016-[(-3)×(2÷3)2-43÷(-2)2];(3)-22+|-9|+3-(-4)2×(-12)3;(4)2-{8+(-1)2-[(-4)×2÷(-2)+56×(-6)]}.18.(8分)用简便方法计算:(1)(-12)×(-12+13-14+16);(2)(-5)×(+713)+(+7)×(-713)+12×713.19.(8分)在某一期《开心辞典》栏目上,五位选手在回答“连线”题目时,根据时间的长短分别得到了如下前进或后退的指令(“+”表示前进,“-”表示后退):+4,-3,-4,+3,+1.请问:这五位选手总的来说是前进了,还是后退了?若前进,前进了几步?若后退,后退了几步?20.(10分)已知a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是2,试求m 2-(a +b +cd)m +(-cd)2 015+(a +b)2 016.21.(10分)已知:|a +4|与(b -2)2互为相反数,求(b a -ab)÷(a +b)的值.22.(10分)某儿童服装店老板以32元的价格购进30件连衣裙,针对不同的顾客连衣裙的售价不完全相同,若以47元为标准,超过的钱数记为正,不足的钱数记为负,记录的结果如下表:售出件数 7 6 3 5 4 5 售价/元+3+2+1-1-2服装店售完这些连衣裙可赚多少元钱?23.(12分)古希腊数学家将数1,3,6,10,15,21,…叫做三角形数,它有一定的规律,若记第一个三角形数为a 1,第二个三角形数记为a 2,…,第n 个三角形数记为a n .(1)请写出21后面的第一位三角形数;(2)通过计算a 2-a 1,a 3-a 2,a 4-a 3,…,由此推算a 100-a 99;(3)根据你发现的规律求a 100的值.答案一、选择题(每小题4分,共40分)1---5 BABAB 6---10 ACABD 二、填空题(每小题5分,共20分)11.比较下列各对数的大小. -15__<__-7;-π__<__-3.14.12.近似数0.034万精确到__十__位,用科学记数法表示为__3.4×102__. 13.按照下图操作,若输入x 的值是5,则输出的值是__97__ .14.为了求1+2+22+23+…+2100的值,可令S =1+2+22+23+…+2100,则2S =2+22+23+24+…+2101,因此2S -S =2101-1,所以S =2101-1,即1+2+22+23+…+2100=2101-1,仿照以上推理计算1+3+32+33+…+32 014的值是__32015-12__.三、解答题(共90分)15.(8分)将下列各数填入相应的括号里.-3 -(-4) -22712% 0 -|-5| -22(1)负数的集合:⎩⎨⎧⎭⎬⎫-3,-227,-|-5|,-22…;(2)整数的集合:{}-3,-(-4),-|-5|,0,-22…; (3)正分数的集合:{}12%…;(4)非负数的集合:{}-(-4),12%,0,….16.(8分)把下列各数在数轴上表示出来,并用“>”将它们连接起来. -|-3|,0,2.5,-22,-(-2),-212解:2.5>-(-2)>0>-212>-|-3|>-2217.(16分)计算:(1)(-56)+(+7)+150+(+93)+(-44); 解:原式=150(2)-12 016-[(-3)×(2÷3)2-43÷(-2)2]; 解:原式=23(3)-22+|-9|+3-(-4)2×(-12)3; 解:原式=10(4)2-{8+(-1)2-[(-4)×2÷(-2)+56×(-6)]}. 解:原式=-818.(8分)用简便方法计算: (1)(-12)×(-12+13-14+16);解:原式=3(2)(-5)×(+713)+(+7)×(-713)+12×713.解:原式=019.(8分)在某一期《开心辞典》栏目上,五位选手在回答“连线”题目时,根据时间的长短分别得到了如下前进或后退的指令(“+”表示前进,“-”表示后退):+4,-3,-4,+3,+1.请问:这五位选手总的来说是前进了,还是后退了?若前进,前进了几步?若后退,后退了几步?解:+4+(-3)+(-4)+(+3)+1=1 这五位选手总的来说是前进了,前进了1步20.(10分)已知a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是2,试求m 2-(a +b +cd)m +(-cd)2 015+(a +b)2 016.解:因为a 与b 互为相反数,所以a +b =0,因为c ,d 互为倒数,所以cd =1. 因为|m|=2,所以m =±2.当m =2时,原式=22-1×2-1+0=4-2-1=1,当m =-2时,原式=4-1×(-2)-1+0=521.(10分)已知:|a +4|与(b -2)2互为相反数,求(b a -ab)÷(a +b)的值. 解:因为|a +4|与(b -2)2互为相反数,所以|a +4|+(b -2)2=0,因为|a +4|≥0,(b -2)2≥0,所以a +4=0,b -2=0,所以a =-4,b =2,(b a -a b )÷(a +b)=(2-4--42)÷(-4+2)=-3422.(10分)某儿童服装店老板以32元的价格购进30件连衣裙,针对不同的顾客连衣裙的售价不完全相同,若以47元为标准,超过的钱数记为正,不足的钱数记为负,记录的结果如下表:售出件数 7 6 3 5 4 5 售价/元+3+2+1-1-2服装店售完这些连衣裙可赚多少元钱?解:服装店卖完30件连衣裙所得的钱数为47×30+[(+3)×7+(+2)×6+(+1)×3+0×5+(-1)×4+(-2)×5]=1 410+22=1 432(元),共赚了1 432-32×30=472(元)23.(12分)古希腊数学家将数1,3,6,10,15,21,…叫做三角形数,它有一定的规律,若记第一个三角形数为a 1,第二个三角形数记为a 2,…,第n 个三角形数记为a n .(1)请写出21后面的第一位三角形数;(2)通过计算a2-a1,a3-a2,a4-a3,…,由此推算a100-a99;(3)根据你发现的规律求a100的值.解:(1)28 (2)100 (3)5 050。
沪科版七年级数学上册 第一章 有理数 1.2 数轴、相反数和绝对值 同步练习 含答案

第一章有理数 1.2 数轴、相反数和绝对值1. 下列各式中,不成立的是( )A.|-6|=6 B.-|6|=-6 C.|-6|=|6| D.-|-6|=62. 数轴是( )A.规定了原点,正方向和单位长度的一条直线 B.一条射线C.有原点、正方向的直线 D.有单位长度的直线3. 下列说法错误的是( )A.所有有理数都可以用数轴上的点表示B.在数轴上表示1的点和-1的点的距离是1C.数轴上原点表示的数是0D.在数轴上原点左边的点表示的数是负数4. 下列说法正确的是( )A.正数与负数互为相反数 B.符号不同的两数互为相反数C.0没有相反数 D.-a与a互为相反数5. 下列是四位同学画出的数轴,其中正确的是( )6. 如图,数轴上点M和点N表示的数分别是( )A.1.5和-2.5 B.2.5和-1.5 C.-1.5和2.5 D.1.5和2.5 7. a,b,c在数轴上的位置如图,a,b,c表示的数是( )A .a ,b ,c 都是负数B .a ,b ,c 都是正数C .a ,b 是正数,c 是负数D .a ,b 是负数,c 是正数8. 数轴上到原点的距离为2的点所表示的数是( )A .-2B .2C .±2D .不能确定9.化简-(-113)的结果是( ) A .113 B .-113 C .-34 D.3410. 下列说法中正确的是( )A .没有一个数的相反数是它本身B .整数的相反数必为整数C . -(+3)的相反数是-3D . +(-6)的相反数是-611. 一个数a 的相反数表示为______.12. 如图,数轴上点P 表示的数是-1,将点P 向右移动3个单位长度得到点P ′,则点P ′表示的数是____.13. 若|x|=5,则x的值是14. -(-2)表示________的相反数,故其结果是____.15. 若a=-3,则-a=____;若-a=-(-5),则a=____.16. 在数轴上,把表示2的对应点移动5个单位后,得到的对应点所表示的数是17. 下列说法中:①若a=10,则-a=-10;②若a是负数,则-a 必是正数;③如果a是负数,则-a在原点的左边;④若a与b互为相反数,则a,b对应的点一定在原点的两侧.其中正确的是(填序号)18. 在数轴上,点A表示的数是-3,与点A距离2个单位长度的点表示的数为____.19. 如图,小明不慎将墨水滴在数轴上,则被墨水盖住的整数有____个.20. 化简:(1)-(+4)=_______;+(-π)=_______;(2)-(-1.5)=_______;-[+(-5)]=____.21. 化简:(1)+[-(+0.3)](2)-[+(-212)]22. 若x +4与-6互为相反数,求x 的值.23. 如图,点A 表示-4,点B 表示-3.(1)标出数轴上的原点0;(2)指出点C表示的数;(3)有一点D(但不是点C),它到原点的距离等于点C到原点的距离,那么点D表示什么数?并标出点D.答案:1---10 DABDC CDCAB11. -a12. 213. ±514. -2 215. 3 -516. 7或-317. ①②18. -5或-119. 820. (1) -4 -π(2) 1.5 521. (1) 解:原式=-0.3(2) 解:原式=21222. 解:原式=x =223. 解:(1)(2)点C 表示的数是5(3)点D 表示-5,如图。
七年级数学上册 1.2 数轴、相反数和绝对值专题训练 (新版)沪科版

专题一 与相反数和绝对值有关的规律探究题1.将1,-21,31,-41,51,-61,……按一定规律排列如下: 第1行1 第2行-21 31 第3行-41 51 -61 第4行71 -81 91 -101 第5行111 121 131 -141 151 …… 请你写出第20行从左至右第10个数是 .专题二 利用数轴、绝对值解决实际问题2. 如图,检测10个排球,其中超过标准质量的克数记为正数,不足的克数记为负数,若设一个排球的标准质量为265克.从轻重的角度看,哪个排球与标准重量偏差最大?3. 我国上海的“磁悬浮”列车,依靠“磁悬浮”技术使列车悬浮在轨道上行使,从而减小阻力,因此列车时速可超过400公里.现在一个轨道长为180 cm的“磁悬浮”轨道架上做钢球碰撞实验,如图所示,轨道架上安置了三个大小、质量完全相同的钢球A、B、C,左右各有一个钢制挡板D和E,其中C到左挡板的距离为40 cm,B到右挡板的距离为50 cm,A、B两球相距30 cm.(1)在数轴上,A球在坐标原点,B球代表的数为30,找出C球及右挡板E代表的数.(2)碰撞实验中(钢球大小、相撞时间不记),钢球的运动都是匀速的,当一钢球以一速度撞向另一静止钢球时,这个钢球停留在被撞钢球的位置,被撞钢球则以同样的速度向前运动,钢球撞到左右挡板则以相同的速度反向运动,现A球以每秒10 cm的速度向右匀速运动,问多少秒后B球第二次撞向右挡板E?(3)在前面的条件下,当3个钢球运动的路程和为6 m时,哪个球正在运动?此时A、B、C三个钢球在数轴上代表的数分别是什么?状元笔记【知识要点】1. 规定了原点、正方向和单位长度的直线叫做数轴.2. 只有符号不同的两个数叫做互为相反数,0的相反数是0.3. 一个数的绝对值就是数轴上表示这个数的点离开原点的距离.即若a 是有理数,则| a |就是数轴上表示“a ”的点与原点“0”的距离.【温馨提示】1. ①所有的有理数都可以用数轴上的点来表示,但数轴上的点并不都表示有理数.②正数可用原点右边的点表示,反过来, 原点右边的点都表示正数;负数可用原点左边的点表示,反过来原点左边的点都表示负数;零用原点表示,反过来,原点表示零.2.(1)“只有”意味着除符号外,其后面的数字应是相同的. 如+4和-3不是互为相反数;“互为”的含义是指相反数是成对出现的,如4是-4的相反数,反过来,-4是4的相反数.(2)互为相反数的两数在数轴上的位置是很有特点的:①在原点两旁,②与原点的距离相等.3. 求一个数a 的绝对值,就是求它到原点的距离.因为距离不能是负数,所以任何一个数的绝对值都是非负数,即对于有理数a ,0a ≥.【方法技巧】1. 求一个数的绝对值和相反数可以借助数轴形象、直观地解题;2. 利用相反数的意义化简式子时,若含有多重符号,最后结果的符号只与这个数前面的负号个数有关,若负号的个数是偶数时,则最后结果符号为正;若负号的个数为奇数时,则最后结果符号为负. 如遇到绝对值问题,要先去绝对值符号,再用前面的方法化简.参考答案1.-2001 解析:题中的正负号可暂时不考虑,因为当你找到的数若分母是偶数则带负号,若分母是奇数时,则带正号.这些数字第一行1个数,第2行2个数,…所以第1到20行共1+2+3+…+20=210个数,即第20行的最后一个数为2101-,所以第20行从左到右第10个数,可从第20行去掉后面的10个数而得到,即为-2001. 2. 解:根据图形可得与标准质量的差的绝对值最大为3.5,所以与标准质量相差为-3.5的球偏差最大.3. 解:(1)依题意得:AC=180-40-30-50=60,AE=80,又∵C在负半轴,∴C代表-60,E代表+80.(2)依题意得T=(180×2+80)÷10=44(秒).(3)当3个钢球运动的路程和为6米时,C球正在运动,此时A、B、C三个钢球在数轴上代表的数分别是-60,30,-80.。
沪科版七年级上数学第一章有理数(全章)培优同步试卷

2020沪科版七年级上数学第1章有理数(全章)培优试卷(含答案)第一章有理数全章一、选择题(每小题3分,满分30分)1、某厂家生产一种袋装食品的标准重量为500克,质检员把每袋超出的部分记作正数,不足的部分记作负数,质检员随机测得一袋食品质量为501克,则记作()A.-1 B.1 C.0 D.5012、共享单车为人们带来了极大便利,有效缓解了出行“最后一公里”问题,而且经济环保.2016年全国共享单车用户数量达18,860,000,将18,860,000用科学记数法表示应为()A.1886×104 B.0.1886×108C.1.886×107 D.1.886×1063、在-2016,-2017,-2018,-2019四个数中,最小的数是()A -2016B -2017C -2018D -20194、对于-a表示的数理解不正确的是()A 一定是负数B 可以表示a的相反数C 有可能是正数D 有可能是05、下列计算正确的是()A -3-(-3)=-6B -3-3=0C -3÷3×3=-3D -3÷3÷3=-36、如果一个数的平方等于它的倒数,那么这个数一定是()A 0B 1C -1D ±17、数轴上点A表示的数是-3,则与点A相距2个单位长度的点B表示的数是()A ±5B ±1C 1或5D -1或-58、如右图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是()A.∅44.9 B.∅44.98 C.∅45.01 D.∅45.029、如表是小王存着存取记录的一部分,根据图中提供的信息,截止2015年8月20日,此张存折的余额为()日期20150630 20150715 20150820存入(+)/支出(-)+3200 -7450 +1500余额13500A.19450元 B.8550元 C.7650元 D.7550元10、1米长的小棒,第一次截去一半,第二次截去剩下的一半,如此下去,第6次后剩下的小棒长为()A112B132C164D1128二、填空题(每小题4分,满分20分)11、有理数-4, 50, 0 ,-2.67,354中,是非负整数。
沪科版数学七年级上册(培优练习)1.2《数轴、相反数和绝对值》

《1.2 数轴、相反数和绝对值》培优练习1. 已知有理数a,b,c满足|a-1|+|b-3|+|c-4|=0,则a,b,c的值分别为( ). A.1,-3,4 B.-1,3,4 C.-1,-3,-4 D.1,3,42. 如果|m|=6,m的相反数是小于0的数,则|m-4|=( ).A. -2B. 2C. 10D. -103. 某汽车配件厂生产一批圆形的橡胶垫,从中抽取6件进行检验,比标准直径长的毫米数记作正数,比标准直径短的毫米数记作负数,检查结果如下:则质量最好的零件是( ).A.第1个 B. 第2个 C. 第3个 D. 第4个4. 一探险队,要沿着一条东西走向的河流进行考察,第一天沿河岸向上游走了5 km,第二天又向上游走了4.3 km,第三天开始计划有变,第三天又向下游走了4.8 km,第四天又向下游走了3 km,你知道第四天之后,该探险队在出发点的上游还是下游吗?距离出发点多远?5. a,b,c三个数在数轴上的位置如图所示,化简式子:|a|a +|b|b+|c|c.答案和解析【答案】1. D2. B3. D4. 探险队在出发点的上游,距离出发点1.5 km.5. 1.【解析】1. 解:因为|a-1|≥0,|b-3|≥0,|c-4|≥0,且|a-1|+|b-3|+|c-4|=0,所以|a-1|=0,|b-3|=0,且|c-4|=0.所以a=1,b=3,c=4.应选D.根据绝对值的非负性,由|a-1|+|b-3|+|c-4|=0可知,|a-1|=0,|b-3|=0,|c-4|=0,进而可以求出a、b、c的值.此题考查的是绝对值的非负性,任意一个数的绝对值都大于等于0,解题关键是由绝对值的非负性分析出|a-1|=0,|b-3|=0,|c-4|=0.2. 解:因为m的相反数是小于0的数,所以m大于0,又因为|m|=6,所以m=6,所以|m-4|=|6-4|=2.故选B.根据m的相反数是小于0的数可知,m大于0,进而可以得到m的值,最后求出|m-4|的值即可.此题考查的是对相反数和绝对值的理解,解题关键是掌握相反数和绝对值的定义.3. 解:因为|+0.5|=0.5,|-0.3|=0.3,|+0.1|=0.1,|0|=0,0.5>0.3>0.1>0,所以第4个零件的质量最好.故选D.质量的好坏取决于质量偏离标准质量的绝对数值,即偏离标准质量的数值越小越好.此题考查的是绝对值的实际应用,解题关键是要明确偏离标准质量的数值越小,零件的质量越好.4. 解:设出发点为原点,向上游走为正方向,那么向下游走为负,画出数轴如图所示.利用数轴分析,得第四天后,探险队在出发点的上游,距离出发点1.5 km.根据题意,规定正方向,画出数轴,然后借助数轴进行分析即可.本题主要考查了数轴的应用,解题关键是结合题意,借助数轴,画出探险队的运动轨迹.5. 解:观察数轴上a ,b ,c 的位置知:a 是正数,b 是正数,c 是负数,因此|a|=a ,|b|=b ,|c|=-c ,则|a |a +|b |b +|c |c =a a +b b +c c =1+1−1=1. 观察数轴可知,a 是正数,b 是正数,c 是负数,进而可以得到|a|=a ,|b|=b ,|c|=-c ,代入求出|a |a +|b |b +|c |c 的值即可.本题考查的是对数轴和绝对值的应用,解此题的关键是结合数轴可知a 是正数,b 是正数,c 是负数,进而可以确定|a |a ,|b |b ,|c |c 的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沪科版七年级数学上册第一章有理数 1.2 数轴、相反数和绝对值同步测试题
一、基本概念
1.在数轴上,表示数a的点_______________,叫做数a的绝对值.
2.一个正数的绝对值是它_________,一个负数的绝对值是它的____________,0的绝对值是____.
3.任何一个有理数的绝对值都是_______数.
二、同步测试
1.-3的绝对值是( )
A.-3 B.3 C.-1
3
D.
1
3
2.一个有理数的绝对值一定是( )
A.正数 B.负数 C.非负数 D.非正数
3.下列各式中,不成立的是( )
A.|-6|=6 B.-|6|=-6 C.|-6|=|6| D.-|-6|=6 4.求下列各数的绝对值:-1.2,-(-3),0,-|-3|.
5.(3分)若|x|=5,则x的值是( )
A.5 B.-5 C.±5 D.1 5
6.在-(-8),-|-2|,-|4-4|,|-4|这四个数中,负数的个数有( ) A.4个 B.3个 C.2个 D.1个
7.一个数a在原点的左侧,且|a|=2.5,则a=________.
8.若|x|=|y|,则x与y的关系是( )
A.x=y B.x=-y C.x=y或x=-y D.x=y=0
9.若|x-1|+|y-2|=0,求x+y的值.
10.你知道吗?正式比赛用的排球是有严格规定的,现在生产了五个球,超重的
11.下列各组数中,互为相反数的一组是( )
A.|-1
2
|与
1
2
B.|-
1
2
|与2 C.|-
1
2
|与-0.5 D.|-
1
2
|与-(-
1
2
)
12.绝对值不大于2的整数有( )
A.2个 B.4个 C.5个 D.6个
13.下列说法:①任何有理数的绝对值是正数;②只有0的绝对值是它本身;③绝对值是它相反数的数都位于原点的左侧.其中正确的个数有( ) A.0个 B.1个 C.2个 D.3个
14.如果|-a|=-a,那么( )
A.-a一定是负数 B.-a一定是非负数
C.|-a|一定是正数 D.|-a|一定不是0
15.如图,数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A 表示的数是( )
A.-4 B.-2 C.0 D.4
16.绝对值最小的数是____.
17.绝对值是8的数有____个,分别是____________.
18.若|a-1
3
|+|b-
1
2
|+|ab-x|=0,则x=______.
19.有甲、乙两只蚂蚁分别在数轴上的A,B两点,点A,点B分别表示1和-
11
5
,它们同时发现原点有一蜜糖,于是以相同的速度爬过去,则最先得到蜜糖的
是______.(填“甲”或“乙”)
20.大家知道|5|=|5-0|,它在数轴上的意义是表示5的点到原点的距离,那么|a-2|在数轴上的意义是
______________________________________________________.
21.(10分)计算:
(1)|-2|+[-(-7)]-|-0.2|;
(2)|-20|÷|-2|×|+(-4)|.
22.(10分)一辆汽车沿着南北走向的公路来回行驶,某一天早晨从A地出发,晚上最后到达B地,约定向北为正方向(如+7表示汽车向北行驶7千米,-6表示汽车向南行驶6千米),当天的行驶记录如下(单位:千米):+18.3,-9.5,+7.1,-14,-6.2,+13,-6.8,-8.5.
请问:若汽车行驶每千米耗油0.335升,那么这一天共耗油多少升?
答案
一、基本概念
1. 到原点的距离
2. 本身 相反数 0
3. 非负
二、 同步测试
1. B
2. C
3. D
4. 解:|-1.2|=1.2,|-(-3)|=3,|0|=0,-|-3|的绝对值是3
5. C
6. D
7. -2.5
8. C
9. 解:x +y =3
10. 解:质量最好的球是5号,因为5号球超重或不足的绝对值最小
11. C
12. C
13. A
14. B
15. B
16. 0
17. 2; -2.5
18. 16
19. 甲
20. 数轴上表示a 的点到表示2的点之间的距离
21. (1)解:原式=8.8 (2)解:原式=40
22. 解:一天共耗油27.939升。