湖南省师范大学附属中学高一数学 平面向量基本定理教案
平面向量基本定理及其坐标表示教案

考情播报1.平面向量基本定理的应用、坐标表示下向量的线性运算及向量共线条件的应用是考查重点.2.题型以客观题为主,与三角、解析几何等知识交汇则以解答题为主.1.平面向量基本定理(1)条件:e 1,e 2是同一平面内的两个不共线向量.结论:对于这一平面内任意向量a ,有且只有一对实数λ1、λ2,使a =λ1e 1+λ2e 2.(2)关于平面向量基本定理的几点说明:①e 1、e 2为不共线向量,把它们叫做这一平面内所有向量的一组基底.②平面向量基本定理实际上是向量的分解定理,由定理可将任一向量a 在给出基底e 1、e 2的条件下进行分解;同一平面内任一向量都可以表示为两个不共线向量的线性组合③.基底不唯一,当基底给定时,分解形式唯一:λ1、λ2 是被a 、e 1、e 2唯一确定的数量. 2.平面向量的正交分解与坐标表示(1)平面向量的正交分解把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.(2)平面向量的坐标表示在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底,对于平面内的一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y,使得a =x i +y j ,这样,平面内的任一向量a 都可由x 、y 唯一确定,因此把(x,y)叫做向量a 的坐标,记作a=(x,y),其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标.3.平面向量的坐标运算(1)若a =(x 1,y 1),b =(x 2,y 2),则a ±b =(x 1±x 2,y 1±y 2);(2)若A(x 1,y 1),B(x 2,y 2),则AB =(x 2-x 1,y 2-y 1); (3)若a =(x,y),则λa =(λx,λy);(4)若a =(x 1,y 1),b =(x 2,y 2),则a =b ⇔⎩⎨⎧==;2121y y ,x x (5)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0.质疑探究:相等向量的坐标一定相同吗?相等向量起点和终点坐标可以不同吗?提示:一定相同.可以不同. 例如A(3,5),B(6,8), AB =(3,3);C(-5,3),D(-2,6),CD =(3,3),显然AB =CD ,但A 、B 、C 、D 四点坐标各不相同.考向一。
平面向量基本定理(教案)

平面向量基本定理(教案)教案章节一:向量的概念回顾1.1 向量的定义向量是有大小和方向的量,通常用箭头表示。
向量可以用坐标形式表示,例如在二维空间中,向量可以表示为(a, b)。
1.2 向量的加法向量的加法是指在同一平面内,将两个向量首尾相接,形成的第三个向量。
向量的加法满足交换律和结合律,即a + b = b + a,(a + b) + c = a + (b + c)。
教案章节二:平面向量的基本定理2.1 定理的定义平面向量的基本定理是指在平面内,任何两个不共线的向量可以作为平面的基底。
基底是线性无关的向量组,可以通过线性组合表示平面内的任意向量。
2.2 基底的性质基底是线性无关的,即不存在非零的线性组合使得向量组的和为零。
基底可以任意选择,但选择不同的基底会导致向量的坐标不同。
教案章节三:向量的线性组合3.1 线性组合的定义向量的线性组合是指将向量与实数相乘后相加的结果。
例如,a u + b v 表示将向量u 乘以实数a,向量v 乘以实数b,将两个结果相加。
3.2 线性组合的性质线性组合满足分配律,即(a u + b v) + c w = a (u + c w) + b v。
线性组合的系数可以是任意实数,包括正数、负数和零。
教案章节四:向量的坐标表示4.1 坐标系的建立坐标系是由两个或多个轴组成的,用于表示向量的位置和方向。
在二维空间中,通常使用x 轴和y 轴作为坐标轴。
4.2 向量的坐标表示向量可以用坐标形式表示,即(x, y),其中x 表示向量在x 轴上的投影,y 表示向量在y 轴上的投影。
向量的长度可以用勾股定理计算,即|u| = √(x^2 + y^2)。
教案章节五:向量的线性相关性5.1 线性相关的定义向量组线性相关是指存在一组不全为零的实数,使得向量组的和为零。
例如,向量组(u, v, w) 线性相关,当存在不全为零的实数a, b, c,使得a u +b v +c w = 0。
5.2 线性相关性的性质如果向量组线性相关,其中任意一个向量都可以表示为其他向量的线性组合。
平面向量基本定理教案(精选10篇)

平面向量基本定理教案(精选10篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作文档、教学教案、企业文案、求职面试、实习范文、法律文书、演讲发言、范文模板、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as work summaries, work plans, experiences, job reports, work reports, resignation reports, contract templates, speeches, lesson plans, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!平面向量基本定理教案(精选10篇)平面向量基本定理教案(精选10篇)作为一名为他人授业解惑的教育工作者,时常需要编写教案,教案是教学活动的依据,有着重要的地位。
高中数学《平面向量基本定理》教学设计

平面向量基本定理教学设计
一、教学目标
1、知识与技能
(1)了解平面向量基本定理及其意义;掌握两个非零向量夹角的定义及向量垂直的概念。
(2)培养学生作图、判断、求解的基本能力。
2、过程与方法
(1)经历平面向量基本定理的探究过程,让学生体会由特殊到一般的思维方法;
(2)让学生体会用基底表示平面内任一向量的方法以及求解一些比较简单向量夹角的方法。
3、情感态度与价值观
通过本节的学习,培养学生的动手操作能力、观察判断能力,体会数学中转化化归的思想。
二、教学重点、难点
1、教学重点:平面向量基本定理及其意义;两个向量夹角的简单计算;
2、教学难点:平面向量基本定理的探究;向量夹角的判断。
三.复习回顾
1.什么是共线向量?
2.向量a是非零向量,()
a R
λλ∈可以表示什么样的向量?
四.新课讲授
1.平面向量基本定理
定理要点:
(1)
(2)
要点巩固:2.向量的夹角
(1)夹角的定义
(2)垂直
(3)夹角的范围
五.例题与练习
例1.已知向量
12
,e e,求作向量-2.5
1
e+3
2
e
例2.如图,设P 是线段AB 的一个三等分点,若OA a =,OB b =, 试用,a b OP 表示=—————
针对练习2
六.课堂小结 本节课你学到了什么? 1 2
七.拓展提高
六.作业
学案P138.2 , P139.9
M AOB AB OA a OB b OM ∆=已知点是的边的中点,若=,=,则。
平面向量基本定理教案

《平面向量基本定理》教学设计一、背景分析1.教材分析向量是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景。
此前的教学内容主要研究了向量的的概念和线性运算,集中反映了向量的几何特征。
本节课要讲解“平面向量基本定理”的概念和应用,是研究向量的正交分解和向量的坐标运算基础,向量的坐标运算正是向量的代数形态。
通过平面向量基本定理,平面中的向量与它的坐标建立起了一一对应的关系,即“数”的运算处理“形”的问题完美结合,在整个向量知识体系中处于承上启下的核心地位。
本节课教学重点是“平面向量基本定理探究过程和利用平面向量基本定理进行向量的分解”。
2.学情分析从学生知识层面看:本节课之前已经学习了向量的基本概念和基本运算,如共线向量、向量的加法、减法和数乘运算;另外学生对向量的物理背景有了初步的认识。
在教学中引入生活实例类比出向量的分解,让学生通过课件的直观感受和动手探索总结归纳出平面向量基本定理,尤其是将图形语言转化为文字语言,对学生的能力要求比较高.因此,我认为平面向量的分解及对这种分解唯一性的理解是本节课的教学难点二.学习目标1)知识与技能1、了解平面向量基本定理及其意义,会选择基底 来表示平面中的任一向量。
2、能用平面向量基本定理进行简单的应用。
2)过程与方法1、通过平面向量基本定理的探究,让学生体验数学定理的产生、形成过程,培 养学生观察发现问题、由特殊到一般的归纳总结问题能力。
2、通过对平面向量基本定理的运用,增强学生向量的应用意识,让学生 进一步体会向量是处理几何问题强有力的工具之一。
3)情感、态度与价值观目标用现实的实例,激发学生的学习兴趣,培养学生不断发现、探索新知的精神, 发展学生的数学应用意识三、教学重点及难点教学重点:对平面向量基本定理的探究教学难点:对平面向量基本定理的理解及应用四、课堂结构设计为达到本节课的教学目标,突出重点,突破难点,我把教学结构设计为以下阶段:五、教学过程设计1、复习旧知,做好铺垫复习旧知做好铺垫 问题驱动 探究新知 思考交流 构建概念 例题练习 巩固新知 归纳小结 深化认识 布置作业 巩固提高(1)向量的加法(2)向量的减法(向量的减法:向量的终点连接,箭头指向被减向量)(3)共线定理若b a a 与)0(≠共线)0(≠=a a b λ2.问题驱动、探究新知问题(1 )已知21,e e (如图),做出2123e e +.解:做212,3e OB e OA ==,然后以为边做、OB OA OACB ,则2123e e OB OA AC OA OC +=+=+=,如下图所示:[设计意图]: 复习向量的加减法及数乘,为向量的线性表示打下基础.同时强调OC 可以沿着21,e e 分解,为学习平面向量基本定理起好铺垫作用。
湖南省师范大学附属中学高三数学总复习 平面的基本性质(一)教案

湖南师范大学附属中学高三数学总复习教案:平面的基本性质(一)平面的基本性质是研究空间图形性质的理论基础,也是以后演绎推理的逻辑依据.平面的基本性质是通过三条公理及其重要推论来刻划的,通过这些内容的教学,使学生初步了解从具体的直观形象到严格的数学表述的方法,使学生的思维从直觉思维上升至分析思维,使学生的观念逐步从平面转向空间.一、素质教育目标(一)知识教学点平面的基本性质是通过三个与平面的特征有关的公理来规定的.1.公理1说明了平面与曲面的本质区别.通过直线的“直”来刻划平面的“平”,通过直线的“无限延伸”来描述平面的“无限延展性”,它既是判断直线在平面内,又是检验平面的方法.2.公理2揭示了两个平面相交的主要特征,提供了确定两个平面交线的方法.3.公理3及其三个推论是空间里确定一个平面位置的方法与途径,而确定平面是将空间问题转化为平面问题的重要条件,这个转化使得立体几何的问题得以在确定的平面内充分使用平面几何的知识来解决,是立体几何中解决相当一部分问题的主要的思想方法.4.“有且只有一个”的含义分两部分理解,“有”说明图形存在,但不唯一,“只有一个”说明图形如果有顶多只有一个,但不保证符合条件的图形存在,“有且只有一个”既保证了图形的存在性,又保证了图形的唯一性.在数学语言的叙述中,“确定一个”,“可以作且只能作一个”与“有且只有一个”是同义词,因此,在证明有关这类语句的命题时,要从“存在性”和“唯一性”两方面来论证.5.公理3的三个推论是以公理3为主要的推理论证的依据,是命题间逻辑关系的体现,为使命题的叙述和论证简明、准确,应将其证明过程用数学的符号语言表述.(二)能力训练点1.通过由模型示范到三条公理的文字叙述培养观察能力与空间想象能力.2.通过由公理3导出其三个推论的思考与论证培养逻辑推理能力.3.将三条定理及三个推论用符号语言表述,提高几何语言水平.(三)德育渗透点借助模型和实物来说明三个公理,进行“数学来源于实践”的唯物主义观念的教育,通过三条公理及公理3的三个推论的学习,逐步渗透事物间既有联系又有区别的观点,更由于对三个推论的证明培养言必有据,一丝不苟的学习品质和公理法思想.二、教学重点、难点、疑点及解决办法1.教学重点(1)体现平面基本性质的三条公理及其作用.(3)两条公理及公理3的三个推论中的“有且只有一个”的含义.(3)用图形语言和符号语言表述三条公理及公理3的三个推论.(4)理解用反证法和同一法证明命题的思路,并会证一些简单问题.2.教学难点(1)对“有且只有一个”语句的理解.(2)对公理3的三个推论的存在性与唯一性的证明及书写格式.(3)确定两相交平面的交线.3.解决办法(1)从实物演示中引导学生观察和实验,阐明公理的条件和结论间的直观形象,加深对“有且只有一个”语句的理解.(2)通过系列设问,帮助学生渐次展开思维和想象,理解公理的实质和作用.三、课时安排2课时.四、学生活动设计准备好两块纸板,一块薄平的泡沫板,四根长15cm左右的小竹针,其中三根一样长,一根稍短.针对三条公理设计不同的活动,对公理1,可作如下示范:把直尺的两端紧按在玻璃黑板上,完全密接;对公理2,可用两块硬纸板进行演示(如图1-9);对公理3,使用图1-10所示的模型进行演示.五、教学步骤(一)明确目标(1)理解井熟记平面基本性质的三条公理及公理3的三个推论.(2)掌握这三个公理和三个推论的文字语言、图形语言、符号语言间的互译.(3)理解“有且只有一个”的含义,在此基础上,以公理3为主要依据,推证其三个推论.(4)能够用模型来说明有关平面划分空间的问题.(5)理解并掌握证明命题的常用方法——反证法和同一法.(二)整体感知本课以平面基本性质的三条公理及公理3的三个推论为主要内容,既有学生熟悉的事实,又有学生初次接触的证明,因此以“设问——实验——归纳”法和讲解法相结合的方式进行教学.首先,对于平面基本性质的三条公理,因为是“公理”,无需证明,教学中以系列设问结合模型示范引导学生共同思考、观察和实验,从而归纳出三条公理并加以验证.其中公理1应以直线的“直”和“无限延伸”来刻划平面的“平”和“无限延展”;公理2要抓住平面在空间的无限延展特征来讲;公理3应突出已知点的个数和位置,强调“三个点”且“不在同一直线上”.通过三条公理的教学培养学生的观察能力和空间观念,加深对“有且只有一个”语句的理解.对于公理3的三个推论的证明,学生是初次接触“存在性”和“唯一性”的证明,应引导学生以公理3为主要的推理依据进行分析,逐渐摆脱对实物模型的依赖,培养推理论证能力,证明过程不仅要进行口头表述,而且教师应进行板书,使学生熟悉证明的书写格式和符号.最后,无论定理还是推论,都要将文字语言转化为图形语言和符号语言,并且做到既不遗漏又不重复且忠于原意.三、教学重点、难点的学习与完成过程A.公理师:立体几何中有一些公理,构成一个公理体系.人们经过长期的观察和实践,把平面的三条基本性质归纳成三条公理.请同学们思考下列问题(用幻灯显示).问题1:直线l上有一个点P在平面α内,直线l是否全部落在平面α内?问题2:直线l上有两个点P、Q在平面α内,直线l是否全部落在平面α内?(用竹针穿过纸板演示问题1,用直尺紧贴着玻璃黑板演示问题2,学生思考回答后教师归纳.)这就是公理1:如果一条直线上的两个点在一个平面内,那么这条直线上所有的点都在这个平面内.这里的条件是什么?结论是什么?生:条件是直线(a)上有两点(A、B)在平面(α)内,结论是:直线(a)在平面(α)内.师:把条件表示为A∈a,B∈b且A∈α,B∈α,把结论表示11).这条公理是判定直线是否在平面内的依据,也可用于验证一个面是否是平面,如泥瓦工用直的木条刮平地面上的水泥浆.在这里,我们用平行四边形来表示平面,那么平面是不是只有平行四边形这么个范围呢?生:不是,因为平面是无限延展的.师:对,根据公理1,直线是可以落在平面内的,因为直线是无限延伸的,如果平面是有限的,那么无限延伸的直线又怎么能在有限的平面内呢?所以平面具有无限延展的特征.现在我们根据平面的无限延展性来观察一个现象(演示图1-9-(1)给学生看).问:两个平面会不会只有一个公共点?生甲:只有一个公共点.生乙:因为平面是无限延展的,应当有很多公共点.师:生乙答得对,正因为平面是无限延展的,所以有一个公共点,必有无数个公共点.那么这无数个公共点在什么位置呢?(教师随手一压,一块纸板随即插入另一块纸板上事先做好的缝隙里).可见,这无数个公共点在一条直线上.这说明,如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.此时,就说两平面相交,交线就是公共点的集合,这就是公理2,其条件和结论分别是什么?生:条件是两平面(α、β)有一公共点(A),结论是:它们有且只有一条过这个点的直线.师:条件表示为A∈α,A∈β,结论表示为:α∩β=a,A∈a,图形表示为图1-9-(2)或图1-12.公理2是判定两平面相交的依据,提供了确定相交平面的交线的方法.下面请同学们思考下列问题(用幻灯显示):问题1:经过空间一个已知点A可能有几个平面?问题2:经过空间两个已知点A、B可能有几个平面?问题3:经过空间三个已知点A、B、C可能有几个平面?(教师演示图1-10给学生看,学生思考后回答,教师归纳).这说明,经过不在同一直线上的三点,有且只有一个平面,即公理3,其条件、结论分别是什么?生:条件是:不在同一直线上的三点(A、B、C),结论是:过这三点(A、B、C)有且只有一个平面(α).A∈α,B∈α,C∈α,图形表示为图1-13,公理3是确定平面位置的依据之一.以上三个公理是平面的基本性质.其中公理2和公理3中的“有且只有一个”有两层含义,在数学中,“有一个”是说明“存在”、但不唯一;“只有一个”是说明“唯一”,但不保证图形存在.也就是说,如果有顶多只有一个.因此,在证明有关“有且只有一个”语句的命题时,要证明两个方面——存在性和唯一性.B.推论师:确定一个平面的依据,除公理3外,还有它的三个推论.推论1:经过一条直线和这条直线外的一点,有且只有一个平面.说出推论1的条件和结论.生:条件是:一条直线和直线外一点,结论是:经过这条直线和这一点有且只有一个平面.求证:经过a和A有且只有一个平面.证明:“存在性”即存在过A、a的平面,在直线a上任取两点B、C.∴A、B、C三点不在同一直线上.∴过A、B、C三点有且只有一个平面α(公理3).∴B∈α,C∈α.即过直线a和点A有一个平面α.“唯一性”,假设过直线a和点A还有一个平面β.∴B∈β,C∈β.∴过不共线三点A、B、C有两个平面α、β,这与公理3矛盾.∴假设不成立,即过直线a和点A不可能还有另一个平面β,而只能有一个平面α.这里证明“唯一性”时用了反证法.推论2:经过两条相交直线,有且只有一个平面.其条件、结论分别是什么?生:条件是:两条直线相交,结论是:经过这两条直线有且只有一个平面.师(板书):已知:直线a∩直线b=A.求证:经过a、b有且只有一个平面.证明:“存在性”.在a、b上分别取不同于点A的点B、C,得不在同一直线上的三点A、B、C,则过A、B、C三点有且只有一个平面α(公理3).∵A∈a,B∈a,A∈α,B∈α,∴平面α是经过相交直线a、b的一个平面.“唯一性”.设过直线a和b还有另一个平面β,则A、B、C三点也一定都在平面β内.∴过不共线三点A、B、C就有两个平面α和β.∴平面α与平面β重合.∴过直线a、b的平面只有一个.这里证明唯一性时,用的是“同一法”.推论3:经过两条平行直线,有且只有一个平面.(证明作为思考题)C.练习1.下面是一些命题的叙述语(A、B表示点,a表示直线,α、β表示平面)A.∵A∈α,B∈α,∴AB∈α.B.∵a∈α,a∈β,∴α∩β=a.其中命题和叙述方法都正确的是. []2.下列推断中,错误的是[ ]D.A、B、C∈α,A、B、C∈β,且A、B、C不共3.一个平面把空间分成____部分,两个平面把空间最多分成____部分,三个平面把空间最多分成____部分.4.确定经过A、B、C三点的平面与已知平面α、β的交线.(图1-16)四、总结、扩展本课主要的学习内容是平面的基本性质,有三条公理及公理3的三推论.其中公理1用于判定直线是否在平面内,公理2用于判定两平面相交,公理3及三个推论是确定平面的依据.“确定一个平面”与“有且只有一个平面”是同义词.“有”即“存在”,“只有一个”即“唯一”.所以证明有关“有且只有一个”语句的命题时,要证两方面——存在性和唯一性.证明的方法是反证法和同一法.五、布置作业1.复习课本有关内容并预习课本例题.2.课本习题(略).3.确定经过A、B、C三点的平面与已知平面α、β、γ的交线.4.思考题:(1)三个平面把空间可能分成几部分?(2)如何证明推论3?六、答案练习:1.D,2.C,3.图1-18.作业:3.图1-19.七、板书设计。
平面向量基本定理(教学设计)

《平面向量基本定理(第一课时)》教学设计一、教材分析:本节内容是人教A版普通高中课程标准实验教科书必修4第二章第3节“平面向量基本定理及坐标表示”的第一课时内容,本节共2个课时。
平面向量基本定理是本节的重点也是本节的难点。
平面向量基本定理告诉我们同一平面内任一向量都可以表示为两个不共线向量的线性组合,由于高中数学设计的向量是自由向量,这样,如果将平面内向量的始点放在一起,那么由平面向量基本定理可知,平面内的任何一点都可以通过两个不共线的向量得到表示,也就是平面内的点可以由平面内的一个点和两个不共线的向量得到表示,这是引进平面向量基本定理一个原因(学生可以不讲)。
实际上,本节课在本章中起到一个“承上启下”的作用,一方面要在平面向量线性运算的基础上归纳定理,另一方面,作为平面向量基本定理的特殊情况,研究平面向量的正交分解及坐标表示,是建立向量坐标的一个逻辑基础,它揭示了平面向量的基本关系和基本结构,是学生后续学习向量坐标表示的基础。
二、学情分析:知识方面:学生学习了第一节“平面向量的实际背景及基本概念”和第二节“平面向量的线性运算”,已经有了一定的平面向量基础知识,学力和能力方面:授课对象为省级示范学校高一学生,有比较扎实的数学基本知识,其数学基本素养和学习能力应该在普通高中学生中处于中上水平。
三、教师教学的出发点:根据课程标准的要求备课,备学生,把课程标准的要求溶解在课堂中,让学生在潜移默化中提高数学素养。
本节课的教学设计主要是针对学习情况为中等的学生(占大多数),第一、注重知识的生成,通过创设问题情境,引导学生自主学习,主动探究发现新知(平面向量基本定理);第二、注重数学思维的培养,通过问题的两个方面,即平面向量合成和分解,培养学生的观察能力,启发学生的逆向思考能力,抽象概括能力,引导学生进行适当的合情推理(定理的证明);第三、注重对知识的理解、消化、应用,主要通过典型的问题,掌握对新知的应用,可进行适当的拓展,发散思维;第四:激发学生的学习兴趣,在3个方向:新知识的维度拓展的兴趣激发,解决几何问题的兴趣激发,后续学习的兴趣激发。
湖南省师范大学附属中学高一数学 平面向量应用举例教案

目标要求:1、使学生运用向量的有关知识解决几何中的点共线、线段长度、直线的夹角等问题。
2、使学生运用向量的有关知识对物理中力的作用进行相关分析和计算,并在这个过程中培养学生探究问题和解决问题的能力。
3、通过例题,研究利用向量知识解决物理中有关“速度的合成与分解”等问题。
教学重难点:重点:用向量方法解决实际问题的基本方法;向量法解决几何问题的“三步曲”。
难点:实际问题转化为向量问题。
教学课时安排:2课时教学过程:分 析:①作图引导学生进行受力分析(注意分析对象); ②引导学生由向量的平行四边形法则,力的平衡及解直角三角形 等知识,得出: 2cos 2212cos 11θθG F F G =⇒= ③讨论:(1) 当θ逐渐增大时,1F 的大小怎样变化?为什么?(2) 当θ为何值时,1F 最小,最小值是多少?(3) 当θ为何值时,G F =1?(4) 如果N G N F 882,5881==,θ在什么范围时,绳子不会断?(5) 请同学们自行设定1F 与G 的大小,研究1F 与θ的关系?分 析:速度是向量(1)启发学生思考:如果水是静止的,则船只要取垂直于河岸的方向行驶就行了。
由于水的流动,船被冲向下游,因而水速2ν的方向怎样的呢?(2)再启发学生思考:此问题要求船实际的行进方向是垂直指向对岸的,这是合速度ν的方向还是1ν的方向?为什么?(3)启发学生画出2ν和ν的方向,思考一下向量ν-2ν的方向如何确定?(4)启发学生利用三角形法则作出ν-2ν(即1ν),再把1ν的起点平移到A ,也可直接用平行四边形法则作出1ν。
1、让学生完成t ,,θν的计算。
(注意ν和2ν的方向垂直)。
2、让学生完成当船要到达图中的C 和D ,且BD BC ,分别为d d d 2,21,时,对应的t ,,θν分别是多少?3、组织学生讨论习题2.5B 组第2题。
θνsin ⋅=t ,是否船垂直到达对岸所用时间最少?为什么? 补充例题1、 一架飞机由A 城向东飞行了400km 到达城,因大雾无法降落,故转而向北飞行300km 到达城,则这两次飞行的位移之和,就可以用向量加法的三角形法则得到,由勾股定理可得到合位移的大小km S 500=,方向为东偏北37。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南省师范大学附属中学高一数学教案:平面向量基本定理
教材:平面向量基本定 理
目的:要求学生掌握平面向量的基本定理,能用两个不共线向量表示一个向量;或一个向量分解为两个
向量。
过程:一、复习:1.向量的加法运算(平行四边形法则)。
2.实数与向量的积
3.向量共线定理
二、由 平行四边形想到:
1.是不是每一个向量都可以分解成两个不共线向量?且分解是唯一?
2.对于平面上两个不共线向 量 e1 , e2 是不是平面上的所有向量都可以用它们来表示?
——提出课题:平面向量基本定理
三、新授:1.(P105-106) e1 , e2 是不共线向量, a是平面内任一向量
OA = e1
OM =λ1 e1
OC = a= OM + ON =λ1 e1 +λ2 e2
OB = e2
ON =λ2 e2
得平面向量基本定理:如果 e1 , e2 是同一平面内的两个不共线向量,那么对于这一平面内的任一 向量 a,有且只有一对实数λ1,λ2 使 a=λ1 e1 +λ2 e2
注意几个问题:1 e1 、 e2 必须不共线,且它是 这一平面内所有向量的一组基底
2 这个定理也叫共面向量定理
3λ1,λ2 是被 a, e1 , e2 唯一确定的数量
2.例一( P106 例三)已知向量 e1 , e2 求作向量2.5 e1 +3 e2 。
C
B
作法:1 取点 O,作 OA =2.5 e1 OB =3 e2
e2
M
M
2 作
e OACB, OC 即为所求+
1
N
A
O
例二、(P106 例 4)如图
ABCD
的两条对角线交于点
M,且
AB
=
a,
AD
=
b
,
用
a,
b
表示
MA
,
MB
,
MC
和
MD
D
C
b
M
M
解:在 ABCD 中
∵
AC
=
AB
+
AD
=
a+
b
A
a
B
M
DB
=
AB
AD
=
a
b
∴
MA = 1
AC
=
1
(
a+
b
)=
1
a 1
b
2
2
22
MB = 1
DB = 1
(
a
b
)=
1
a 1
b
2
2
22
MD = MB = 1
DB = 1
a+ 1
b
2
22
MC = 1
AC = 1
a+ 1
b
2
22
例三、已知 ABCD 的两条对角线 AC 与 BD 交于 E,O 是任意一点,
求证: OA + OB + OC + OD =4 OE
证:∵E 是对角线 AC 和 BD 的交点
∴ AE = EC = CE BE = ED = DE
在△OAE 中 OA + AE = OE
D A
C O
E B
同理: OB + BE = OE
OC + CE = OE
OD + DE = OE
以上各式相加,得: OA + OB + OC + OD =4 OE
例四、(P107 例五)如图, OA , OB 不共线, AP =t AB (tR)用 OA , OB 表示 OP
解:∵ AP =t AB
P
B
O
A
∴ OP = OA + AP = OA + t AB = OA + t ( OB OA ) = OA + t OB t OA
=(1t) OA + t OB
四、小结:平面向量基本定理,其实质在于:同一平面内任一向量都可以表示为两个不共线向量的 线性组合。
五、作业: 课本 P107 练习 P108 习题 5.3 3-7
。