2018春八年级数学下册第1章直角三角形1.3直角三角形全等的判定习题课件新版湘
八年级数学下册13直角三角形全等的判定课件(15张)

1.3 直角三角形全等的判定
复习导入 例题讲解 课堂小结
讲授新课 随堂演练
复习导入
1. 判定两个三角形全等的条件有哪些?
边边边(SSS) 边角边(SAS) 角边角(ASA) 角角边(AAS)
2. 根据以上条件,对于直角三角形,除了直角相等的条件 外,还要满足什么条件,这两个直角三角形就全等?
在 Rt△ABE 和 Rt△CBF 中,
∵AE=CF,AB=CB, ∴△ABE≌△CBF.
课堂小结
直角三角 形的判定
内容
斜边和一条直角边对应相 等的两个直角三角形全等.
前提 条件
在直角三角形中
证明:∵BD,CE是△ABC的高,
∴∠BEC=∠CDB=90°.
在Rt△BEC和Rt△CDB中, ∵BC=CB,
BE=CD,
∴Rt△BEC≌Rt△CDB(HL).
例2 如图:AC⊥BC,BD⊥AD,AC=BD. 求证:BC=AD.
D
证明: ∵AC⊥BC,BD⊥AD,
∴∠C和∠D都是直角. A
在Rt△ABC和Rt△BAD中,
求作:Rt△ABC,使AB=c,BC=a.
作法:
1、作∠MCN=90°;
2、在CN上截取CB,使CB=a;
M
3、以B为圆心,以C为半径画弧,交CM于点A,
A
连接AB.
则△ABC为所求作的直角三角形,如图.
C
BN
随堂演练
1.如图 D-6-1,BE,CD 分别是△ABC 的高,且 BD=EC,直接判定 △BCD≌△CBE 的依据是“ HL ”. 2.如图 D-6-2 所示,BA∥DC,∠A=90°,AB=CE,BC=ED,则 △CED≌△ ABC ,AC= CD ,∠B=∠ DEC .
湘教版八年级数学下册课件-小结与复习

Ca B
2.勾股数
满足a2 +b2=c2的三个正整数,称为勾股数.
四、直角三角形全等的判定
斜边和一条直角边对应相等的两个直角三角形全等. 简写成“斜边、直角边”或“HL”.
注意:①对应相等.
②“HL”仅适用直角三角形,
③书写格式应为:
C
B
∵在Rt△ ABC 和Rt△ DEF中,
AB =DE,
D
AC=DF,
∴Rt△ABC≌Rt△DEF (HL) F
E
五、 角平分线的性质与判定
角的平分线的性质 角的平分线的判定
图形
C
P
已知 条件
结论
OP平分∠AOB PD⊥OA于D PE⊥OB于E
PD=PE
C P
PD=PE PD⊥OA于D PE⊥OB于E OP平分∠AOB
考点讲练
考点一 直角三角形的性质与判定
例1:如图,AB∥DF,AC⊥BC于C,CB的延长线与
Rt△CDF,从而得到DE=DF,再利用角平
分线的判定定理证明AD是△ABC的角平 E
F
分线.
B
D
C
证明: 在Rt△BDE 和 Rt△CDF中,
EB=FC,
BD=CD,
∴ Rt△BDE ≌ Rt△CDF(HL).
∴ DE=DF.
∵DE⊥AB, DF⊥AC,
E
∴ AD是△ABC的角平分线.
B
A
F
D
C
优质 课件
八年级数学下(XJ) 教学课件
第1章 直角三角形
小结与复习
要点梳理
考点讲练
课堂小结
课后作业
要点梳理
一、直角三角形的性质与判定
八年级数学下册第1章直角三角形1.4角平分线的性质习题课件新版湘教版

(2)①BD与ED有什么关系?为什么? 提示:BD=2ED.∵DE⊥AB,∴∠DEB=90°, 又∵∠B=30°,∴BD=2ED. ②请结合CD的长,以及CD与ED的关系确定BD的长. 提示:∵ED=CD=1,∴BD=2ED=2.
【总结提升】角平分线图形结构中的两种数量关系 如图,OC平分∠AOB,PD⊥OA,PE⊥OB,DE交OC于点F, 可以得到以下结论: 1.角之间的相等关系: ∠AOC=∠BOC=∠PDF=∠PEF; ∠ODP=∠OEP=∠DFO=∠EFO=∠DFP=∠EFP;∠DPO=∠EPO =∠ODF=∠OEF. 2.线段的相等关系: OD=OE,DP=EP,DF=EF.
【证明】过点P作PE⊥OA于E,PF⊥OD于F,
∵S△PAB=S△PCD,
∴ A1 B·PE=1 CD·PF.
2
2
∵AB=CD,∴PE=PF.
∴点P在∠AOD的平分线上(到一个角的两边距离相等的点在这
个角的平分线上).
∴OP平分∠AOD.
6.如图,△ABC中,BP,CP分别是∠B,∠C的外角平分线. 求证:点P在∠A的平分线上.
( ×)
知识点 1 角平分线的性质 【例1】(2013·温州中考)如图,在△ABC中,∠C=90°,AD平分 ∠CAB,交CB于点D,过点D作DE⊥AB于点E. (1)求证:△ACD≌△AED. (2)若∠B=30°,CD=1,求BD的长.
【解题探究】(1)①CD与ED有什么关系?为什么? 提示:CD=ED.∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED. ②由CD与ED的关系能判定△ACD≌△AED吗?为什么? 提示:能.∵在Rt△ACD和Rt△AED中,AD=AD,CD=ED,∴由“HL” 定理可得Rt△ACD≌Rt△AED.
北师大版八年级数学下册1.2《直角三角形》课件(共14张PPT)

观察下面三组命题: 如果两个角是对顶角,那么它们相等; 如果两个角相等,那么它们是对顶角。 如果小明患了肺炎,那么他一定会发烧; 如果小明发烧,那么他一定患了肺炎。 一个三角形中相等的边所对的角相等; 一个三角形中相等的角所对的边相等。
思考:上面每组中两个命题的条件和结论也有类似的 关系吗?
作业:
1,下列各组数中,是勾股数的是( )
A 2,3,4
B 1.5, 2,3
C 9, 12, 15
D 7, 8, 9
2,在△ABC中,三边长分别是8,15,17,则这个三角形是__
它的面积是__。
3,若三角形的三边长分别为n+1,n+2,n+3,当n=__时,此三 角形是直角三角形。
4, 在△ABC中,BC=6,AC=5,BC边上中线长为4,则S△ABC=____ 5,已知:在△ABC中,AB=15cm,AC=20cm,BC=25cm
角时,那么这两个三角形全等吗?
已知:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°, AB=A′B′,BC=B′C′。 求证:Rt△ABC≌Rt△A′B′C′。
定理:斜边和一条直角边对应相等的两个直角三角形全 等.这一定理可以简单地用“斜边、直角边”或“HL”表 示.
如图所示,有两个长度相等的滑梯,左边滑梯的高度 AC与右边滑梯水平方向的长度DF相等,两个滑梯的 倾斜角∠B和∠F的大小有什么关系?
想一想
思考:两边分别相等且其中一组等边的对角相等的两 个三角形全等吗?如果其中一组等边所对的角是直角 呢?
两个三角形中,如果有两边及其中一边的对角相等,这两个三 角形是不一定全等的.如图所示:
八年级数学下册 1.3 直角三角形全等的判定教学课件 (新版)湘教版

AB=AB,
A
B
AC=AD.
∴ Rt△ACB≌Rt△ADB (HL).
∴BC=BD
D
16
如图,两根长度为12米的绳子,一端系 在旗杆上,另一端分别固定在地面两个木桩 上,两个木桩离旗杆底部的距离相等吗?请 说明你的理由。
解:BD=CD ∵在Rt△ABD与Rt△ACD中
AB=AC AD=AD ∴Rt△ABD≌Rt△ACD(HL)
∴AC=BD, ∠CAB = ∠DBA (全等三角形对应边、对应角相等)
又∵CE⊥AB于E,DF⊥AB于F, ∴ ∠AEC = ∠BFD = 90° 。
∵在△CAE和Rt△DBF中
∠AEC = ∠BFD
∠CAB = ∠DBA
AC=BD
∴△CAE≌△DBF(AAS)
∴CE=DF(全等三角形对应边相等).
EB C E
2、如图,AE⊥AB,CB⊥AB,AB=2BC, 点D是AB的中点,DE=AC。
C F
求证:DE⊥AC
3、如图,点A,F,E,B四点共线, A D
AC⊥CE,BD⊥DF,AE=BF,AC=BD,
则△ACF与△BDE全等吗?
AF
BD EB
C
26
BC=EF
(全等三角形对应角相等)
AC=DF ∴ Rt△ABC≌Rt△DEF (HL)
又∵∠DEF+∠DFE=90° (直角三角形的两个锐角互余
∴∠ABC+∠DFE=90°
18
有一正方形窗架,盖房时为了稳定,在上面钉了
两个等长的木条GF与GE,E,F分别是AD,BC的中
点。G是AB的中点吗? G
A
∴BD=CD(全等三角形对应边相等).
八年级数学下册 第1章 直角三角形 1.3 直角三角形全等的判定课件

1.3 直角三角形全等的判定(pàndìng)
第一页,共十四页。
第1章 直角三角形
1.3 直角三角形全等的判定
(pàndìng)
知识目标 目标突破
总结反思
第二页,共十四页。
1.3 直角三角形全等的判定(pàndìng)
知识(zhī shi)目标
1.在归纳全等三角形判定定理的基础上,结合勾股定理,推导出“HL” 判定定理. 2.根据题意,能综合应用(yìngyòng)直角三角形全等的判定知识作图.
【归纳总结】作直角三角形的原理及作图步骤
利用“HL”判定定理实现直角三角形的位置转移. 作图步骤:(1)作直角.采用作线段垂直平分线的方法或作一个角等 于已知角的方法;(2)作线段相等(xiāngděng).采用截取法,注意一般按
照从直角边到斜边的截取顺序进行.
第九页,共十四页。
1.3 直角三角形全等的判定
第五页,共十四页。
1.3 直角三角形全等的判定(pàndìng)
【归纳总结】 “HL”判定定理(dìnglǐ)的适用条件
(1)在两个直角三角形中; (2)有一对直角边对应相等;
(3)两条斜边对应相等.
第六页,共十四页。
1.3 直角三角形全等的判定(pàndìng)
目标(mùbiāo)二 会作直角三角形
△A′B′C′是否全等?如果全等,请给出证明;如果不全等,请举出反
例.张翔同学的解答过程如下:
第十一页,共十四页。
1.3 直角三角形全等的判定(pàndìng)
解:这两个三角形全等.证明如下:
如图1-3-3,在Rt△ABD和Rt△A′B′D′中,
∵AB=A′B′,AD=A′D′, ∴Rt△ABD≌Rt△A′B′D′,∴BD=B′D′. 同理可证DC=D′C′,∴BC=B′C′.
湘教版八年级下册数学精品教学课件 第1章 直角三角形 第1课时 角平分线的性质定理

E
10
6
DC = DE,DB = DB,
D
∴Rt△CDB≌Rt△EDB(HL),
B
∴BE = BC = 8. ∴ AE=AB - BE = 2.
8
C
∴△AED的周长 = AE + ED + DA = 2 + 6 = 8.
6.如图,已知 AD∥BC,P 是∠BAD与 ∠ABC的平分线的交 点,PE⊥AB 于 E,且PE = 3,求 AD 与BC 之间的距离.
解:过点 P 作MN⊥AD 于点 M,交 BC 于点 N. ∵ AD∥BC, ∴ MN⊥BC,MN 为 AD 与 BC 之间的距离. ∵ AP 平分∠BAD,PM⊥AD,PE⊥AB, ∴ PM = PE. 同理,PN = PE. ∴ PM = PN = PE =3. ∴ MN = 6. 即 AD 与 BC 之间的距离为 6.
PD⊥OA,PE⊥OB,垂足分别为 D,E.
A
求证:PD = PE.
D
证明:∵ PD⊥OA,PE⊥OB, ∴ ∠PDO = ∠PEO = 90°.
C P
在 △PDO 和 △PEO 中,
O
E
B
∠PDO = ∠PEO,
∠DOP = ∠EOP, OP = OP,
∴ △PDO≌△PEO(AAS). ∴ PD = PE.
作 PD⊥OA,PE ⊥OB,点 D,E 为垂足,测量 PD、
PE 的长.将三次数据填入下表:
PD
PE
D AC P
第一次 第二次
O
EB
第三次
2. 观察测量结果,猜想线段 PD 与 PE 的大小关系,
写出结:_P_D__=__P_E___
验证猜想 角的平分线上的点到角的两边的距离相等
八年级下册数学3直角三角形全等的判定

直角三角形全等的判定1. 有斜边和一条直角边对应相等的两个直角三角形全等,记作“HL ”. 另外还有SAS,ASA,AAS,SSS 共五种。
2. 判断满足下列条件的两个直角三角形是否全等? ①一个锐角和这个锐角的对边对应相等:______________ ②一个锐角及和这个锐角相邻的一直角边对应相等:__________ ③一个锐角与一斜边对应相等:_________________ ④两直角边对应相等:______________________ ⑤两边相等:_____________________ ⑥两锐角对应相等:______________ ⑦一锐角和一边对应相等:_______________3.BC EF AC DF ABC DEF ∠∠如图,有两个长度相同的滑梯、,左边滑梯的高度与右边滑梯水平方向的长度相等,两个滑梯的倾斜角和的大小有怎样的关系?4.,,,AC CD BD CD AB EF AB E CD F AC FD ABF ⊥⊥=∆如图,,,的垂直平分线交于交于且求证:是等腰直角三角形。
5.,,,AB AE BC ED B E AF CD F CF DF ==∠=∠⊥=如图,,为垂足,求证:。
BE6.,,,,.ABC AD BC CE AB D E AD CE H AEH CEB ∆⊥⊥∆∆如图,在中,垂足分别为、、交于点请添加一个条件:使≌7.,,,,,,,,M A N ABC AB AC BM MN CN MN M N BM AN MN BM CN ∆=⊥⊥=如图,点在同一条直线上,为等腰三角形,垂足分别为、且试求与之间的数量关系。
8.,,,,AB AC BD AC D CD AB E BD CE F BAF CAF =⊥⊥∠∠如图,于点于点与相交于点与相等吗?9.,15,10,,A B km C D DA AB A CB AB B DA km CB km AB E C D E E A ⊥⊥==如图,铁路上、两站(视为直线上两点)相距25,、为铁路同旁的两个村庄,于点于点,现在要在铁路上建一个土特产产品收购站使、两村庄到站的距离相等,求站应建在离站多远处,并说明理由。