柴油机燃烧系统

合集下载

柴油机燃油系统

柴油机燃油系统

名 车 欣 赏
轻 松 片 刻
BENZ的E-CLASS警车,BENZ车的性能自不必说,外形也是
相当时尚与大气。(2005年5月10日,北京,反恐装备展)
福特的蒙迪欧,作为民用车它在中国市场占尽了风头, 不知能否在警用舞台上继续大展拳脚。
宝 马
华贵乳白色,真皮豪华外饰,一匹马力,敞蓬,声控自动挡, 防盗自动发声报警或逃跑系统,自动定速巡航系统。
二、柴油机上为什么要安装调速器?
当发动机负荷稍有变化时,导致发动机转速变化很大: 1、当负荷减小---转速升高---柱塞泵循环供油量增加--转速进一步升高,这样不断地恶性循环,造成发动机转 速越来越高,最后飞车; 2、当负荷增大---转速降低---柱塞泵循环供油量减少--转速进一步降低,这样不断地恶性循环,造成发动机转 速越来越低,最后熄火。 要改变这种恶性循环,就要求有一种能根据负荷的变 化,自动调节供油量,使发动机在规定的转速范围内稳 定运转的自动控制机构。
• (1)喷油: (2)停油:
• 2、特点:
• (1)喷孔的位置和方向与 燃烧室形状相适应,以保证 油雾直接喷射在球形燃烧室壁上。 • (2)喷射压力较高。 • (3)喷油头细长,喷孔小,加工精度高。
3、油束与燃烧室的配合
三、轴针式喷油器
• 1、构造:针阀下端的密封锥面下延伸出一个轴针,其形
状有倒锥形和圆柱形,轴针伸出喷孔外,使喷孔成为圆环 状的狭缝。一般只有一个喷孔,孔径1~3mm,喷油压力 较低(12~14MPa )。
第五章 柴油机燃油系统
• 第一节
• 一、功用
• 柴油机供给系的任务是完成柴油供给和空气供 给以及可燃混合气的形成、燃烧和废气的排出。


• 二、组成

第六章:柴油机燃料供给系统

第六章:柴油机燃料供给系统
1)发火性:指柴油的自燃能力,用十六烷值评定。 柴油的十六烷值大,发火性好,容易自燃。国家标 准规定轻柴油的十六烷值不小于45。 (45-55为宜)
柴油及其使用性能
汽车构造
2)蒸发性:指柴油蒸发汽化的能力,用柴油馏出 某一百分比的温度范围即馏程和闪点表示。比如, 50%馏出温度即柴油馏出50%的温度,此温度越 低,柴油的蒸发性越好,混合气形成速度就越快, 易完全燃烧。但蒸发性过高,则会使全部柴油迅 速燃烧,缸内压力急剧升高,柴油机工作粗暴。 闪点低,蒸发性好。
空间雾化混合
油雾的形成 燃料以高压、高速从喷油器以 圆锥形的油束喷出,由于受到 高密度空气的摩擦阻力作用, 被分裂为许多油线进而成为油粒。
空气的运动促进混合 将燃油喷成雾状油束是混合气 形成的第一步,其次是使油粒
分布得更均匀。
汽车构造
空间雾化混合
汽车构造
最有效的措施:空气运动 多采用两种办法:(l)使进气产生涡流;(2)产生挤压涡流
油膜蒸发混合
它是将柴油喷向球形油膜燃 烧室的壁面上,在强烈地空气 涡流作用下,燃油的大部分 (95%)形成油膜.由于油束贯 穿空气和室壁的反射,必然有 少量油粒(5%)悬浮在空间, 形成着火源。油膜在热能作 用下,逐层蒸发、逐层卷走、 逐层燃烧,产生了燃气涡流, 其燃烧速度是前期慢、后期 快,使燃烧过程加速进行到 终点。
混合气的形成(空间雾化混合或油膜蒸发混合)、 点火和燃烧方式不同于汽油机;
柴油机的a>1,燃烧充分,排气污染小;
柴油机的喷油泵与喷嘴制造精度要求高,所以成本 较高;
柴油机工作粗暴,振动噪声大;柴油不易蒸发,冬 季冷车时起动困难;
排气噪声大,颗粒排放严重,废气中含SO2多
柴油及其使用性能

发动机原理_柴油机混合气的形成和燃烧

发动机原理_柴油机混合气的形成和燃烧

运动速度和油膜厚度。
二、分隔式燃烧室
涡流室燃烧室 • 预燃室燃烧室 涡流室容积约占整个燃烧 室压缩容积的50%-60% • 预燃室容积约占整个燃烧 • 通道的截面积约为活塞截 室压缩容积的35%-45% 面积的 1%~3.5% • 通道的截面积约为活塞截 • 涡流室燃烧过程 面积的0.3%-0.6% • 预燃室燃烧过程
机械噪声
由曲轴连杆活塞机构、配气
机构、齿轮系、喷油泵及其 它附属机构等部分的高速运 动并与其相邻零部件发生频 繁的机械撞击,激励结构振 动而产生的噪声。
燃烧噪声
因为迅速地燃烧引起燃烧室
内压力急剧变化
控制噪声与振动的措施
1)控制燃烧过程来降低燃烧噪声。 2)改进机体等有关零部件的结构,降低结构振动的振幅 和提高共振频率。 3)为减小撞击力,尽可能减小缸套与活塞之间、轴承、 传动齿轮等处的间隙。为减小惯性力应减小运动件的质量, 并在可能的情况下,适当降低活塞平均速度。 4)应用吸振减振材料制造薄板零件 5)改进消声器的结构、材料;改进空气滤清器、冷却风 扇等的设计及适当调节配气相位以降低气体动力噪声。 6)遮蔽噪声源
三、对喷射系统的要求
理想的喷油规律: 更高的喷射压力和喷油速 率以及更短的喷油持续时 间已是技术发展的一个明 显趋势。 为避免柴油机工作过于粗 暴,又希望实现“先缓后 急”的喷油规律。 在所有的工况下都希望在 喷射结束阶段能尽可能迅 速地结束喷射。
四、柴油机电控喷射系统
电控喷射系统突出优 点是控制的准确性和 响应的快速性。 系统的基本控制量: • 循环喷油量的控制 • 供油提前角控制
第二节 燃油喷射和雾化
一、供油系统和喷射过程
柴油机供油系统 喷油泵速度特性及其校正 喷射过程 供油规律和喷油规律 不正常喷射现象和喷射系统中的穴蚀 破坏

内燃机构造概述

内燃机构造概述
2.2.喷油提前器
喷油提前器安装在喷油泵凸轮轴的输入端,作用是随柴油机转速的变化自动调节喷油泵的供油起 始角.
柴油机的喷油提前角是指从喷油器开始喷油到活塞行至上止点时所转过的曲轴转角.过早喷油, 导致过早着火燃烧,气缸压力过早提高,造成了压缩负功增加,功率下降,油耗上升,气动困难,产生敲 缸声音;过晚喷油,导致过晚着火燃烧,此时活塞已下行,空间容积增大,燃烧条件变差,导致排气冒 黑烟,油耗上升,功率下降,排气温度升高,发动机过热.
三、柴油机的燃料供给、燃烧、电控共轨系统
2.1.高压油泵的基本结构包括四部分: a.泵油机构:柱塞套、柱塞、柱塞弹簧、 上下柱塞弹簧座、出油阀、出油阀座、 出油阀弹簧和出油阀压紧座等
三、柴油机的燃料供给、燃节齿圈和控制套筒
三、柴油机的燃料供给、燃烧、电控共轨系统
c.驱动机构:包括凸轮轴和挺柱组件凸轮轴上的凸轮数目与柱塞偶件数相同,各凸 轮间的夹角与配套柴油机的气缸数有关,并与气缸工作顺序相适应;挺柱体部 件安装在喷油泵提上的挺柱孔内,挺柱在挺柱孔内只能做上下往复运动,而不能 绕其自身的轴线旋转,以避免滚轮与凸轮卡死.
三、柴油机的燃料供给、燃烧、电控共轨系统
一、柴油机的术语、四冲程柴油机的工作原理
7、四冲程柴油机的工作循环包括进气、压缩、做功和排气四个过程.
进气:活塞在曲轴的带动下由上止点移至下止点,此时排气门关闭,进气门打开.在活塞移动 过程中,气缸容积逐渐增大.
压缩:进气行程结束后,曲轴继续带动活塞由下止点移至上止点,进、排气门均关闭.随着活 塞的移动,气缸容积不断减小,气缸内的混合气被压缩,其压力和温度同时升高.
VE型分配泵喷油提前器
1-驱动轴 2-滚轮座 3-滚轮 4-传动销 5-止动销 6-O型圈 7-侧盖板 8-泵体 9-提前器活塞 10-连接销 11-弹簧 12-O型圈 13-侧盖 A-油孔

柴油机的四种供油系统

柴油机的四种供油系统

柴油机的四种供油系统柴油机的四种供油系统1.直列泵系统体积较大,每个气缸对应一个分泵,分泵与对应缸之间通过高压油管连接,喷油器利用柴油自身的压力被动喷油。

该系统多采用机械离心式调速器,可靠性较好,但精度较差。

驾驶员通过油门控制调速器弹簧的预紧力,飞锤离心块产生的离心力与弹簧力相互制约,保持动态平衡.弹簧力将油量控制机构向供油量增加的方向移动,供油量增加使柴油机加速,同时调速器飞锤离心块的离心力也增加,离心力使油量控制机构向减油的方向移动,制约转速的增加,油门位置与调速弹簧预紧力对应,弹簧预紧力与转速相对应,从而达到控制转速的目的。

一旦调速器失灵或油量控制机构卡住、断开,极易造成柴油机“飞车”。

加速时烟色较深,燃油利用率和尾气排放标准较低。

喷油压力为17~19 MPa,不利于柴油充分地雾化燃烧。

2.分配泵系统与直列式相同之处是,采用柱塞式喷油泵和机械离心式调速器,喷油器与喷油泵用油管连接,喷油器为被动式喷油;不同之处是分配泵减少了柱塞泵的数量(只有1个柱塞偶件),通过分配转子按各缸工作顺序将高压柴油送至各缸的喷油器,高压油管在安装时必须按照分配转子的旋转方向和各缸的工作顺序连接。

分配泵数量的减少使喷油泵本身体积减小,结构更紧凑,降低了成本.驱动转速的增加使喷油压力更高。

分配泵驱动转速可以达到曲轴转速的3倍。

在柱塞偶件密封程度不变的前提下,喷油泵驱动转速越高喷油压力越高,分配泵喷油压力可达60~80 MPa。

高压喷射有利于柴油更充分地雾化燃烧,降低烟度。

3.PT供油系统这是康明斯公司的专利.喷油器为主动式喷油,低压柴油在喷油器中通过摇臂压动喷油器的柱塞产生高压,喷油器也是一种柱塞泵,P和T分别指作用于喷油器油杯计量孔的压力和计量孔的开启时间。

当加油门时,油路中的柴油流量增加,油路中的油压也随之增加。

在计量孔开启时间不变的前提下,进入油杯中的柴油增多,使柴油机加速,同时喷油器喷油的频率增加,计量孔开启的时间缩短,限制了单次喷油量过多,其控制精度要高于直列泵系统。

船舶柴油机的工作原理

船舶柴油机的工作原理

船舶柴油机的工作原理船舶柴油机是船舶动力系统中最常用的一种发动机类型,它通过燃烧柴油燃料产生高温高压气体,驱动活塞运动从而产生动力。

本文将详细介绍船舶柴油机的工作原理,包括燃油系统、进气系统、压缩系统、燃烧系统和排气系统。

一、燃油系统船舶柴油机的燃油系统主要由燃油箱、燃油滤清器、燃油泵、喷油器等组成。

燃油从燃油箱经过滤清器进入燃油泵,燃油泵将燃油加压并送入喷油器。

喷油器根据发动机的工作状态控制燃油的喷射量和喷射时间,将燃油雾化喷入气缸内。

二、进气系统船舶柴油机的进气系统主要由进气管道、进气滤清器、增压器等组成。

进气管道将外部空气引入进气滤清器,滤清器将空气中的杂质过滤掉,然后空气经过增压器增压,进入气缸内。

增压器通过压缩空气提高进气密度,从而增加燃烧效率。

三、压缩系统船舶柴油机的压缩系统主要由活塞、气缸、曲轴连杆机构等组成。

当活塞向上运动时,气缸内的空气被压缩,压力和温度随之升高。

活塞下行时,气缸内的空气被压缩到顶死点,形成高压高温的压缩空气。

四、燃烧系统船舶柴油机的燃烧系统主要由喷油器、燃烧室等组成。

在压缩空气达到一定压力和温度后,喷油器将燃油喷入燃烧室内,与压缩空气混合形成可燃气体。

然后,喷油器通过喷油嘴将燃油喷入气缸内,燃油在高温高压下迅速燃烧,释放出大量热能。

五、排气系统船舶柴油机的排气系统主要由排气管道、涡轮增压器、排气涡轮等组成。

燃烧后的废气通过排气管道排出,一部分废气经过涡轮增压器驱动涡轮旋转,提高进气压力,增加燃烧效率。

另一部分废气通过排气涡轮减少排气阻力,提高发动机的功率输出。

综上所述,船舶柴油机的工作原理主要包括燃油系统、进气系统、压缩系统、燃烧系统和排气系统。

燃油经过燃油系统供给到喷油器,进气系统将空气引入气缸内,压缩系统将空气压缩形成高温高压气体,燃烧系统将燃油喷入气缸内与压缩空气混合燃烧,排气系统将燃烧后的废气排出。

这一系列的工作过程使得船舶柴油机能够产生动力,驱动船舶行驶。

柴油机燃油系统工作原理

柴油机燃油系统工作原理

柴油机燃油系统工作原理
柴油机燃油系统是柴油机的重要组成部分,它的正常运行将直接决定柴油机的性能和使用寿命。

因此,掌握柴油机燃油系统的工作原理是必要的。

柴油机燃油系统一般由柴油燃料供应系统及柴油燃烧系统组成。

柴油燃料供应系统主要由燃料泵,滤清器,喷注器,燃料油箱,润滑油箱,油管等部件组成,可把柴油供应到燃烧室中。

柴油燃烧系统主要由燃烧室,压缩机,排气阀及涡轮等部件组成,它的作用是将柴油进行燃烧,产生高温的燃烧气体,并由压缩机得到高压高温的混合气体。

该混合气体经过气门出现遗迹燃烧时,由排气阀排出,工作过程在活塞背面产生做功,驱动做动机转。

柴油机燃油系统的正常星火必须满足几个基本要求,如正确的供油压力,燃料的正确喷射,燃烧的正确温度等等。

正常情况下,正确的供油压力可以确保柴油机有足够的燃料供应,从而保证正常的运行;而且,通过燃料的喷射可以使柴油燃烧更加完善,燃烧温度可以更高一些,从而使柴油机发挥更高的效率。

此外,还可以通过涡轮喷油,在柴油机输出功率时,使柴油机燃烧更均匀,从而提高燃烧温度和柴油机的效率。

由此可见,柴油机燃油系统是柴油机运行中非常重要的组成部分,它的工作原理包括柴油燃料供应系统和柴油燃烧系统,可以确保柴油机的正常运行,并提高柴油机的性能和使用寿命。

柴油机燃油系统的维护也是非常重要的,需要定期检查燃油油量
和燃料系统的各个部件的工作状态,一旦出现问题,应及时采取正确的措施进行修复,以确保柴油机的正常运行。

总之,柴油机燃油系统是柴油机运行中非常重要的部分,深入理解柴油机燃油系统的工作原理,并且能给予适当的维护,可以提高柴油机的使用效率和使用寿命,发挥柴油机的最大性能。

发动机组成部分-柴油机燃料供给系统组成介绍

发动机组成部分-柴油机燃料供给系统组成介绍
一、柴油机燃料系的功用
• 柴油机燃料供给系的功用是完成燃料的储 存、滤清和输送工作,按柴油机各种不同工 况的要求,定时、定量、定压并以一定的喷 油质量喷入燃烧室,使其与空气迅速而良好 地混合和燃烧,最后使废气排入大气。
二、柴油机燃料供给 系的组成与工作过程
1. 组成
• 由柴油箱、输油泵、低压油管、滤清器、喷油泵、高 压油管和喷油器及回油管等组成。 回油
第7-6 调速器
一、喷油泵的速度特性
• 喷油泵的速度特性是指供油拉杆位置 不变时,喷油泵每一个循环供油量(Δg) 随转速变化的规律。
产生喷油泵速度特性的原因:
• 1、柱塞运动速度增加时,柱塞套筒上的 进回油孔的节流作用,产生早喷晚停, 因此,即使供油拉杆位置不变,随着转 速的升高,每一循环的供油量Δg也在逐 渐增加。
柴油箱
输油泵 滤清器滤清器 喷油泵
喷油器
2. 工作过程
• 3.回油回路:
• 由于输油泵的供油量比 喷油泵的最大喷油量大 3~4倍,为了保持进入喷 油泵进油室内的油压稳定, 喷油泵进油室的一端装有 限压阀(又称溢流阀), 大量多余的燃油经限压阀 和回油管流回输油泵的进 口或直接流回柴油箱。喷 油器工作间隙漏泄的极少 数柴油也经回油管流回柴 油箱。
4 .涡流室式燃烧室
• 1)结构特点: • 缸盖上布置有涡流室,
涡流室占燃烧室总容积的 50-80%,活塞上凹形成主 燃烧室,涡流室与主燃烧 室间有一个或几个小孔径 相通。此小孔与涡流室相 切。
5.球形油膜燃烧室
• 1)结构特点: • 缸盖下平面是平
的,活塞顶部下凹 呈球形。
第5-3 喷油器
一、作用:
四)分泵驱动机构
1 .分泵驱动机构的作用
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

低温燃烧(LTC)
一、低温燃烧(LTC)的优势:
1.减少污染物(主要为NOx、碳烟)排放。

如下图,LTC的燃烧温度较低,且
过量空气系数较高,可以达到既减少NOx又减少碳烟的目的。

2.燃烧较平稳,最高燃烧温度降低,对NOx排放起到抑制作用。

二、实现低温燃烧的方法:
实现低温燃烧主要靠控制EGR和喷油提前角实现。

两者结合使用,能够使燃烧更加平稳,避免缸内温度升高率过大;且能够提供较长时间进行油气混合,减少碳烟生成。

在一定的控制范围内,并不会引起THC和CO的大幅增加。

对减少排放有很好的效果。

另外由于燃烧平稳,发动机的最高爆发压力和压力循环波动也降低,发动机的振动和噪声得到减小。

2.实验及实验结论
实验在一台福特彪马四缸共轨柴油机上进行。

实验装置如下图。

The balance three cylinders are operated in the conventional combustion mode to motor the research cylinder with a non-motoring eddy current dynamometer used for speed control and power dissipation. The research cylinder has independent intake and exhaust systems equipped with surge tanks. The details of the instrumentation of the single cylinder and its separation from the rest of the engine have been reported previously.(实验装置设置不太懂。


实验结果:
1.在EGR率一定的情况下(进气氧含量17%),CA50的变化对发动机的影响。

下图表示发动机主要排放物的变化:
蓝色点表示喷油持续时间不变;而橙色方块表示为弥补发动机功率下降而延长喷油时间。

可以看出在上止点前燃烧开始,NOx和碳烟增加,THC和CO无太大变化。

随着点火提前,碳烟降低,NOx上升,这是因为:1.点火越提前,则燃烧前缸内温度越低,油气混合时间加长,是碳烟下降;2.点火提前,则燃烧时放热速率加快,导致NOx急剧增加。

THC和CO没有很大变化,表明这种燃烧方式可以使燃烧完全。

在上止点后燃烧开始,NOx和碳烟均下降;在适当的范围内,THC和CO 没有很大变化,但燃烧过于延迟,会导致二者急剧增加。

这一方式有几个优点:1.燃烧在膨胀冲程中进行,放热平缓,燃烧延长,使得NOx排放下降;2.在膨胀
冲程中喷油,提供了较长的准备时间,使油气混合更加均匀,碳烟生成减少。

这一方式使燃烧过程更加平稳,实现了LTC。

由上面的分析可知,此方式对发动机振动及噪声有较好抑制作用。

上图可以看出控制CA50在366°CA左右时,有较好的排放效果。

下图表示喷油时刻对发动机循环压力和循环放热量的变化:
上面三图中,由后面两图可知喷油时间过于靠后,甚至到膨胀冲程喷油,发动机的压力波动变大,燃烧放热也不均匀;这表明喷油时刻过于靠后引起燃烧恶化,使燃烧不够稳定。

最上图表示常规的喷油时间,压力波动和放热率波动都较小;但是最高燃烧温度很高,NOx排放恶化。

下图表示发动机的压力指标随CA50的变化:
上图表示的是喷油时刻对平均指示压力(IMEP)、IMEP变异系数、点火延迟、燃烧持续角、压力升高率、平均燃烧压力的影响。

每一点表示200转内的平均数值,每点的竖条表示数值的上下限。

可以看出燃烧时刻过迟会恶化发动机工况,引起压力波动。

控制CA50保持在360°附近时发动机有较好的表现。

2.喷油时刻不变时,EGR对发动机的影响。

(a)下图表示发动机排放的变化:
图中橘红色是有喷油量补偿时的变化情况。

可以看出EGR高时,对NOx有明显的降低作用,但是引起CO和THC的增加。

而烟度则会在一定时刻有一峰值。

当EGR过高时,自然会降低NOx排放,但同时导致缸温下降,燃烧不完全,CO 和THC上升;此时燃烧延迟,油气混合时间加长,碳烟减少。

EGR降低时,随着燃烧完全,NOx升高,烟度、CO和THC也随之下降。

(b)下图表示喷油时刻不变时,EGR对循环压力和放热率的影响:
最上图是EGR较低时(进气氧含量18%),可以看到缸内循环压力和最高爆发压力较大,燃烧迅速,但是压力波动较小;下面两图是EGR较高时(进气氧含量11.4%),其中第三图是有喷油补偿的。

可以看到缸内循环压力和放热率都降低了,燃烧波动较大。

(c)下图表示发动机压力指标的变化:
图中可以看出增大EGR率时,会降低压力升高率和平均循环压力,但是造成压力循环波动较大、平均指示压力下降。

这是因为EGR过高恶化燃烧,使得上述情况发生。

3.EGR和燃烧相位同时控制
(a)下图表示在第一次实验的情况下,将CA50=366°CA时发动机排放情况:
可以看出在进气氧含量为14%时,能够的到一种较好的排放效果,比进气氧含量在17%降低不少。

(b)下图表示在固定的燃烧时刻时,EGR导致的发动机循环压力和放热率的变化:
两图的燃烧时刻都相同(CA50=366°CA),而EGR从很低(进气氧含量20.2%)升到很高(进气氧含量10.4%)。

可以看到在这一燃烧时刻,EGR高使得循环压力和放热率较小,而且产生的压力波动增加不大。

三、实验结论:
在高压缩比的柴油机中,通过组合使用两种策略可在不同负荷水平下实现低温燃烧,这两种策略是:1)EGR稀释;2)燃烧相位延迟。

通过缸内压力数据分析研究了稳态测试点的周期性变化。

本研究的结果如下:
1.在中等EGR水平下,为了实现LTC而通过延迟燃烧相位做补偿,可以观察到工作和燃烧性能有显著的波动变化。

2.高EGR水平(进气氧含量10%)可以实现低NOx和低烟度排放。

在一定的喷油提前角下,EGR率越高,燃烧相位延迟越多,导致更高的循环变动。

3.高EGR时,通过喷油正时补偿保持燃烧相位在一个基本点,能够得到较高的周期稳定性。

4.通过提高进气压力和喷油压力可以实现高负荷运行。

而LTC是通过进气稀释和燃烧相位控制实现的,因此为了燃烧稳定性不得不使燃烧效率下降,导致柴油机可承受的负荷水平下降。

相关文档
最新文档