(北师大版)高中数学必修四:2.1《从位移、速度、力到向量》教案设计
高中数学 第二章 平面向量 1 从位移、速度、力到向量教学案 北师大版必修4

1 从位移、速度、力到向量[核心必知]1.位移、速度和力位移、速度和力这些物理量都是既有大小,又有方向的量,在物理中称为“矢量”,它们和长度、面积、质量等只有大小的量是不同的.2.向量的概念(1)向量的定义:在数学中,把既有大小,又有方向的量统称为向量.(2)向量的表示法①有向线段:具有方向和长度的线段叫作有向线段.②向量的表示法(ⅰ)几何表示法:用有向线段表示,若有向线段的起点为A ,终点为B ,则该有向线段记作:(ⅱ)字母表示法:用黑体小写字母a,b,c,…表示,书写用表示.(3)向量的模(长度)向量 (或a)的大小,称为向量 (或a)的长度,也叫模,记作||(或|a|).(4)与向量有关的概念零向量长度为零的向量称为零向量,记作0单位向量与向量a同方向,且长度为单位1的向量,叫作a方向上的单位向量,记作a0自由向量由大小和方向确定,而与起点位置无关的向量称为自由向量相等向量长度相等且方向相同的向量,叫作相等向量.向量a与b相等,记作a=b平行(共线)向量如果表示两个向量的有向线段所在的直线平行或重合,则称这两个向量平行或共线.a与b平行或共线,记作a∥b.零向量与任一向量平行[问题思考]1.有向线段就是向量,对吗?提示:不对.有向线段的起点、终点是确定的,而向量与起点无关,可以自由平移,它可以用有向线段表示,但不能说有向线段就是向量.2.相等向量的起点相同,对吗?提示:不对.相等向量是指长度相等且方向相同的向量.所以,两个向量只要长度相等,方向相同,即是相等的向量,与起点的位置无关.讲一讲1.判断给出下列命题是否正确,并说明理由.(1)若|a|>|b|,则a>b;(2)若|a|=|b|,则a=b;[尝试解答] (1)不正确.向量的模是一个非负实数,可以比较大小,但向量是有方向的量,方向是不能比较大小的,所以,向量只有相等与不相等的关系.(2)不正确.两向量相等,必须长度相等,且方向相同,所以仅模相等,并不一定是相等的向量;1.对向量有关概念的理解要严谨、准确,特别注意向量不同于数量,它既有大小,又有方向,而方向不能比较大小,所以任给两个向量都不能比较大小.2.对于两个向量,只要方向相同或相反,一定是共线向量.3.零向量是特殊的向量,解题时一定要注意其方向的任意性.练一练1.给出下列命题(1)若|a|=0,则a=0;(2)若a=b,则|a|=|b|;(3)向量a与向量b平行,则a与b的方向相同或相反;(4)两个有共同起点而且相等的向量,其终点必相同;(5)两个有共同终点的向量,一定是共线向量;其中正确命题的个数是( )A.1 B.2C.3 D.4解析:选B (1)不正确.零向量与数字0是两个不同的概念,零向量是一个向量,而数字0是一个实数,没有等量关系;(2)正确.两向量相等,其长度必然相等;(3)不正确.若a与b中有一个为零向量时,其方向是不确定的;(4)正确.相等的向量,长度相等且方向相同,若起点相同,则终点必相同;(5)不正确.终点相同并不能说明这两个向量的方向相同或相反.讲一讲2.小李离家从A点出发向东走2 km到达B点,然后从B点沿南偏西60°走4 km,到达C 点,又改变方向向西走2 km到达D点.(2)求小李到达D点时与A点的距离.即小李到达D点时离A点4 km.1.用有向线段表示向量时,先确定起点,再确定方向,最后依据模的大小确定向量的终点.2.确定向量的长度或方向时,需要用平面几何的知识,如直角三角形的解法、平行四边形的性质等.练一练2. 中国象棋中规定:马走“日”字,象走“田”字.如下图所示,在中国象棋的半个棋盘(4×8个矩形中,每个小方格都是单位正方形)中,若马在A处,可跳到A1处,也可跳到A2处,用向量表示马走了“一步”,试在图中画出马在B、C处走了一步的所有情况.解:如图,以点C为起点作向量(共8个),以点B为起点作向量(共3个).讲一讲3.如图所示,O为正方形ABCD对角线的交点,四边形OAED、OCFB都是正方形.在图中所示的向量中:(1)分别写出与相等的向量;(2)写出与共线的向量.1.在平面图形中找相等向量、共线向量时,首先要注意分析平面图形中相等、平行关系,同时注意线段的平行和相等与向量平行和相等的区别,充分利用平行四边形的性质.2.寻求相等向量,抓住长度相等,方向相同两个要素;寻求共线向量,抓住方向相同或相反的一个要素.练一练3. 如右图,四边形ABCD、CEFG、CGHD都是全等的菱形,则下列关系不一定成立的是( )解析:选C 由题意知,AB=EF,∴A成立;又AB∥FH,DC与EC共线都成立,∴B,D成立.而BD不一定等于EH,故C不一定成立.[巧思] =1说明点P到定点O的距离为1,即P在以原点为圆心,以1为半径的圆上,Q点在圆外,表示P、Q两点的距离,因此可采用数形结合法来解决.[妙解] 如图,由=1知动点P的轨迹是单位圆,连接QO并延长与单位圆相交于A,B两点,由平面知识易知:当P运动至A,B两点时,向量|分别取最小值,最大值,1.下列物理量:①质量;②速度;③力;④加速度;⑤路程;⑥密度;⑦功.其中不是向量的有( )A.1个B.2个C.3个 D.4个解析:选D 本题主要考查向量的概念,看一个量是不是向量,就是看它是否具备向量的两个要素:大小和方向,因为②③④是既有大小,又有方向的量,所以它们是向量;而①⑤⑥⑦只有大小而没有方向的量,所以不是向量.2.给出下列命题:①起点相同,方向相同的两个非零向量的终点相同;②起点相同的两个相等的非零向量的终点相同;③两个平行的非零向量的方向相同;④两个共线的非零向量的起点与终点一定共线.其中正确的是( )A.①② B.②C.②③ D.③④解析:选B 起点相同,方向相同的两个非零向量若长度不相等,则终点不相同,故①不正确;起点相同且相等的两个非零向量的终点相同,故②正确;两个平行的非零向量的方向相同或相反,故③不正确;两个共线的非零向量的起点与终点不一定共线,所对应的直线可能平行,故④不正确.3. 设O为△ABC的外心,则是( )A.相等向量B.平行向量C.模相等的向量D.起点相同的向量解析:选C 显然AO、BO、CO互不平行,但长度相等,所以|.4.如图所示,四边形ABCD和四边形ABDE都是平行四边形.(1)与向量相等的向量有________;(2)若=3,则向量的模等于________.解析:(1)相等向量既模相等,又方向相同,所以与相等的向量有.5. 如图,B、C是线段AD的三等分点,分别以图中各点为起点和终点最多可以写出________个互不相等的非零向量.答案: 66.我国国内有些城市的道路命名非常有趣,它以“经纬”来命名道路,目前比较典型的有郑州市,其经纬路走向与地理意义上的经纬走向保持了一致,济南市的命名则与地理意义的经纬走向是完全相反的,另外西安市以前也以经纬命名道路,但后来大多更名.设某城市的地图如图(街道刚好分布在一个方形格纸中且距离都为1个单位):请作出某人从经1纬2路口走到经3纬4路口的位移,并计算其走过的最短路程和位移的大小.解:如图,用向量表示某人的位移.位移的大小为22+22=22个单位长度.从A走到B,必然向右走2个单位,向下走2个单位,所以走过的路程为4个单位长度.一、选择题1.给出下列命题:①若a=-b,则|a|=|b|;②若|a|<|b|,则a<b;③若a=b,则a∥b;④若a∥b,b∥c,则a∥c.其中正确命题的个数是( )A.0 B.1C.2 D.3解析:选C 对于①,若a=-b,则a,b互为反向量,所以|a|=|b|,①正确;对于②,向量的长度有大小,但向量不能比较大小,所以②不正确;对于③,a=b,意味着a与b的方向相同,所以a∥b;对于④,若b=0,则a∥b,b∥c,但a与c方向不一定相同或相反,所以④不正确.2.某人向正东方向行进100 m后,再向正南方向行进100 3 m,则此人位移的方向是( ) A.南偏东60° B.南偏东45°C.南偏东30° D.南偏东15°∴θ=60°.3.下列说法中正确的是( )A.平行向量一定方向相同B.共线向量一定相等C.起点不同,但方向和模相等的几个向量一定是相等的向量D.与任意向量都平行的向量不一定是零向量解析:选C 非零平行(共线)向量要么方向相同,要么方向相反,所以A、B均不正确;只有零向量与任意向量平行,故D不正确;C正确.4.已知集合A={与a共线的向量},B={与a长度相等的向量},C={与a长度相等,方向相反的向量},其中a为非零向量,则下列命题中错误的是( )A.C A B.A∩B=CC.C B D.A∩B C解析:选B ∵A∩B中还含有向量a,故B错.二、填空题5. 如图,在四边形ABCD中,且则四边形ABCD为________.答案:菱形6.在▱ABCD中,E,F分别是AB、CD的中点,如图所示的向量中,设=a,=b,则与a相等的向量是________;与b共线的向量是________.7.如图,设每一个正方形小方格的边长为1,则向量,GH―→的长度从小到大排列依次为________________.8. 如图,已知矩形ABCD中,设点集M={A,B,C,D},集合T={PQ|P、Q∈M,且PQ≠0}.则集合T中有________个元素.解析:集合T={PQ|P、Q∈M,且PQ≠0}中的元素为非零向量PQ,且向量的起点与终点分别为矩形的顶点A、B、C、D.根据集合元素的互异性,得集合T={,}共含有8个元素.答案:8三、解答题9.一架测绘飞机从A点向北飞行200 km到达B点,再从B点向东飞行100 km到达C点,再从C点向东南45°飞行了100 2 km到达D点,问飞机从D点飞回A点的位移大小是多少km?解:如图,建立平面直角坐标系xAy,其中x轴的正方向表示正东方向,y轴的正方向表示正北方向,作DE⊥AB,CF⊥DE,垂足分别为E、F.在Rt△CDF中,|CD|=1002,∠CFD=90°,∠CDF=45°,∴CF=DF=100,ED=200,在Rt△AED中,BE=EA=100,∴|DA|=1002+2002=1005(km).故飞机从D点飞回A点的位移大小为100 5 km.10.在如图所示的方格纸上(每个小方格边长均为1),已知向量a.(1)试以B为起点画一个向量b,使b=a;(2)画一个以C为起点的向量c,使|c|=2,并说出c的终点的轨迹是什么.解:(1)根据相等向量的定义,所作向量应与a平行,且长度相等,如图所示.(2)由平面几何知识可作满足条件的向量c.所有这样的向量c的终点的轨迹是以C为圆心,2为半径的圆,如上图.。
数学ⅳ北师大版2.2.1从位移、速度、力到向量教案

数学ⅳ北师大版2.2.1从位移、速度、力到向量教案教学目标:〔1〕掌握向量加法的概念;能熟练运用三角形法那么和平行四边形法那么做几个向量的和向量;能准确表述向量加法的交换律和结合律,并能熟练运用它们进行向量计算.通过实例,掌握向量加、并理解其几何意义.初步体会数形结合在向量解题中的应用. 教学重点:向量加法的概念和向量加法的法那么及运算律.教学难点:向量的加法的几何验证.学法指导:(1)自主性学习+探究式学习法:(2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距.【创设情境】一、 情景导入:〔3分钟〕2003年春节探亲时,由于台湾和祖国大陆之间没有直达航班,某老先生只好从台北通过香港,再抵达上海,这两次位移之和是什么?【二】学导结合向量是否能进行运算?1. 某人从A 到B ,再从B 按原方向到C , 那么两次的位移和:AC BC AB =+2. 假设上题改为从A 到B ,再从B 按反方向到C , 那么两次的位移和:=+3. 某车从A 到B ,再从B 改变方向到C , 那么两次的位移和:=+4. 船速为,水速为, 那么两速度和:AC BC AB =+向量的加法1. 定义:2、三角形法那么〔作图演示〕:作图关键:平移向量使得两向量首尾相连 3、向量、,求作向量+及+作法:4、加法的交换律和平行四边形法那么 上题中+的结果与+是否相同?从而得到:1︒向量加法的平行四边形法那么2︒向量加法的交换律:a +b =b +a问题1:两种求和法那么有什么关系? A BCA B C A B Ca b向量加法的三角形法那么与平行四边形法那么是一致的,但两个向量共线时,三角形法那么更有优势。
加法的结合律:(+)+=+(+) 证:如图:从而,多个向量的加法运算能够按照任意的次序、任意的组合来进行。
6.向量加法的多边形法那么问题2:如何求平面内n 〔n >3〕个向量的和向量?112231n n OA A A A A A A -++++n OA =问题3:假设点O 与点An 重合,你将得出什么结论?例1:如图,一艘船从A 点动身以km/h 的速度向垂直于对岸的方向行驶,同时河水的流速为2km/h 。
高一数学北师大版必修4课件2.1 从位移、速度、力到向量

探究一
探究二
探究三
探究四
【典型例题 2】 一辆汽车从点 A 出发向西行驶了 100 千米到达点 B, 然后又改变方向向西偏北 50° 行驶了 200 千米到达点 C,最后又改变方向, 向东行驶了 100 千米到达点 D. (1)作出向量 ������������ , ������������ , ������������; (2)说出向量 ������������ 的大小和方向. 思路分析:作图既要考虑向量的模的大小,又要考虑其方向和起点,为此 应建立坐标系,然后再根据行驶方向确定有关向量,进而求解.
探究一
探究二
探究三
探究四
解:(1)所作向量如图所示. (2)由题意,易知 ������������ 与������������ 方向相反,所以 ������������ 与������������ 共线. ∵ | ������������ |=|������������ |, ∴ 在四边形 ABCD 中,AB∥CD,且 AB=CD. ∴ 四边形 ABCD 为平行四边形. ∴ | ������������ |=|������������ |=200 千米,且 AD∥BC,∴ ������������ , ������������ 同向,即 ������������ 的方向也是西偏北 50° ,且| ������������ |=200 千米.
探究一
探究二
探究三
探究四
解析:(1)错误,只有速度、位移是向量; (2)错误.由|a|=|b|仅说明 a 与 b 的模相等,但不能说明它们方向的关系; (3)错误.0 的模|0|=0; (4)正确.对于一个向量只要不改变其模的大小和方向,是可以任意移动 的,因此相等向量可以起点不同; (5)错误.共线向量即平行向量,只要求方向相同或相反即可,并不要求 两个向量必须在同一直线上. 答案:(4)
2020-2021学年高一数学北师大版必修4第二章2.1 从位移、速度、力到平面向量 教案

第二章平面向量2.1 从位移、速度、力到平面向量一、教学目标1.知识与技能(1)理解向量与数量、向量与力、速度、位移之间的区别;(2)理解向量的实际背景与基本概念,理解向量的几何表示,并体会学科之间的联系;(3)通过教师指导发现知识结论,培养学生抽象概括能力和逻辑思维能力.2.过程与方法通过分析教材中给出的有关位移、速度和力的大量实例,引导学生亲身经历观察、分析、归纳、抽象概括出平面向量概念的思维过程,指导学生发现问题、提出问题、分析问题和解决问题的方法.3.情感态度价值观从学生熟悉的生活实例出发建立平面向量的概念,激发学生的学习兴趣;通过引导学生学习好探究,培养学生实事求是的科学学习态度和勇于创新的精神.二、教材分析本节是向量的第一节课,主要目的是建立平面向量的基本概念.向量是刻画现实世界的重要数学模型,有着极其丰富的实际背景,力、速度、位移等物理概念是向量的物理背景,几何中的有向线段是向量的几何背景.从学生熟悉的生活实例出发建立平面向量的概念,会让学生有一种亲切感,有助于激发他们的学习兴趣,有助于增强他们认识数学的价值,有助于培养他们的数学应用意识.本节教材首先从民航客机的位移,学生从家到学校的位移,飞机的飞行速度,运动员投掷标枪的初速度,起重机吊物时物体受到的力,汽车爬坡时的牵引力等大量的实例出发,抽象概括出平面向量的基本概念.接着,教材结合向量的几何背景——有向线段,引入了向量的表示方法,规定了向量的长度的概念,最后定义了零向量、单位向量、相等向量、平行向量和共线向量等概念.三、教学重、难点教学重点:向量的概念,向量的几何表示;教学难点:平行向量、相等向量和共线向量的区别和联系.四、教学方法与手段教学方法采用自主学习、引导探究等教学方法.五、教学过程(一)情景设置,引入课题如图,老鼠由A 向西北逃窜,猫在B 处向东追去,设问:猫能否追到老鼠?(画图)结论:猫的速度再快也没用,因为方向错了.分析:老鼠逃窜的路线AC 、猫追逐的路线BD 实际上都是有方向、有长短的量. 引言:请同学指出哪些量既有大小又有方向?哪些量只有大小没有方向?(二)自主阅读,思考问题问题1 什么是向量?如何表示向量?问题2 数量与向量有何区别?问题3 有向线段和线段有何区别和联系?分别可以表示向量的什么?问题4 长度为零的向量叫什么向量?长度为1的向量叫什么向量?问题5 满足什么条件的两个向量是相等向量?单位向量是相等向量吗?问题6 有一组向量,它们的方向相同或相反,这组向量有什么关系?问题7 如果把一组平行向量的起点全部移到一点O ,这是它们是不是平行向量?这时各向量的终点之间有什么关系?(三)讨论交流,引导探究1、数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小.2.向量的表示方法:①用有向线段表示; A B C D A(起点) B (终点)a②用字母a、b(黑体,印刷用)等表示;③用有向线段的起点与终点字母:AB;④向量AB的大小――长度称为向量的模,记作|AB|.3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.向量与有向线段的区别:(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.4、零向量、单位向量概念:①长度为0的向量叫零向量,记作0.0的方向是任意的.注意0与0的含义与书写区别.②长度为1个单位长度的向量,叫单位向量.说明:零向量、单位向量的定义都只是限制了大小.5、平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c.6、相等向量定义:长度相等且方向相同的向量叫相等向量.说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向...线段的起点无关........7、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线....段的起点无关)........说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.(四)典例分析,加强理解例1 判断下列命题是否正确?(1)平行向量是否一定方向相同?(不一定)(2)不相等的向量是否一定不平行?(不一定)(3)与零向量相等的向量必定是什么向量?(零向量)(4)与任意向量都平行的向量是什么向量?(零向量)(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(平行向量)(6)两个非零向量相等的当且仅当什么?(长度相等且方向相同)(7)共线向量一定在同一直线上吗?(不一定)例2 下列命题正确的是()A.a与b共线,b与c共线,则a与c也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量a与b不共线,则a与b都是非零向量D.有相同起点的两个非零向量不平行解析:由于零向量与任一向量都共线,所以A不正确;由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B不正确;向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确;对于C,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若a与b不都是非零向量,即a与b至少有一个是零向量,而由零向量与任一向量都共线,可有a与b共线,不符合已知条件,所以有a与b都是非零向量,所以应选C.例3 如图,设O 是正六边形ABCDEF 的中心,分别写出图中与向量OA 、OB 、OC 相等的向量. 变式一:与向量长度相等的向量有多少个?(11个)变式二:是否存在与向量长度相等、方向相反的向量?(存在)变式三:与向量共线的向量有哪些?(FE DO CB ,,)(五)巩固练习,检测反馈1.判断下列命题是否正确,若不正确,请简述理由.①向量AB 与CD 是共线向量,则A 、B 、C 、D 四点必在一直线上;②单位向量都相等;③任一向量与它的相反向量不相等;④四边形ABCD 是平行四边形当且仅当AB =DC⑤一个向量方向不确定当且仅当模为0;⑥共线的向量,若起点不同,则终点一定不同.解:①不正确.共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量AB 、AC 在同一直线上.②不正确.单位向量模均相等且为1,但方向并不确定.③不正确.零向量的相反向量仍是零向量,但零向量与零向量是相等的. ④、⑤正确.⑥不正确.如图AC 与BC 共线,虽起点不同,但其终点却相同.2.教材第75页练习1、2、3.(六)小结概括1、本节向量的相关概念;2、准确理解共线向量、相等向量与平行向量.六、课后作业与反思1、教材习题2--1第1、2、3、4题;2、课后反思(1)本节课刚引入向量的基本概念,要引导学生准确理解向量的概念及表示方法;(2)本节课概念众多,要引导学生区别相近概念,保证对概念理解的准确性.。
北师大版必修四2.1《从位移、速度、力到向量》word教案

第二章平面向量2-1从位移、速度、力到向量一、教学目标:1.知识与技能⑪理解向量与数量、向量与力、速度、位移之间的区别;⑫理解向量的实际背景与基本概念,理解向量的几何表示;⑬通过教师指导发现知识结论,培养学生抽象概括能力和逻辑思维能力。
2.过程与方法通过力与力的分析等实例,引导学生了解向量的实际背景,帮助学生理解平面向量与向量相等的含义以及向量的几何表示;最后通过讲解例题,指导学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题.3.情感态度价值观通过本节的学习,使同学们对向量的实际背景、几何表示有了一个基本的认识;激发学生学习数学的兴趣和积极性,陶冶学生的情操,培养学生坚忍不拔的意志,实事求是的科学学习态度和勇于创新的精神.二.教学重、难点重点: 向量及向量的有关概念、表示方法.难点: 向量及向量的有关概念、表示方法.三.学法与教学用具学法:(1)自主性学习+探究式学习法;(2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距。
教学用具:电脑、投影机.四.教学设想【创设情境】⑪经验链接:以前学过的量中,有很多量只用一个实数(或加上单位)就能确切表示,如“矩形的面积”、“一个人的身高”行、“一个物体的质量”等.但现实生活中有些量,只用一个实数不能确切地表示它们,如“物体的位移”、“作用在物体上的力”等.这些量,不仅要知道它们的大小,还必须知道它们的方向,才能确切表示它们.在数学中这些量就叫做向量.⑫问题链接:在小学的时候,我们曾经学习过这样一则故事,有几个动物找到了很多食物,它们想把这些食物用车拉回家去,于是,它们各自在车上绑一根绳子,尽全力拉了起来,可是怎么也拉不动车子,车子一步也不往前直,怎么回事呢?原来,它们各自拉着绳子,往自已的方向上用力:天鹅往上飞去,小猴子往前拉,山羊往后拉,小鼹鼠往地下拉.这个故事告诉我们一个生活哲理:做任何事情我们都应同心协力,可是从数学的角度如何看待、分析这个问题呢?学习向量后,你会得到正确的解答.【知识探究】【知识点1】向量的物理背景⑪矢量的概念作用于某一物体的力,拉力与重力虽然大小相同,但方向不同,因此它们并非同一力,不仅有大小还有方向.满足这两个要素的量,在物理学上,我们称之为矢量,即既有大小,又有方向的量.⑫位移、速度、力的特征对于位移,它只与质点的起点、终点位置有关,而与质点实际运动的路线无关,只要距离相同,方向相同就是相等的位移.对于力,需要注意的是较之位移,不仅有大小、方向、还有作用点.根据速度的定义,我们知道速度是伴生于位移的.解析:判断一个量是否是矢量,关键是它是否符合矢量的要素即要具有方向又要具有大小.【知识点2】向量的概念 既有大小又有方向的量统称为向量.解析:⑪向量不同于数量,向量不仅有大小还有方向。
2.1 从位移、速度、力到向量 学案 高中数学必修4(北师大版)

使用说明1.根据学习目标,课前认真阅读课本第71页到第73页内容,完成预习引导的全部内容.2.在课堂上(最好在课前完成讨论)发挥高效学习小组的作用,积极讨论,大胆展示,完成合作探究部分.学习目标1.了解向量的实际背景,理解向量的概念.2. 理解零向量、单位向量、共线向量、相等向量等概念.学习重点 向量、零向量、单位向量、平行向量的概念.学习难点 向量的概念,零向量、单位向量、平行向量的判断自主学习一、自主预习1.我们把______________________的量叫做向量;把____________ 的线段叫做有向线段,以A 为起点,B 为终点的有向线段记作____,线段AB 的长度叫做有向线段AB 的长度,记作_______,2.向量可以用有向线段表示,向量AB 的长度(或称____)记作_____,长度为零的向量叫做____向量,记作0,长度等于1个单位的向量,叫做__ 向量;有向线段包括三要素____、____、____;数学中我们研究的向量是自由向量,只有大小和方向两个要素;与起点无关:只要大小和方向相同,则这两个向量就是相同的向量。
向量也可以用黑体小写字母如a,b,c,…来表示,书写用 ,c ,b ,a 来表示.3.______________________的非零向量叫做平行向量,向量a 与b平行,记作______,规定0 与任一向量平行,即对任意向量a都有___ ;4._______________________的向量叫做相等向量;若a 与b相等,记作___ ;5.由于任一组平行向量可以移动到同一直线上,平行向量也叫_______向量.【预习自测】1.(向量的概念)下列各量中不是向量的是( )A. 浮力B.风速C.位移D.密度E.温度F.体积2.下列说法中错误的是( )(A )零向量是没有方向的; (B )零向量的长度为0;(C) 零向量与任一向量平行; (D) 零向量的方向是任意的.3.给出下列命题:○1向量AB 和向量BA 的长度相等;○2方向不相同的两个向量一定不平行;○3向量就是有向线段;○4向量0 =0;○5向量AB 大于向量CD 。
2.1《从位移速度力到向量》(北师大版必修4)

§1.从位移、速度、力到向量陕西省西安中学宋心茹【教材版本】北师大版【教材分析】随着人类新型知识体系的构建和形成,新的教育理念正在向传统的教育模式发起挑战,促使其必须进行重大革命,以适应高度发展起来的新型知识体系。
直到19世纪末20世纪初才发展起来的“向量数学”,以其在物理学、空间物质结构中的广泛应用,而备受人们所观注,进而很快形成了一套具有优良运算通法的数学体系,现已被纳入中学数学基础教程中,成为数学新教材改革的一大闪光点。
几何学是研究现实世界中物体的形状、大小与位置关系的数学学科.传统的欧几里得几何是进行严谨思维训练的典范,但是几何学要进一步发展,就必须采用数量化的方法,通过数量化的方法,可以化抽象为具体,将技巧性比较强的问题逐渐程序化解决。
而中学教育是基础教育,是大众教育,是需要普及的教育,问题的程序化解决是普及的关键。
在这方面,与导数的引入有异曲同工之妙。
归纳起来讲,这些内容的引入,扫除了学生学习数学的障碍,有利于数学的普及。
从另一方面讲,向量发展的前景是广阔的,它含盖了平面几何、立体几何、解析几何、三角函数、复数等领域,为学习这些方面的知识提供了新的工具。
向量作为一种新的量,它不同于数量,数量的代数运算在向量范围不一定能施行,因此在实际教学中,应明确数量和向量的区别,并重新规定了向量的加法、减法、实数和向量的积、向量的数性积和矢性积等运算法则。
并在引入二维坐标系后,将向量与坐标紧紧联系起来,增加了向量的渗透性和实用性,更体现了向量运算的价值。
实际上,如果引进了向量和向量代数,简单几何(比如中学数学中的平面几何和立体几何)中的许多知识和问题都可以有新的向量的解释。
新教材在引入向量以后,使得平面几何和空间几何中许多定理、公式及一些相关问题变得直观、浅显、易理解。
中学阶段要学习平面向量和空间向量,而对于学生而言,不仅是因为向量是一个新的知识,关键是它的运算是一个新的体系,有新的法则,这是前面无论那一章的知识都从未涉及的,所以教材将向量分两个阶段来安排,首先学习平面向量。
高中数学2.1《从位移、速度、力到向量》学案(北师大版必修4)

CB《从位移、速度、力到向量》课堂练习Ⅰ.合作交流,感知概念Ⅱ、判断对错,理解概念⑴若向量AB 与CD 是共线向量,则,,,A B C D 四点共线.⑵若四边形ABCD 是平行四边形,则AB DC =;反之,若AB DC =,则A 、B 、C 、D 四点必能组成平行四边形. ⑶若,,a b b c ==则a c = ⑷若//,//,a b b a 则//a cⅢ.应用迁移,巩固提高如图,,,D E F 依次为等边三解形ABC 的边,,AB BC AC ,,,,,A B C D E F 为起点或终点的向量中,⑴找出与DE 相等的向量。
⑵找出与DF 共线的向量。
Ⅳ.创新应用,提升能力请你当一回老师,考考你的搭档,在方格中画出一些向量(要求所画向量的起点和终点必须在方格的格点处),让其辩认出是否存在共线向量、相等相量?若存在,请一一举出。
Ⅴ.回顾历史,感受文化Ⅵ. 总结反思,布置作业数学诗《我的向量》1、小结给你一个方向,你就成为我的向量2、作业给你一个坐标系,你就在我心空飞翔⑴课本73页第4题.给你一个基底,带着我,征途启航⑵请同学们逐步积累资料,在学完繁复的几何关系,变成纯代数的情疡《平面向量》一章后,以《话说“优美的动态结构,没有人情冷暖世态炎凉向量”》为题,写一篇数学短文,不管起点在哪里,你始终在水一方谈谈你对向量知识的理解.哪怕山高路远,哪怕风雨苍茫(参考网址:)啊,我的向量,你是一股力量溶进了我的身体,在我的血管量,静静地流淌Ⅶ.数学日记姓名:日期:今天数学课的课题:;今天所学的重要数学知识:;理解得最好的地方:;不明白或还需要进一步理解的地方:;你对什么问题还有不同见解:;今天你独立或和谁一起合作解决了什么问题:;所学内容能否应用在日常生活中,请举例说明:;自我评价:;教师评价:;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从位移、速度、力到向量
一、教学目标: 1.知识与技能
(1)理解向量与数量、向量与力、速度、位移之间的区别;
(2)理解向量的实际背景与基本概念,理解向量的几何表示,并体会学科之间的联系.
(3)通过教师指导发现知识结论,培养学生抽象概括能力和逻辑思维能力 2.过程与方法
通过力与力的分析等实例,引导学生了解向量的实际背景,帮助学生理解平面向量与向量相等的含义以及向量的几何表示;最后通过讲解例题,指导学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题.
3.情感态度价值观
通过本节的学习,使同学们对向量的实际背景、几何表示有了一个基本的认识;激发学生学习数学的兴趣和积极性,陶冶学生的情操,培养学生坚忍不拔的意志,实事求是的科学学习态度和勇于创新的精神. 二.教学重、难点
重点: 向量及向量的有关概念、表示方法. 难点: 向量及向量的有关概念、表示方法. 三.学法与教学用具
学法:(1)自主性学习+探究式学习法:
(2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距.
教学用具:电脑、投影机. 四.教学设想 【创设情境】
实例:老鼠由A 向西北逃窜,猫在B 处向东追去,
问:猫能否追到老鼠?(画图) 结论:猫的速度再快也没用,因为方向错了. 【探究新知】
A B
1.学生阅读教材思考如下问题
[展示投影](学生先讲,教师提示或适当补充) 1. 举例说明什么是向量?向量与数量有何区别?
既有大小又有方向的量叫向量。
例:力、速度、加速度、冲量等 注意:①数量与向量的区别:
数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小。
②从19世纪末到20世纪初,向量就成为一套优良通性的数学体系,用以研究空间性质。
2.向量的表示方法有哪些? ①几何表示法:有向线段
有向线段:具有方向的线段叫做有向线段。
记作:−→
−AB 注意:起点一定写在终点的前面。
有向线段的长度:线段AB 的长度也叫做有向线段−→−AB 的长度 有向线段的三要素:起点、方向、长度
②字母表示法:也可用字母a 、b 、c (黑体字)来表示,即−→
−AB 可表示为a (印刷时用黑体字)
3. 向量的模的概念是如何定义的? 向量−→
−AB 的大小——长度称为向量的模。
记作:|−→−AB | 模是可以比较大小的 4.两个特殊的向量:
①零向量——长度(模)为0的向量,记作。
的方向是任意的. 注意0与0的区别
②单位向量——长度(模)为1个单位长度的向量叫做单位向量。
思考:①温度有零上零下之分,“温度”是否向量?
答:不是。
因为零上零下也只是大小之分。
A(起点)
B
(终点)
a
②−→−AB 与−→
−BA 是否同一向量? 答:不是同一向量。
③有几个单位向量?单位向量的大小是否相等?单位向量是否都相等? 答:有无数个单位向量,单位向量大小相等,单位向量不一定相等。
5.向量间的关系:
1. 平行向量:方向相同或相反的非零向量叫做平行向量。
记作:a ∥b ∥c 规定:与任一向量平行
2. 记作:= 规定:=
任两相等的非零向量都可用一有向线段表示,与起点无关。
3. 共线向量:任一组平行向量都可移到同一条直线上 ,
所以平行向量也叫共线向量。
−→
−OA = −→
−OB = −→
−OC = 例题讲评(学生先做,学生讲,教师提示或适当补充)
例题:如图,设O 是正六边形ABCDEF 的中心,①分别写出图中与向量−→
−OA 、−→
−OB 、−→
−OC 相等的向量;②分别写出图中与向量−→
−OD 、−→
−OE 、−→
−OE 共线的向量.
a b
c
[学习小结](学生总结,其它学生补充)
①向量及其表示方法.
②向量的模.
③零向量与单位向量(零向量的方向任意;单位向量不一定相等)
④相等向量与平行向量.
五.作业:
六. 课后反思。