高数下册_第七章_微分方程习题课_(一)(二).
高等数学课件--D7习题课(2)

利用物理规律
利用几何关系 初始条件 边界条件 可能还有衔接条件
确定定解条件 ( 个性 )
2 . 解微分方程问题 3 . 分析解所包含的实际意义
2012-10-12 同济版高等数学课件
目录 上页 下页 返回 结束
例4. 欲向宇宙发射一颗人造卫星, 为使其摆脱地球
目录 上页 下页 返回 结束
y
dx dy
d x dy
y
2
2
( y ) 0
2
dx dy
2
d x dy
2
2
( y )
y ( y )
3
代入原微分方程得
y y sin x
①
x
(2) 方程①的对应齐次方程的通解为
Y C1 e C2 e
d x dx
目录 上页 下页 返回 结束
练习题 从船上向海中沉放某种探测仪器, 按探测
要求, 需确定仪器的下沉深度 y 与下沉速度 v 之间的函 数关系. 设仪器在重力作用下从海平面由静止开始下沉, 在下沉过程中还受到阻力和浮力作用, 设仪器质量为 m, 体积为B , 海水比重为 , 仪器所受阻力与下沉速度成正 比 , 比例系数为 k ( k > 0 ) , 试建立 y 与 v 所满足的微分 方程, 并求出函数关系式 y = y (v) . (1995考研 ) 提示: 建立坐标系如图. 由牛顿第二定律
处的衔接条件可知,
y 4 y 0
解满足
其通解: y C1 sin 2 x C2 cos 2 x 定解问题的解: y 1 sin 2 x (1 ) cos 2 x, x 2 2 2 故所求解为
高数第七章题库微分方程

第十二章 微分方程答案一、选择题1.以下不是全微分方程的是C1A. (x 2 y)dx ( x 2 y)dy 0B.( y 3x 2 )dx (4 y x)dyC. 3(2x 33xy 2 ) dx 2(2 x 2 y y 2 )dy0 D.2x( ye x 2 1)dxe x 2dy2. 若 y 3 是二阶非齐次线性方程 (1):y P(x) y Q (x) f ( x) 的一个特解, y 1, y 2 是对应的齐次线性方程 (2) 的两个线性没关的特解,那么以下说法错误的选项是(c 1 , c 2 ,c 3 为随意常数)C 2A. c 1 y 1 c 2 y 2 是 (2) 的通解B.c 1 y 1 y 3 是 (1) 的解C. c 1 y 1c 2 y 2 c 3 y 3 是 (1) 的通解D.y 2 y 3 是(1) 的解3.以下是方程 xdx ydyx 2y2dx 的积分因子的是 D2A. x 2y 2B.1 y 2C.x 2 y 2D.1y 2x 2x 2d 3 yxd 2 y 2 x1 的通解应包括得独立常数的个数为( B ) .14.方程e dx 2edx 3(A) 2(B) 3(C) 4 (D) 05.已知方程 y ' p(x) y 0 的一个特解 y cos 2x ,则该方程知足初始特解y(0) 2 的特解为( C ) .2(A)y cos 2x2 (B) y cos 2x 1 (C) y 2cos 2 x (D)y 2cos x6.方程 d 3 ye x d 2 ye 2 x1 的通解应包括得独立常数的个数为( B ) . 1dx 3dx 2(A) 2(B) 3(C) 4 (D) 07.设线性没关的函数 y 1 , y 2 , y 3 都是微分方程 y '' p(x) y ' q( x) y f ( x) 的解,则该方程的通解为 ( D ) .2(A)y c1 y1c2 y2y3(B)y c1 y1c2 y2(c1c2 ) y3 (C)y c1 y1c2 y2(1c1c2 ) y3(D)y c1 y1c2 y2(1c1 c2 ) y38.设方程y '' 2 y '3y f ( x) 有特解y *,则其通解为(B).1(A)c1e x c2 e3 x(B)c1e x c2e3x y *(C)c1xe x c2xe3x y *(D)c1e x c2e 3 x y * 9.微分方程y 'y cot x0 的通解为(A).1(A)y c sin x (B)yc(C)y c cosx(D)c sin xycosx10.方程y cos x的通解为 ( C)1(A)ysin x c1 x c2(B)y sin x c1x c2(C)y cosx c1x c2(D)y cos xc1x c211.y e x的通解为(C)1(A) e x(B) e x(C) e x c1 x c2(D) e x c1 x c2y 2y312.微分方程y x y4的阶是 (B)1(A)1(B)2(C)3(D)413.以下微分方程中,属于可分别变量方程的是(C)1(A)xsin xy dx ydy0(B)y ln x ydy xsin y y 1 y e x y2(C)dx(D)x14. 方程y 2 y0 的通解是(C)1A.y sin 2x;B.y4e2 x;C.y ce2x;D.y e x c 。
新的第七章微分方程答案

2016~2017学年第二学期科目: 高等数学(二) 第七章微分方程 单元测试题答案命题教师:吴淦洲 使用班级:全校16级理工本科一. 单项选择题(每小题2分,共16分)1. 选B 。
由二阶常系数微分方程可以知道其特征方程为2123201,2r r r r -+=⇒== 故B 是正确的。
2.选择B 由特征方程2210++=r r 解得特征根121==-r r ,所以对应齐次方程的通解为12()x Y c c x e -=+3.选C 。
该特征方程为:220rω+= ,故r i ω=±,所以xc x c y ωωsin cos 21+=正确。
4.选A 。
该方程是齐次方程,令y u x=,该方程可化为:du u x u dx +=,分离变量可以知道,故结论2y=(ln x +C)x y=0和正确。
5.选D 。
根据三阶微分方程的通解的定义,必含有三个独立的任意常数,用排除法即可知D 选项成立。
6.选B 。
该方程属于齐次方程,因为'ln y y y x x=。
7.选D 。
应该特征方程为:210r -=,所以1r =± ,右端中1λ=是特征方程的一个单根,且有个常数1,所以可设特解为x axe b +8.选B 。
由方程阶的定义可以知道B 正确。
9. 选C 该特征方程为:220r r --= 122,1r r ==-,故-1是特征方程的一个单根,所以x e B Ax x y -*+=)(是正确的 10. 选A 。
方程是可分离变量类型,分离变量后dy dx y=-⎰,积分可知A 正确。
11.选D. 特征方程是220rr +=,122,0r r =-=,0是该方程的一个单根,故特解可以设为y ax *= 二. 填空题(每小题2分,共14分,请把答案填在横线上)1.()()(())P x dx P x dx e Q x e dx c -⎰⎰+⎰由一阶线性微分方程的公式法可以写出答案,注意公式中的符号。
高数下册 第七章 微分方程习题课 (一)(二)

dy y (3) = dx 2( ln y − x) 提示: 提示 可化为关于 x 的一阶线性方程 dy (4) + x y − x3 y3 = 0 dx z = y−2 提示: 提示 为贝努里方程 , 令 y dy − x dy 微分倒推公式 (5) xdx + ydy + =0 x2 + y2 提示: 提示 为全微分方程 , 通解
B = −417
原方程通解为 y = e−x (C1 cos 2x + C2 sin 2x ) 原方程通解为 思考 若 (7) 中非齐次项改为 提示: 提示 特解设法有何变化 ?
故 y * = Acos 2x + Bsin 2x + D
24
′′ − a y′2 = 0 y P327 题4(2) 求解 y x=0 = 0 , y′ x=0 = −1
y 方法 1 这是一个齐次方程 . 令 u = x 方法 2 化为微分形式
( 6x3 + 3x y2 )dx + ( 3x2 y + 2y3 )dy = 0
∂P ∂Q Q = 6x y = ∂y ∂x
故这是一个全微分方程 故这是一个全微分方程 .
7
求下列方程的通解: 例2. 求下列方程的通解 (1) x y′ + y = y( ln x + ln y )
dp dp = f ( x, p) dx
21
2. 二阶线性微分方程的解法 齐次 代数法 • 常系数情形 非齐次 • 欧拉方程 x2 y′′ + px y′ + qy = f (x) d t 令 x = e ,D= dt [D(D −1) + pD+ q] y = f (et ) 练习题: P327 题 2 练习题
(完整版)高等数学第七章微分方程试题及答案,推荐文档

一.变量可分离方程及其推广 1.变量可分离的方程
(1)方程形式: dy PxQy
dx
Qy
0
通解
dy
Qy
Pxdx
C
(注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任 意常数另外再加)
(2)方程形式: M1xN1ydx M 2 xN2 ydy 0
通解
M M
1 2
x xdx
由此可见,常系数齐次线性方程的通解完全被其特征方程的根所决定,但是
2
三次及三次以上代数方程的根不一定容易求得,因此只能讨论某些容易求特征方 程的根所对应的高阶常系数齐次线性方程的通解。
六、二阶常系数非齐次线性方程
方程: y py qy f x 其中 p, q 为常数 通解: y y C1 y1x C2 y2 x 其中 C1 y1 x C2 y2 x为对应二阶常系数齐次线性方程的通解上面已经讨论。
1.若 y1 x, y2 x为二阶齐次线性方程的两个特解,则它们的线性组合 C1 y1 x C2 y2 x( C1 , C2 为任意常数)仍为同方程的解,特别地,当 y1 x y2 x( 为常数),也即 y1 x与 y2 x线性无关时,则方程的通解 为 y C1 y1x C2 y2 x 2.若 y1 x, y2 x为二阶非齐次线性方程的两个特解,则 y1 x y2 x为
dx
数) 2.一阶线性非齐次方程
dy Pxy Qx 用常数变易法可求出通解公式
dx
令 y C x e Pxdx 代入方程求出 Cx则得
y e Pxdx Q x e Pxdx dx C
3.伯努利方程
dy Pxy Qxy 0,1
dx
令 z y1 把原方程化为 dz 1 Pxz 1 Qx
高等数学微分方程第七章练习题答案

第七章 练习题一、填空: 第一节1、微分方程()1y x 2='+'y 的阶 一 __.2、0)()67(=++-dy y x dx y x 是 一 阶常微分方程. 3、01"=+xy 是 二 阶常微分方程. 4、微分方程2'=y x 的通解为 c x y +=2 。
5、 153'+=+x y xy 是 1 阶常微分方程 6、与积分方程()dx y x f y x x ⎰=0,等价的微分方程初值问题是0|),,(0'===x x y y x f y7、223421xy x y x y x ''''++=+是 3 阶微分方程。
8、方程222(1)1xxd ye e dx+⋅+=的通解中应包含的任意常数的个数为 29、微分方程()1/22///=+y x y 的通解中含有任意常数的个数是 310、方程()01///=+--y xy y x 的通解中含有 2 个任意常数 11、 微分方程03322=+dx x dy y 的阶是 1 第二节 1、微分方程x dye dx=满足初始条件(0)2y =的解为1x y e =+. 2、微分方程y x e y -=2/的通解是 C e e xy +=221 3、微分方程2dyxy dx=的通解是 2x y Ce = 4、一阶线性微分方程23=+y dx dy的通解为 323x Ce -+5、微分方程0=+'y y 的通解为 x ce y -=6、 微分方程323y y ='的一个特解是 ()32+=x y第三节1、tan dy y ydx x x=+通解为arcsin()y x Cx =.第五节1、微分方程x x y cos "+=的通解为213cos 6C x C x x y ++-= 2、微分方程01=+''y 的通解是( 21221C x C x y ++-= )3、 微分方程044=+'+''y y y 的通解是( x e C x C y 221)(-+= )4、微分方程032=-'+''y y y 的通解是( x x e C e C y 231+=- )5、 方程x x y sin +=''的通解是=y 213sin 61C x C x x ++-第六节1、 一阶线性微分方程x e y dxdy-=+的通解为 ()C x e y x +=- 2、已知1=y 、x y =、2x y =是某二阶非齐次线性微分方程的三个解,则该方程的通解为)1(21221c c x c x c y --++=或1)1()1(221+-+-=x c x c y第七节1、 微分方程230y y y '''--=的通解为x x e C e C y 321+=-.2、 分方程2220d xx dtω+=的通解是 12cos sin C t C t ωω+3、微分方程02=+'-''y y y 的通解为 12()x y c c x e =+第八节1、设二阶常系数线性微分方程'''x y y y e αβγ++=的一个特解为2(1)x x y e x e =++,则,,αβγ的值是3,2,1αβγ=-==-2、微分方程2563x y y y xe -'''++=的特解可设为=*y *201()x y x b x b e -=+二、选择 第一节1、方程222(1)1xxd ye e dx+⋅+=的通解中应包含的任意常数的个数为( A )(A ) 2 (B ) 4 (C ) 3 (D ) 02、方程422421x xd y d ye e dx dx+⋅+=的通解中应包含的任意常数的个数为( B )(A ) 2 (B ) 4 (C ) 3 (D ) 03、微分方程()1/22///=+y x y 的通解中含有任意常数的个数是( C )A 、1B 、2C 、3D 、54、微分方程1243/2///+=++x y x y x xy 的通解中含有任意常数的个数是( C ) A 、1 B 、2 C 、3 D 、55、微分方程34()0'''-=x y yy 的阶数为(B ) (A) 1 (B) 2 (C) 3 (D) 46、下列说法中错误的是( B )(A) 方程022=+''+'''y x y y x 是三阶微分方程; (B) 方程220()x y yy x ''-+=是二阶微分方程;(C) 方程0)3()2(22232=+++dy y x y dx xy x 是全微分方程; (D) 方程()()dyf xg y dx=是可分离变量的微分方程. 7、方程()01///=+--y xy y x 的通解中含有( B )个任意常数A 、1B 、2C 、3D 、4 8、 微分方程3447()5()0y y y x '''+-+=的阶数为( B ) A .1 B . 2 C .3 D .49、微分方程()043='-'+''y y y x y xy 的阶数是( A ).A. 2B. 4C. 5D. 310、 微分方程03322=+dx x dy y 的阶是( A ). A. 1 B. 2 C. 3 D. 0 11、 微分方程323y y ='的一个特解是( B )A. 13+=x yB. ()32+=x y C. ()3C x y += D. ()31+=x C y12、 方程322321x xd y d ye e dx dx+⋅+=的通解中应包含的任意常数的个数为( C )(A ) 2 (B ) 4 (C ) 3 (D ) 0第二节1、微分方程20y y '-=的通解为(B )A .sin 2y c x =B .2x y ce =C .24x y e =D .x y e =2、微分方程0ydx xdy -=不是 ( B )A. 线性方程B. 非齐次线性方程C. 可分离变量方程D. 齐次方程 3、微分方程0=+'y y 的通解为( D )A .x y e =B . x ce y -=C . x e y -=D . x ce y -=4、一阶常微分方程e yx dxdy -=2满足初始条件00==x y 的特解为( D ) A x ce y = B x ce y 2= C 1212+=x y e e D ()1212+=x y e e5、微分方程02=+'y y 的通解为( D )A .x e y 2-=B .x y 2sin =C .x ce y 2=D .x ce y 2-= 6、 微分方程 ydy x xdx y ln ln =满足11==x y 的特解是( C )A. 0ln ln 22=+y xB. 1ln ln 22=+y xC. y x 22ln ln =D. 1ln ln 22+=y x第五节1、 微分方程2(1)0y dx x dy --=是( C )微分方程.A .一阶线性齐次B .一阶线性非齐次C .可分离变量D .二阶线性齐次第六节1、已知x y cos =,xe y =,x y sin =是方程()()()xf y x Q dx dyx P dxy d =++22的三个解,则通解为 ( C )A x c e c x c y x sin cos 321++=B ()()x x e x c e x c y -+-=sin cos 21C ()x c x c e c c y x sin cos 12121--++=D ()x c x c e c c y x sin cos 12121++++=第七节1、微分方程02=+'-''y y y 的通解为( D )A .12x x y c e c e -=+;B .12()x y c c x e -=+;C .12cos sin y c x c x =+;D .12()x y c c x e =+ 2、下面哪个不是微分方程''5'60y y y +-=的解( D ) (A )65x x e e -+ (B )x e (C )6x e - (D )6x x e e -+3、 已知2,sin ,1x y x y y ===是某二阶非齐次常微分方程的三个解,则该方程的通解为( D ) A .221sin 1x C x C y ++=B .2321sin xC x C C y ++=C .21221sin C C x C x C y --+=D .212211sin C C x C x C y --++= 4、已知x y x y y cos ,sin ,1===是某二阶非齐次常微分方程的三个解,则该方程的通解为( D )A .x C x C C y cos sin 321++=B .xC x C C y cos sin 321++= C .2121sin cos C C x C C y --+=D .21211cos sin C C x C x C y --++= 5、微分方程0y y ''+=的通解为( C )(A) 12x x y c e c e -=+; (B) 12()x y c c x e -=+; (C) 12cos sin y c x c x =+; (D) 12()x y c c x e =+6、已知1=y ,x y =,2x y =是某二阶非齐次线性微分方程的三个解,则方程的通解为( C ) A 2321x C x C C ++ B 21221C C x C x C --+ C )1(21221C C x C x C --++ D ()()2122111C C x C x C ++-+-7、已知x y y x 4='+''的一个特解为2x ,对应齐次方程0='+''y y x 有一个特解为x ln ,则原方程的通解为 ( A )A 、221ln x c x c ++ B 、221ln x x c x c ++ C 、221ln x e c x c x ++ D 、221ln x e c x c x ++- 8、微分方程04=+''y y 的通解为( A )A .x c x c y 2sin 2cos 21-= ;B .x e x c c y 221)(-+=C x x e c e c y 2221-+=;D .x e x c c y 221)(+=9、 分方程2220d xx dtω+=的通解是( A );A .12cos sin C t C t ωω+B .cos t ωC .sin t ωD .cos sin t t ωω+第八节1、微分方程x e y dxyd =-22的一个特解应具有的形式为 DA ()x e b ax +B ()x e bx ax +2C x aeD x axe2、设二阶常系数线性微分方程'''x y y y e αβγ++=的一个特解为2(1)x x y e x e =++,则,,αβγ的值是( C )(A )3,2,1αβγ===- (B )3,2,1αβγ==-=- (C )3,2,1αβγ=-==- (D )3,2,1αβγ=-=-= 三、计算第二节1、求微分方程0ln '=-y y xy 的通解 解:分离变量xdxy y dy =ln ...........2分 两边积分可得 1ln ln ln C x y += ..........4分 整理可得Cx e y = .........6分 5、计算一阶微分方程ln 0x x y y '⋅-=的通解。
高等数学第7章练习题

第七章微分方程一、填空题1、曲线上点(,)x y 处的切线斜率为该点纵坐标的平方,则此曲线的方程是_____y x C=-+1。
2、曲线上任一点处的切线斜率恒为该点的横坐标与纵坐标之比,则此曲线的方程是______ x y C 22-=。
3、一质点沿直线运动,已知在时间t 时加速度为t 21-,开始时()t =0速度为13,则速度与时间t 的函数关系式是________ V t t =-+13133。
4、曲线上任一点(,)x y 处的切线斜率为该点横坐标的平方,则此曲线的方程是 y x C =+133。
5、一曲线过原点,其上任一点(,)x y 处的切线斜率为2x y +,则曲线方程是______ y e x x=--21()。
6、微分方程e y ax "=1(a 是非零常数)的通解是 ______y ae C x C a x =++-1212。
7、若某个二阶常系数线性齐次微分方程的通解为y C C x =+12,其中C C 12,为独立的任意常数,则该方程为⎽⎽⎽⎽ ''=y 0。
8、若某个二阶常系数线性齐次微分方程的通解为y C e C x =+12,其中C C 12,为独立的任意常数,则该方程为⎽⎽⎽⎽ ''-'=y y 0。
9、若某个二阶常系数线性齐次微分方程的通解为12cos sin =+y C kx C kx ,其中C C 12,为独立的任意常数,k 为常数,则该方程为⎽⎽⎽⎽ ''+=y k y 20。
10、若某个二阶常系数线性齐次微分方程的通解为y C e C e x x =+-12,其中C C 12,为独立的任意常数,则该方程为⎽⎽⎽⎽ ''-=y y 0。
11、若某个二阶常系数线性齐次微分方程的通解为y C C x e x=+()12,其中C C 12,为独立的任意常数,则该方程为⎽⎽⎽⎽ ''-'+=y y y 20。
高等数学第07章(微分方程习题).

习题三一、1、yc1 sin xc 2 cos x 3、yc1c2 xe2 x 5、y2 y5 y0 7、abxe x 9、p2, q2, fxx1二、1、yc1e xc2 e2 x 3、yc1c 2 xe 5、yc1c2 e 4 x三、1、yc1exc 2 e4 x3、yc1c 2 e 5x 2 2x 2、ye 2c1 cos 7 xc 2 sin 7 x1 x 4、yc1e xc 2 e 6 x 6、yc1e 3 xc 2 e 4 x 8、yc1e xxc 2exxx 10、y1xy 2x2、yc1 cos xc 2 sin x 4、yc1c 2 e x 2 6、ye3 xc1 cos 2 xc 2 sin 2 x11 1x 8 2 2、yc1c 2 xe 3 xx x213xx1e 231 3 7x3x2x 3 5 25 4、yc1e 2c2 exe x四、1、y4e x2e 3 x 3、ycos 5 xsin 5 x五、1、ye xexxe xx12、y5e xe 2 x1 3 7 2 5 2 1 3 2、y3e2 x sin 5 x 4、y2xex 2 3、ycos xsin xsin 2 x习题四一、1、yc1e xc 2 e 2 x 4、xy2 y0二、1、D 8、C 2、C 2、e2 xa cos xb sin x5、sin 3、A ycx x 3、3 6、tan yln cx x 4、A 5、A 6、C 7、B
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xu 1 u2
x 0 时,y 1 y 2 y
xx
xu 1 u2
(3)
y
2x
1
y2
调换自变量与因变量的地位 , 化为 dx 2x y2, dy
用线性方程通解公式求解 .
6
(4)
y
6x3 3x2
3x y2 y 2y3
方法 1 这是一个齐次方程 . 令 u y x
方法 2 化为微分形式
系 数
法 f(x)的形式及其 特解形式
可降阶方程
线性方程 解的结构
定理1;定理2 定理3;定理4
欧拉方程
2
微分方程解题思路
一阶方程
作降 变阶 换
高阶方程
作变换
分离变量法
非非
全微分方程
变全 量微
积分因子 可 分
常数变易法
分方
离程
特征方程法
幂级数解法 待定系数法
3
一、一阶微分方程求解
1. 一阶标准类型方程求解 四个标准类型: 可分离变量方程, 齐次方程, 线性方程, 全微分方程 关键: 辨别方程类型 , 掌握求解步骤
2xy 2y (4) y2( x 3 y )dx (1 3 x y2 )d y 0
提示: (1) 原方程化为 令 u = x y , 得 d u u ln u (分离变量方程) dx x
(2) 将方程改写为 d y 1 y y3 (贝努里方程) 令 z y 2 d x 2x ln x 2x
.
提示: (1) 因e y3 x e y3 e x , 故为分离变量方程: y2e y3 d y e x dx
通解
1e y3 ex C 3
5
(2) x y x2 y2 y
方程两边同除以 x 即为齐次方程 , 令 y = u x ,化为分
离变量方程.
y 1 y 2 y
xx
利用共性建立微分方程 , 利用个性确定定解条件.
例4. 设河边点 O 的正对岸为点 A , 河宽 OA = h, 两岸
为平行直线, 水流速度大小为 a , 一鸭子从点 A 游向点
8
(3) y 3x2 y2 6x 3 2xy 2y
化方程为 d y 3( x 1)2 y2 d x 2y ( x 1) 令 t = x – 1 , 则 dy dy dt dy dx dt dx dt d y 3 t 2 y2 (齐次方程) dt 2ty 令y=ut
可分离变量方程求解
提示: 可化为关于 x 的一阶线性方程
(4) d y x y x3 y3 0 dx 提示: 为贝努里方程 , 令 z y2
(5)
xdx
yd y
ydy x2
xdy y2
0
微分倒推公式
提示: 为全微分方程 , 通解
(9) ( y4 3x2 )d y x ydx 0
提示: 可化为贝努里方程 令 z x2
习题课 (一)
第七章
一阶微分方程的
解法及应用
一、一阶微分方程求解 二、解微分方程应用问题
1
一、主要内容
一阶方程
基本概念
高阶方程
类型
1.直接积分法 2.可分离变量 3.齐次方程 4.可化为齐次 方程 5.全微分方程 6.线性方程
7.伯努利方程
二阶常系数线性 方程解的结构
特征方程法
待 特征方程的根 定 及其对应项
(2003考研)
解: (1) F( x) f ( x)g( x) f ( x)g( x)
g2(x) f 2(x)
[g( x) f ( x)]2 2 f ( x)g( x)
(2e x )2 2F ( x)
所以F(x) 满足的一阶线性非齐次微分方程:
11
F( x) 2F ( x) 4e2x
14
(10) y x x2 y
提示: 令 u x2 y x , 即 y 2 x u u2, 则
dy 2u 2x du 2udu
dx
dx dx
原方程化为
x
e
2 u
du
2
e
2 u
du
du
C
1 u2
2 u2
du
C
故原方程通解
15
二、解微分方程应用问题
关键问题是正确建立数学模型, 要点:
(6x3 3xy2)dx (3x2 y 2y3)dy 0
P 6xy Q
y
x
故这是一个全微分方程 .
7
例2. 求下列方程的通解: (1) x y y y(ln x ln y )
(2) 2 x ln x d y y ( y2 ln x 1)dx 0 (3) y 3x2 y2 6x 3
(2) 由一阶线性微分方程解的公式得
F ( x) e 2d x 4e2x e 2d x d x C e2x 4e4x d x C
e2 x Ce2 x 将 F (0) f (0)g(0) 0 代入上式,得 C 1
于是
F(x) e2x e2x
12
练习题: P326 题1,2(1),3(1), (2), (3), (4), (5), (9),
例3. 设F(x)=f (x) g(x), 其中函数 f(x), g(x) 在(-∞,+∞)
内满足以下条件: f ( x) g( x), g( x) f ( x), 且 f (0) 0, f ( x) g( x) 2e x .
(1) 求F(x) 所满足的一阶微分方程 ;
(2) 求出F(x) 的表达式 .
9
(4) y2( x 3 y )dx (1 3 x y2 )d y 0 变方程为 y2 x dx d y 3 y2( ydx xd y) 0
两边乘积分因子 y2
x dx y2 d y 3( ydx xd y) 0 用凑微分法得通解:
1 x2 y13 x y C
2
10
(10)
(题3只考虑方法及步骤)
P326 题2 求以
为通解的微分方程.
提示:
( x C )2 2( x C )
y2 2y
y
1
0
消去CΒιβλιοθήκη 得P327 题3 求下列微分方程的通解:
提示: 令 u = x y , 化成可分离变量方程 :
提示: 这是一阶线性方程 , 其中
13
(3) d y
y
dx 2( ln y x)
2. 一阶非标准类型方程求解 (1) 变量代换法 —— 代换自变量
代换因变量 代换某组合式 (2) 积分因子法 —— 选积分因子, 解全微分方程
4
例1. 求下列方程的通解
(1)
y
1 y2
e y3x
0;
(3)
y
2x
1
y2
;
(2) x y x2 y2 y ;
(4)
y
6x3 3x2
3x y2 y 2y3