高一复习资料——3函数的定义域、值域

合集下载

高中数学函数知识点(详细)

高中数学函数知识点(详细)

第二章 函数一.函数1、函数的概念:(1)定义:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作:y =)(x f ,x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{)(x f | x ∈A }叫做函数的值域. (2)函数的三要素:定义域、值域、对应法则(3)相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)2、定义域:(1)定义域定义:函数)(x f 的自变量x 的取值范围。

(2)确定函数定义域的原则:使这个函数有意义的实数的全体构成的集合。

(3)确定函数定义域的常见方法:①若)(x f 是整式,则定义域为全体实数②若)(x f 是分式,则定义域为使分母不为零的全体实数 例:求函数xy 111+=的定义域。

③若)(x f 是偶次根式,则定义域为使被开方数不小于零的全体实数例1. 求函数 ()2143432-+--=x x xy 的定义域。

例2. 求函数()02112++-=x x y 的定义域。

④对数函数的真数必须大于零⑤指数、对数式的底必须大于零且不等于1⑥若)(x f 为复合函数,则定义域由其中各基本函数的定义域组成的不等式组来确定⑦指数为零底不可以等于零,如)0(10≠=x x⑧实际问题中的函数的定义域还要保证实际问题有意义. (4)求抽象函数(复合函数)的定义域已知函数)(x f 的定义域为[0,1]求)(2x f 的定义域 已知函数)12(-x f 的定义域为[0,1)求)31(x f -的定义域3、值域 :(1)值域的定义:与x 相对应的y 值叫做函数值,函数值的集合叫做函数的值域。

(2)确定值域的原则:先求定义域 (3)常见基本初等函数值域:一次函数、二次函数、反比例函数、指数函数、对数函数、三角函数(正余弦、正切)(4)确定函数值域的常见方法:①直接法:从自变量x 的范围出发,推出()y f x =的取值范围。

高一数学函数的三要素知识点

高一数学函数的三要素知识点

高一数学函数的三要素知识点在高一数学学习中,函数是一个重要的概念和工具。

理解和掌握函数的三要素是学好数学的基础。

本文将介绍函数的三要素的知识点,包括定义域、值域和图像。

一、定义域定义域是指函数所能接受的自变量的取值范围。

对于一个函数来说,它并不是任意定义的,而是有一定的限制。

在确定定义域时,需要考虑函数中出现的各种运算,比如平方根、分母不能为零等。

例如,对于函数y = √x,由于不能对负数开平方根,因此定义域为x ≥ 0;对于函数y = 1/x,由于分母不能为零,因此定义域为x ≠ 0。

需要注意的是,对于一些复杂的函数,确定定义域可能需要借助一些技巧和方法。

二、值域值域是函数所有可能的输出值的集合。

它是定义域经过函数变换后得到的结果。

确定值域的方法通常有两种:代数方法和图像法。

在使用代数方法确定值域时,可以分析函数的性质和特点,并求出函数的最值。

例如,对于函数y = x^2,在定义域为实数集时,函数的最小值为0,因此值域为y ≥ 0;对于函数y = sinx,在定义域为实数集时,由于正弦函数的取值范围是[-1, 1],因此值域为-1 ≤ y ≤ 1。

图像法是通过作出函数的图像来确定值域。

通过观察函数的图像,我们可以直观地判断函数的值域。

例如,对于函数y = 2x + 1,在作出其图像后,我们可以看到函数的图像是一条直线,它包含了所有的实数,因此值域为实数集。

三、图像函数的图像是函数在坐标系上的表示。

通过观察函数的图像,我们可以了解函数的性质和特点,进而更好地理解函数的三要素。

在绘制函数的图像时,需要根据定义域和值域的情况选择适当的坐标系和标尺。

对于简单的函数,可以通过画出一些特殊点和关键点,再通过描点连线的方法绘制函数的图像;对于复杂的函数,则可以借助计算机绘图工具进行绘制。

无论使用哪种方法,绘制的图像应该准确反映函数的性质,直观地展示函数的变化趋势。

综上所述,函数的三要素——定义域、值域和图像,是理解和掌握高一数学函数的关键知识点。

高一值域和定义域的知识点

高一值域和定义域的知识点

高一值域和定义域的知识点高一数学知识点:值域和定义域解析数学中的值域和定义域是一项基本概念,特别在高一的课程中,这两个概念被频繁地引用和运用。

理解和掌握这些概念,对于高一学生来说是至关重要的。

一、定义域的概念与运用1.1 定义域的定义在函数的定义中,值域和定义域是两个至关重要的概念。

首先,定义域指的是自变量的取值范围。

也就是说,在一个函数中,自变量可以取到的所有可能值形成的集合就是该函数的定义域。

例如,在函数 y = 2x + 3 中,自变量 x 可以取到任何实数的值,所以定义域是整个实数集R。

1.2 定义域的限制在实际问题中,有时候函数并不适用于所有的自变量取值范围。

例如,对于一个表示温度的函数而言,可能只适用于自变量为正数的情况,因为负温度在实际生活中并没有意义。

所以,在这种情况下,定义域就需要做出相应的限制。

例如,函数y = √x 的定义域就是非负实数集[0, +∞)。

1.3 定义域的确定方法确定一个函数的定义域,首先要注意函数中不能出现负号下的奇次根号,因为这样的根无法在实数范围内取得。

其次,要注意有分数形式的分母,不能等于零,因为除数不能为零。

最后,要留意任何其他潜在的限制条件,如有意义性等。

二、值域的概念与运用2.1 值域的定义与定义域类似,值域也是函数的一个重要概念。

值域指的是函数的因变量所能取到的所有可能值所形成的集合。

例如,在函数 y = 2x + 3 中,对于任何实数的自变量 x ,函数的值域都是整个实数集R。

2.2 值域的限制对于某些函数而言,其值域可能受到一些限制。

例如,函数 y = x^2 的值域就是非负实数集[0, +∞),因为平方的结果永远不会是负数。

在寻找函数的值域时,我们需要考虑是不是有潜在的限制条件。

2.3 值域的确定方法确定一个函数的值域,可以通过图像分析和数学推导等多种方法。

对于某些函数而言,我们可以通过观察函数的图像,来判断函数的值域。

例如,当一个函数的图像形状是一个开口向上的抛物线时,我们就可以确定其值域是非负实数集。

高一函数定义域和值域知识点

高一函数定义域和值域知识点

高一函数定义域和值域知识点在高中数学中,函数是一个非常重要的概念。

函数是一个映射关系,它将一个集合中的元素对应到另一个集合中的元素。

而函数的定义域和值域则是函数的两个基本性质,它们对于理解函数的性质和特点非常关键。

一、函数的定义域函数的定义域是指函数中所有可能输入的取值范围。

也就是说,在定义一个函数时,我们需要确定函数的输入可以采取哪些值。

例如,考虑一个简单的函数f(x) = √x。

这个函数的定义域是什么呢?我们知道平方根是一个实数运算,但是如果x取负值,那么该函数就无法定义了。

因此,这个函数的定义域是所有非负实数。

我们可以表示为:定义域D = [0, +∞)。

同样地,对于一个分式函数g(x) = 1/x,我们知道分母不能为零。

因此,该函数的定义域是除了x=0之外的所有实数。

我们可以表示为:定义域D = (-∞, 0)∪(0, +∞)。

另外,有些函数的定义域可能受到一些附加条件的限制。

比如,如果考虑一个函数h(x) = log(x),我们知道对数运算要求x必须大于0,因此,该函数的定义域是所有正实数。

我们可以表示为:定义域D = (0, +∞)。

二、函数的值域函数的值域是指函数中所有可能输出的取值范围。

也就是说,在定义一个函数时,我们需要确定函数的输出可以采取哪些值。

例如,考虑函数f(x) = x^2,我们可以通过平方运算得到一个非负数。

因此,该函数的值域是所有非负实数。

我们可以表示为:值域R = [0,+∞)。

同样地,对于函数g(x) = sin(x),我们知道正弦函数的取值范围是在[-1, 1]之间的所有实数。

因此,该函数的值域是[-1, 1]。

另外,有些函数的值域可能受到一些附加条件的限制。

比如,如果考虑函数h(x) = e^x,我们知道指数函数的取值范围是大于0的实数。

因此,该函数的值域是大于0的所有实数。

我们可以表示为:值域R = (0, +∞)。

总结起来,函数的定义域和值域是函数的两个基本性质。

高中数学函数的定义域及值域

高中数学函数的定义域及值域

高中数学函数的定义域及值域1500字函数是数学中常用的概念,它描述了两个集合之间的对应关系。

函数的定义域是指输入的值的集合,而值域是函数输出的值的集合。

在高中数学中,我们经常需要确定函数的定义域和值域,以便了解函数的性质和行为。

为了确定一个函数的定义域,我们需要考虑两个因素:函数的解析式和函数的定义限制。

函数的解析式告诉我们函数如何计算输出值,而定义限制告诉我们输入值可以是哪些数。

首先,让我们考虑一些常见的函数类型及其定义域和值域。

1. 线性函数:线性函数的解析式可以写为y = mx + c,其中m是斜率,c是截距。

线性函数的定义域是所有实数集合,值域也是所有实数集合。

2. 幂函数:幂函数的解析式可以写为y = x^n,其中n是一个实数。

幂函数的定义域是所有实数集合,但值域取决于指数n的值。

例如,如果n是正偶数,那么幂函数的值域是非负实数集合;如果n是负偶数,那么幂函数的值域是正实数集合;如果n是奇数,那么幂函数的值域是所有实数集合。

3. 指数函数:指数函数的解析式可以写为y = a^x,其中a是一个正实数且不等于1。

指数函数的定义域是所有实数集合,值域是正实数集合。

4. 对数函数:对数函数的解析式可以写为y = log_a(x),其中a是一个正实数且不等于1。

对数函数的定义域是正实数集合,值域是所有实数集合。

5. 三角函数:三角函数包括正弦函数、余弦函数和正切函数等。

三角函数的定义域是所有实数集合,值域取决于具体的函数类型。

例如,正弦函数的值域是[-1, 1];余弦函数的值域也是[-1, 1];正切函数的值域是所有实数集合。

除了上述函数类型外,还有其他函数类型的定义域和值域也需要特别注意。

例如,有理函数的定义域由分母的零点确定,值域取决于分子的次数和分母的次数;反比例函数的定义域是除了零的所有实数,值域也是除了零的所有实数。

在确定函数的定义域和值域时,我们还需要注意一些常见的限制,如根式的奇次指数、分母不能为零、对数的底不能为1等。

高一数学第三章函数的基本性质知识要点函数的基本性质

高一数学第三章函数的基本性质知识要点函数的基本性质

高一数学第三章函数的基本性质知识要点函数的基本性质高一数学第三章函数的基本性质知识要点函数是数学中的基本概念之一,它在数学和实际问题的求解中起到重要的作用。

本文将介绍高一数学第三章中关于函数的基本性质,帮助大家更好地理解和掌握这一知识点。

一、函数定义函数是一种特殊的关系,表示一个集合中的每个元素都与另一个集合中的唯一元素相对应。

函数可以用符号表示,例如:f(x) = 2x + 1其中f表示函数名,x表示自变量,2x + 1表示函数的表达式,它们之间用等号连接。

二、函数的定义域和值域定义域是指函数的自变量的所有可能取值的集合,通常用D表示。

在上面的函数例子中,自变量x可以取任意实数值,所以定义域为全体实数。

值域是指函数的因变量的所有可能取值的集合,通常用R表示。

同样以例子函数f(x) = 2x + 1为例,它的值域是全体实数。

三、函数的奇偶性如果对于定义域内的任意一个实数x,都有f(-x) = f(x),则函数f(x)是偶函数;如果对于定义域内的任意一个实数x,都有f(-x) = -f(x),则函数f(x)是奇函数;如果一个函数既不是偶函数也不是奇函数,则称其为非奇非偶函数。

四、函数的图像与性质函数的图像是函数在平面直角坐标系上的几何表示。

函数的图像可以通过绘制函数的各个点来获得。

函数的图像具有以下性质:1. 对称性:偶函数的图像以y轴为对称轴,奇函数的图像以原点为对称中心;2. 单调性:如果对于定义域内的两个实数x1和x2,若x1 < x2,则有f(x1) < f(x2),则称函数f(x)在该区间上是递增的;如果x1 < x2,则有f(x1) > f(x2),则称函数f(x)在该区间上是递减的;3. 最值:函数在定义域上的最大值称为最大值,函数在定义域上的最小值称为最小值;4. 零点:函数的零点是指使得f(x) = 0的自变量取值。

五、函数的初等函数性质初等函数是指常见的基本函数,包括常数函数、幂函数、指数函数、对数函数、三角函数等。

高中数学知识点:函数的定义域、值域

高中数学知识点:函数的定义域、值域

高中数学知识点:函数的定义域、值域
定义域、值域的概念:
自变量取值范围叫做函数的定义域,函数值的集合叫做函数的值域。

1、求函数定义域的常用方法有:
(1)根据解析式要求如偶次根式的被开方大于零,分母不能为零等;
(2)根据实际问题的要求确定自变量的范围;
(3)根据相关解析式的定义域来确定所求函数自变量的范围;
(4)复合函数的定义域:如果y是u的函数,而u是x的函数,即y=f(u),u=g(x),那么y=f[g(x)]叫做函数f与g的复合函数,u叫做中间变量,设f(x)的定义域是x∈M,g(x)的定义域是x∈N,求y=f[g(x)]的定义域时,则只需求满足的x的集合。

设y=f[g(x)]的定义域为P,则。

3、求函数值域的方法:
(1)利用一些常见函数的单调性和值域,如一次函数,二次函数,反比例函数,指数函数,对数函数,三角函数,形如(a,b为非零常数)的函数;
(2)利用函数的图象即数形结合的方法;
(3)利用均值不等式;
(4)利用判别式;
(5)利用换元法(如三角换元);
(6)分离法:分离常数与分离参数两种形式;
(7)利用复合函数的单调性。

(注:二次函数在闭区间上的值域要特别注意对称轴与闭区间的位置关系,含字母时要注意讨论)。

高一函数 知识点大全

高一函数 知识点大全

函 数一、函数的相关概念1、函数的概念:设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一的确定的数)(x f 和它对应,那么就称B A f −→−:为从集合A 到集合B 的一个函数,记作)(x f y =,A x ∈2、函数的三要素:定义域、值域、解析式(对应关系)注意:若两函数相等,则其“定义域”和“对应关系”必须相等。

3、函数的表示法:解析法、图像法、列表法二、函数的基本性质:( 单调性、奇偶性、周期性 )1、函数的单调性:( 增函数、减函数 )(1)增函数:在函数定义域I 某个区间D 内任意两个自变量的值1x ,2x ,对于任意21x x <,都有)()(21x f x f <,则称:函数)(x f 在区间D 上是增函数。

(2)减函数:在函数定义域I 某个区间D 内任意两个自变量的值1x ,2x ,对于任意21x x <,都有)()(21x f x f >,则称:函数)(x f 在区间D 上是减函数。

(3)单调函数的性质:增函数+增函数=增函数;减函数+减函数=减函数;增函数-减函数=增函数;减函数-增函数=减函数;)(u f 和)(u g 单调性相同,))((u g f 和))((u f g 为增函数;)(u f 和)(u g 单调性不同,))((u g f 和))((u g f 为减函数;(4)判定函数单调性的方法:定义法、性质法、导数法(5)定义证明单调性的步骤:在函数定义域内取任意1x 、2x ,且1x <2x作差)()(12x f x f -判断)()(12x f x f -正负结论(6)最大值、最小值:➢ 最大值:设函数)(x f y =的定义域为I ,若存在实数M 满足:对于任意的I x ∈,都有M x f ≤)(,且存在I x ∈0,使得M x f =)(0➢ 最小值:设函数)(x f y =的定义域为I ,若存在实数M 满足:对于任意的I x ∈,都有M x f ≥)(,且存在I x ∈0,使得M x f =)(02、函数的奇偶性:( 奇函数、偶函数、既奇又偶函数、非奇非偶函数 )(1)奇函数:在函数定义域内任意一个x ,都有)()(x f x f -=-,则函数)(x f 就称为奇函数,函数图像关于原点对称。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三讲 函数的定义域和值域
一、知识回顾
1、函数的定义域、值域:
在函数y =f (x ),x ∈A 中,x 叫做自变量, 叫做函数的定义域;
与x 的值对应的y 值叫做函数值, 叫做函数的值域. 2、确定函数定义域的常见方法:
(1)分式的 ; (2)偶次方根的 ; (3)零指数幂和负数指数幂的 ; (4)对数式的真数 ,底数 ;
(5)正切函数 ;(6)实际问题 。

3、求函数值域的常见方法:
(1)直接法——利用常见基本初等函数的值域: ①)0(≠+=k b kx y 的值域 ②)0(≠=
k x
k y 的值域
③c bx ax y ++=2的值域:0>a 时为 ; 0>a 时为 。

④x a y =的值域 ⑤x y a
log
=的值域
⑥x y sin =,x y cos =的值域是 ⑦x y tan =的值域是 (2)配方法——转化为二次函数,配成完全平方式.
(3)换元法——通过变量代换转化为能求值域的函数,化归思想 (4)分离常数法——适用于型如:d
cx b ax y ++=的函数
(5)判别式法——适用于型如:p
nx
mx
c bx ax y ++++=
2
2
2
的函数
(6)不等式法:借助于基本不等式ab b a 2≥+(a>0,b>0)求函数的值域.用不等式法求
值域时,要注意基本不等式的使用条件“一正、二定、三相等”.
(7)单调性法:首先确定函数的定义域,然后再根据其单调性求函数的值域。

常用到函数)0(>+
=k x
k x y 的单调性:
增区间为(-∞,-
k ]和[k ,+∞),减区间为(-k ,0)和(0,k ).
二、例题变式
例1、求下列函数的定义域: (1)4
3--=x x y (2)1lg
4
x y x -=- (3)6
522
+--=
x x x y (4) )13lg(132
++-=
x x
x
y
变式1、求下列函数的定义域:
(1)
x
x
y 513-=(2)y =(3)y =
(4)
y =
例2、已知等腰三角形的周长为17,写出它的底边长y 与腰长x 之间的函数关系式?并指出
函数的定义域。

变式2、长为20m 的篱笆,一面靠墙围成矩形,设矩形和墙平行的边长为x ,矩形面积为y ,
试求y 关于x 的表达式,并指出x 的取值范围;x 取何值时,y 有最大值?
例3、求下列函数的值域:
(1)y =-x 2
+2x (x ∈[0,3]) (2)y =
; (3)y x =+
(4)312
x y x +=-; (5)1
1+-=
x
x
e e y (6)2
2
1
x x y x x -=
-+
(7) 1
22
+=x x y (8)4
52
2
++=
x x y (9)|2||2|++-=x x y
三、课后练习
1.函数y=122
+-x x 的定义域是 ( )
A.[0,+∞)
B.(0,+∞)
C.(-∞,+∞)
D. [1,+∞)
2.函数x x y 22-=的定义域为},30|{Z x x x ∈≤≤,那么其值域为 ( ) A .{}3,0,1- B .{}3,2,1,0 C .{}31≤≤-y y D .{}30≤≤y y 3.函数3
2122
---=
x x x y 的定义域是 ( )
A.R
B.}3,1|{≠-≠x x x 或
C.}3,1|{≠-≠x x x 且
D.}31|{=-=x x x 或 4.函数)10(12≤<+-=x x y 的最值是 ( ) A .最小值为-1,最大值为1 B .最小值不存在,最大值为1
C .最小值为-1,最大值不存在
D .最小值与最大值都不存在
5..函数y =x 2-4x +3,x ∈[0,3]的值域为 ( ) A.[0,3] B.[-1,0] C.[-1,3]
D.[0,2]
6.函数3
12+-=
x x y 的值域是 ( )
A. R
B. ),2()2,(+∞-∞
C.),0()0,(+∞-∞
D.]2
1
,3(-
7.函数y =
121-+-x x
的定义域是 (用区间表示).
8.函数y =⎪⎩

⎨⎧>+-≤<+≤+)1( 82)10( 5)0( 53x x x x x x 的最大值为______ ____.
9.以墙为一边,用篱笆围成一个长方形场地,并在场地中间用与长方形宽等长的篱笆隔开,若篱笆的总长度为30m ,则场地面积的最大值为_______________ 10.已知函数222
++-=
m mx mx
y 的定义域为R, 则m 的范围是___________
11.求函数的定义域(1) 7
2||2
1--
-=x x x y (2)2
2
44)(x x x f -+
-=.
12、已知函数1
2)(2
3
++=x ax
x
x f 的定义域是R ,求实数a 的取值范围.
13. 求下列函数的值域 (1)2
23x x y +-=
(2)12++=x x y (3)3
12-+=
x x y
14.求函数f (x )=|x +1|+|x -3|的最值.
15.函数f (x )=ax 2
-2ax +2+b (a ≠0)在[2,3]上有最大值5和最小值2,求a ,b 的值.。

相关文档
最新文档