高一数学函数的定义域与值域
高一值域和定义域的知识点

高一值域和定义域的知识点高一数学知识点:值域和定义域解析数学中的值域和定义域是一项基本概念,特别在高一的课程中,这两个概念被频繁地引用和运用。
理解和掌握这些概念,对于高一学生来说是至关重要的。
一、定义域的概念与运用1.1 定义域的定义在函数的定义中,值域和定义域是两个至关重要的概念。
首先,定义域指的是自变量的取值范围。
也就是说,在一个函数中,自变量可以取到的所有可能值形成的集合就是该函数的定义域。
例如,在函数 y = 2x + 3 中,自变量 x 可以取到任何实数的值,所以定义域是整个实数集R。
1.2 定义域的限制在实际问题中,有时候函数并不适用于所有的自变量取值范围。
例如,对于一个表示温度的函数而言,可能只适用于自变量为正数的情况,因为负温度在实际生活中并没有意义。
所以,在这种情况下,定义域就需要做出相应的限制。
例如,函数y = √x 的定义域就是非负实数集[0, +∞)。
1.3 定义域的确定方法确定一个函数的定义域,首先要注意函数中不能出现负号下的奇次根号,因为这样的根无法在实数范围内取得。
其次,要注意有分数形式的分母,不能等于零,因为除数不能为零。
最后,要留意任何其他潜在的限制条件,如有意义性等。
二、值域的概念与运用2.1 值域的定义与定义域类似,值域也是函数的一个重要概念。
值域指的是函数的因变量所能取到的所有可能值所形成的集合。
例如,在函数 y = 2x + 3 中,对于任何实数的自变量 x ,函数的值域都是整个实数集R。
2.2 值域的限制对于某些函数而言,其值域可能受到一些限制。
例如,函数 y = x^2 的值域就是非负实数集[0, +∞),因为平方的结果永远不会是负数。
在寻找函数的值域时,我们需要考虑是不是有潜在的限制条件。
2.3 值域的确定方法确定一个函数的值域,可以通过图像分析和数学推导等多种方法。
对于某些函数而言,我们可以通过观察函数的图像,来判断函数的值域。
例如,当一个函数的图像形状是一个开口向上的抛物线时,我们就可以确定其值域是非负实数集。
高一数学:函数的三要素

函数的三要素:定义域、对应关系和值域 函数的定义域:函数的定义域是自变量x 的取值范围,它是构成函数的重要组成部分,如果没有标明定义域,则认为定义域是使函数解析式有意义的或使实际问题有意义的x 的取值范围 函数y=f(x)的定义域的求法:①若f(x)是整式,则函数的定义域是实数集R ;②若f(x)是分式,则函数的定义域是使分母不等于0的实数集;③若f(x)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合; ④若f(x)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合;⑤若f(x)是由实际问题抽象出来的函数,则函数的定义域应符合实际问题.如为半径r 与圆面积S 的函数关系为S=πr 2的定义域为{r ︱r>0} ⑥)(x f =x 0的定义域是{x ∈R ︱x ≠0}注意:列不等式(组)求函数的定义域时,考虑问题要全面,要把所有制约自变量取值的条件都找出来。
【例1】求下列函数的定义域: ① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)(.【练1】求下列函数的定义域:(1)()422--=x x x f (2)()2f x x =+ (3) y = (4)xx x y -+=||)1(0【2012高考四川文13】函数()f x =的定义域是____________。
(用区间表示)【2012高考广东文11】函数y x=的定义域为 .表达式中参数求法:根据定义域或其他的条件找到参数应满足的条件或表达式,从而求出相应参数的取值范围。
【例1】若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围【练1】已知函数()f x 的定义域为R ,求实数k 的范围复合函数1.复合函数定义定义:设函数)(u f y =,)(x g u =,则我们称))((x g f y =是由外函数)(u f y =和内函数)(x g u=复合而成的复合函数。
高一数学函数的定义域与值域试题答案及解析

高一数学函数的定义域与值域试题答案及解析1.函数的定义域为___________.【答案】.【解析】要使有意义,则,即,即函数的定义域为.【考点】函数的定义域.2.已知定义在上的函数是偶函数,且时,。
(1)当时,求解析式;(2)当,求取值的集合;(3)当,函数的值域为,求满足的条件【答案】(1)(2)当,取值的集合为,当,取值的集合为;(3)【解析】(1)设, 利用偶函数,得到函数解析式;(2)分三种情况进行讨论,结合(1)的解析式,判定函数在定义域内的单调性,函数是偶函数,关于y轴对称的性质,判定端点值的大小,从而求出取值集合;(3)由值域确定,,,所以分或进行求解试题解析:解:(1)函数是偶函数,当时,当时(4)(2)当,,为减函数取值的集合为当,,在区间为减函数,在区间为增函数且,取值的集合为当,,在区间为减函数,在区间为增函数且,取值的集合为综上:当,取值的集合为当,取值的集合为当,取值的集合为(6)(3)当,函数的值域为,由的单调性和对称性知,的最小值为,,当时,当时,(4)【考点】1 求分段函数的解析式;2 已知函数的定义域求值域;3 已知值域求定义域3.函数的定义域为 .【答案】【解析】有已知,得因为为增函数所以.【考点】1.函数定义域.2.对数不等式.4.函数的定义域为()A.B.C.D.【答案】D.【解析】由函数的解析式可得,Lgx-1≠0, x>0,即 0<x<10或10<x,故函数定义域为 ,故选D.【考点】函数定义域.5.若函数的定义域为R,则实数可的取值范围是___________.【答案】【解析】由函数的定义域为R在R恒成立,当时,显然成立;当时,得;综上,.【考点】1.函数的定义域;2.二次函数的性质.6.已知定义在上的函数为单调函数,且,则 .【答案】【解析】设,令,则由题意得:,即;再令,则由题意得:,即,,∵函数为上的单调函数,解得:,即.【考点】函数值域,不等式恒成立,等比数列前n项和.7.函数定义域为,则满足不等式的实数m的集合____________【答案】【解析】因为函数定义域为又因为.所以.所以即为.即.所以.故填.本小题的关键点是字母比较多易混淆.【考点】1.函数的定义域.2.不等式的解法.3.待定的数学思想.8.设表示不超过的最大整数,如,若函数,则函数的值域为 .【答案】【解析】因为,所以所以当时,,,,故当时,,,,故当时,,,,故综上可知的值域为.【考点】1.新定义;2.函数的解析式;3.函数的值域.9.函数的值域为 .【答案】【解析】函数,对称轴为,开口向上,则由图像可知函数,即值域为.【考点】二次函数的定义域、对称轴、值域.10.函数的值域是 .【答案】【解析】,令,则,且,当时是增函数,而,所以,即.所以所求函数的值域为.【考点】二次函数的值域.11.如果函数y=b与函数的图象恰好有三个交点,则b= .【答案】【解析】当x≥1时,函数图象的一个端点为,顶点坐标为,当x<1时,函数顶点坐标为,∴当或时,两图象恰有三个交点.【考点】二次函数的性质点评:本题考查了分段的两个二次函数的性质,根据绝对值里式子的符号分类,得到两个二次函数是解题的关键.12.若函数的定义域是[0,4],则函数的定义域是()A.[ 0, 2]B.(0,2)C.(0,2]D.[0,)【答案】C【解析】根据题意,因为函数的定义域是[0,4],可知x [0,4],那么对于g(x)有意义时满足2x [0,4],x ,那么可知得到为(0,2],故选C.【考点】函数的定义域点评:解决的关键是根据函数定义域的理解来得到函数的定义域,属于基础题。
高一数学必修一函数知识点总结

二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。
求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)(见课本21页相关例2)2.值域 : 先考虑其定义域(1)观察法(2)配方法(3)代换法3. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .(2) 画法A、描点法:B、图象变换法常用变换方法有三种1)平移变换2)伸缩变换3)对称变换4.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.5.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。
高一函数定义域和值域讲解

函数定义域、值域求法总结(一)求函数定义域1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;4、对复合函数y=f[g(x)]的定义域的求解,应先由y=f(u)求出u的范围,即g(x)的范围,再从中解出x的范围I1;再由g(x)求出y=g(x)的定义域I2,I1和I2的交集即为复合函数的定义域;5、分段函数的定义域是各个区间的并集;6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;(二)求函数的值域1、函数的值域即为函数值的集合,一般由定义域和对应法则确定,常用集合或区间来表示;2、在函数f:A→B中,集合B未必就是该函数的值域,若记该函数的值域为C,则C 是B的子集;若C=B,那么该函数作为映射我们称为“满射”;3、分段函数的值域是各个区间上值域的并集;4、对含参数的函数的值域,求解时须对参数进行分类讨论;叙述结论时要就参数的不同范围分别进行叙述;5、若对自变量进行分类讨论求值域,应对分类后所求的值域求并集;6、求函数值域的方法十分丰富,应注意总结一、定义域是函数()y f x =中的自变量x 的范围。
求函数的定义域需要从这几个方面入手:(1)分母不为零(2)偶次根式的被开方数非负。
(3)对数中的真数部分大于0。
(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。
(6)0x 中x 0≠二、值域是函数()y f x =中y 的取值范围。
高一数学函数的定义域与值域的常用方法

高一数学求函数的定义域与值域的常用法:求函数解析式 1、换元法: 例1.已知 题目给出了与所求函数有关的复合函数表达式,可将函数用一个变量代换。
心) X t 解:设 2 f (x ) X X X ,则1,x 1 。
x 2 X 1 x 2 ,试求 f (X )。
1 t 1,代入条件式可得: f (t )t 2 t 1,t ≠ 1。
故得: 说明:要注意转换后变量围的变化,必须确保等价变形。
2、构造程组法:对同时给出所求函数及与之有关的复合函数的条件式,可以据此构造出 另一个程,联立求解。
f (X) 例2. ( 1)已知 (2)已知 f (X) 2f(2f(1) 3X 24X 5 XX)3X 2解:(1)由条件式,以 • 1 消去 X ,则得: X 代2_ X X,则得 8 3x4X 5f(1) X X 24x 3(2) 由条件式,以一 X 代X 则得: X 24x -3。
f( 去说明: 定义域由解析式确定,不需要另外给出。
例4.求下列函数的解析式: (1) (2) (3) ,试求f (X);f(x).3厶 X试求 2f(x)5 3OX) 2f (X)3X 24X5,与条件式联立,,与条件式联立,消,则得: 本题虽然没有给出定义域,但由于变形过程一直保持等价关系, 故所求函数的 已知 已知 已知 f (X )是二次函数,且f (0) f (∙一 X 1) 心) X 3f (x ) 2, f (X 1) f(X) X 1 ,求 f(X); 2 X ,求 f (x), f (x 1), f (x 2) 1 1 亠 2 ,求 X X f (X);(4) 【题意分析】(1) 设法求出a,b,c 即可。
若能将X 2 - X 适当变形,用.XX 1 设 为一个整体,不妨设为 X X , 已知 2 f ( x) X 3 ,求 f (x)。
由已知f (X)是二次函数,所以可设 f(X) ax 2 bx c(a 0),(2) (3) 1的式子表示就容易解决了。
高一数学函数的定义域与值域(讲义)(精)

高一数学函数的定义域与值域一、知识归纳:(一)函数的定义域与值域的定义:函数y=f(x 中自变量x 的取值范围A 叫做函数的定义域,与x 的值相对应的y 的值叫做函数值。
函数值的集合{f(x│x∈A}叫做函数的值域。
(二)求函数的定义域一般有3类问题:1、已知解析式求使解析式有意义的x 的集合常用依据如下: ①分式的分母不等于0; ②偶次根式被开方式大于等于0;③对数式的真数大于0,底数大于0且不等于1; ④指数为0时,底数不等于02、复合函数的定义域问题主要依据复合函数的定义,其包含两类:①已知f[g(x]的定义域为x∈(a,b )求f(x 的定义域,方法是:利用a 求得 g(x 的值域,则 g(x 的值域即是 f(x 的定义域。
②已知f(x 的定义域为x∈(a,b )求f[g(x]的定义域,方法是:由a 求得x 的范围,即为 f[g(x] 的定义域。
3、实际意义的函数的定义域,其定义域除函数有意义外,还要符合实际问题的要求。
(三)确定函数的值域的原则1、当数y=f(x 用表格给出时,函数的值域是指表格中实数y 的集合。
2、当函数y=f(x 图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合。
3、当函数y=f(x 用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定。
常见函数的值域:函数y=kx +b y=ax2+b x+cy=ax y=logax值域 R a>0a<0{y|y ∈R{y|y>R0}且y≠0}4、当函数由实际问题给出时,函数的值域由问题的实际意义确定。
(四)求函数值域的方法:1、观察法,2、配方法,3、判别式法,4、反函数法,5、换元法,6、图象法等二、例题讲解:【例1】求下列函数的定义域(1)(2)(3y=lg(a x-kb x (a,b>0且a,b≠1,k∈R[解析](1)依题有∴函数的定义域为(2依题意有∴函数的定义域为(3)要使函数有意义,则a x-kb x>0,即①当k≤0时,定义域为R②当k>0时,(Ⅰ)若a>b>0,则定义域为{x|}(Ⅱ若0 ,则,定义域为 {x| }(Ⅲ若a=b>0,则当0 时定义域为 R ;当k ≥ 1 时,定义域为空集[评析]把求定义域的问题等价转化为关于x的不等式(组)的求解问题,其关键是列全限制条件(组。
高一数学函数的定义域与值域试题答案及解析

高一数学函数的定义域与值域试题答案及解析1.已知函数的定义域为,的定义域为,则A.B.C.D.【答案】D【解析】函数的定义域M=,的定义域为N=;则【考点】函数的定义域2.函数的值域是()A.[0,12]B.[-,12]C.[-,12]D.[,12]【答案】B.【解析】因为函数,所以,当时,;当时,;所以函数的值域为.故应选B.【考点】二次函数的性质.3.已知函数的定义域为,则函数的定义域为()A.(-,-1)B.(-1,-)C.(-5,-3)D.(-2,-)【答案】B.【解析】因为函数的定义域为,即,所以,所以函数的定义域为,所以,即,所以函数的定义域为.故选B.【考点】函数的定义域及其求法.4.已知函数在时取得最大值4.(1)求的最小正周期;(2)求的解析式;(3)若,求的值域.【答案】(1);(2);(3).【解析】(1)直接利用正弦函数的周期公式,求f(x)的最小正周期;(2)利用函数的最值求出A,通过函数经过的特殊点,求出φ,然后求f(x)的解析式;(3)通过,求出相位的范围,利用正弦函数的值域直接求f(x)的值域..试题解析:解:(1),(3)时,的值域为【考点】1.由y=Asin(ωx+φ)的部分图象确定其解析式;2.三角函数的周期性及其求法.5.函数的定义域是 ( )A.B.C.D.【答案】D【解析】要使函数式有意义,则.【考点】本题考查函数的定义域即使函数式有意义的自变量的取值范围.6. (1)求不等式的解集:.(2)求函数的定义域:.【答案】(1);(2).【解析】(1)首先将首项系数化为正数,然后分解因式,进而可求得不等式的解集;(2)首先根据根式要有意义建立不等式,然后通过解分式不等式可求得结果.试题解析:(1)∵,∴,∴,∴或,∴原不等式的解集为.(2)要使函数有意义,须,解得或,∴函数的定义域是.【考点】1.一元二次不等式的解法;2.函数定义域.7.函数的定义域是.【答案】【解析】要是此函数有意义,所以有,所以定义域为【考点】(1)函数定义域的求法,(2)偶次根号下被开方数大于等于0,对数中真数大于08.计算:(2)已知函数,求它的定义域和值域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时函数的定义域与值域函数的定义域求下列函数的定义域:(1)y =12-|x |+x 2-1;(2)y =25-x 2+lg cos x ;(3)y =x -12x -log 2(4-x 2);(4)y =1log 0.5(x -2)+(2x -5)0.解(1)-|x |≠0,2-1≥0,≠±2,≤-1或x ≥1.所以函数的定义域为{x |x ≤-1或x ≥1且x≠±2}.(2)-x 2≥0,x >0,5≤x ≤5,k π-π2<x <2k π+π2(k ∈Z ).所以函数的定义域为-5,-32π-π2,5.(3)0,>0,解得-2<x <0或1≤x <2,∴函数的定义域为(-2,0)∪[1,2).(4)0.5(x -2)>0,x-5≠0x <3,≠52,∴思维升华(1)给定函数的解析式,求函数的定义域的依据是使解析式有意义,如分式的分母不等于零,偶次根式的被开方数为非负数,零指数幂的底数不为零,对数的真数大于零且底数为不等于1的正数以及三角函数的定义域等.(2)求函数的定义域往往归结为解不等式组的问题.在解不等式组时要细心,取交集时可借助数轴,并且要注意端点值或边界值.函数的值域例1(2019·长沙月考)求下列函数的值域:(1)y =x 2-2x +3,x ∈[0,3);(2)y =2x +1x -3;(3)y =2x -x -1;(4)y =x +1+x -1.解(1)(配方法)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图①所示),可得函数的值域为[2,6).(2)(分离常数法)y =2x +1x -3=2(x -3)+7x -3=2+7x -3,显然7x -3≠0,∴y ≠2.故函数的值域为(-∞,2)∪(2,+∞).(3)(换元法)设t =x -1,则x =t 2+1,且t ≥0,∴y =2(t 2+1)-t =2t -142+158,由t ≥0,再结合函数的图象(如图②所示),可得函数的值域为158,+∞(4)函数的定义域为[1,+∞),∵y =x +1与y =x -1在[1,+∞)上均为增函数,∴y =x +1+x -1在[1,+∞)上为单调递增函数,∴当x =1时,y min =2,即函数的值域为[2,+∞).结合本例(4)求函数y=x+1-x-1的值域.解函数的定义域为[1,+∞),y=x+1-x-1=2x+1+x-1,由本例(4)知函数y=x+1+x-1的值域为[2,+∞),∴0<1x+1+x-1≤22,∴0<2x+1+x-1≤2,∴函数的值域为(0,2].思维升华求函数值域的一般方法(1)分离常数法;(2)反解法;(3)配方法;(4)不等式法;(5)单调性法;(6)换元法;(7)数形结合法;(8)导数法.跟踪训练1求下列函数的值域:(1)y=1-x21+x2;(2)y=x+41-x;(3)y=2x2-x+12x-1x>1 2解(1)方法一y=1-x21+x2=-1+21+x2,因为x2≥0,所以x2+1≥1,所以0<21+x2≤2.所以-1<-1+21+x2≤1.即函数的值域为(-1,1].方法二由y=1-x21+x2,得x2=1-y1+y.因为x2≥0,所以1-y1+y≥0.所以-1<y≤1,即函数的值域为(-1,1].(2)设t=1-x,t≥0,则x=1-t2,所以原函数可化为y=1-t2+4t=-(t-2)2+5(t≥0),所以y≤5,所以原函数的值域为(-∞,5].(3)y =2x 2-x +12x -1=x (2x -1)+12x -1=x +12x -1=x -12+12x -12+12,因为x >12,所以x -12>0,所以x -12+12x -12≥=2,当且仅当x -12=12x -12,即x =1+22时取等号.所以y ≥2+12,即原函数的值域为2+12,+定义域与值域的应用例2(1)(2020·广州模拟)若函数f (x )=ax 2+abx +b 的定义域为{x |1≤x ≤2},则a +b 的值为________.答案-92解析函数f (x )的定义域是不等式ax 2+abx +b ≥0的解集.不等式ax 2+abx +b ≥0的解集为{x |1≤x ≤2},<0,+2=-b ,×2=ba ,=-32,=-3,所以a +b =-32-3=-92.(2)已知函数y =x 2+ax -1+2a 的值域为[0,+∞),求a 的取值范围.解令t =g (x )=x 2+ax -1+2a ,要使函数y =t 的值域为[0,+∞),则说明[0,+∞)⊆{y |y=g (x )},即二次函数的判别式Δ≥0,即a 2-4(2a -1)≥0,即a 2-8a +4≥0,解得a ≥4+23或a ≤4-23,∴a 的取值范围是{a |a ≥4+23或a ≤4-23}.思维升华已知函数的定义域、值域求参数问题.可通过分析函数解析式的结构特征,结合函数的图象、性质、转化为含参数的方程、不等式(组),然后求解.跟踪训练2(1)若函数f (x )=ax -2021在[2021,+∞)上有意义,则实数a 的取值范围为________.答案[1,+∞)解析由于函数f (x )=ax -2021在[2021,+∞)上有意义,即ax -2021≥0在[2021,+∞)上恒成立,即a ≥2021x在[2021,+∞)上恒成立,而0<2021x≤1,故a ≥1.(2)已知函数f (x )=12(x -1)2+1的定义域与值域都是[1,b ](b >1),则实数b =________.答案3解析f (x )=12(x -1)2+1,x ∈[1,b ]且b >1,则f (1)=1,f (b )=12(b -1)2+1,∵f (x )在[1,b ]上为增函数,∴函数值域为1,12(b -1)2+1.由已知得12(b -1)2+1=b ,解得b =3或b =1(舍).我们把不给出具体解析式,只给出函数的特殊条件或特征的函数称为抽象函数,一般用y =f (x )表示,抽象函数问题可以全面考查函数的概念和性质,将函数定义域、值域、单调性、奇偶性、周期性、图象集于一身,是考查函数的良好载体.一、抽象函数的函数值例1(1)设函数y =f (x )的定义域为(0,+∞),f (xy )=f (x )+f (y ),若f (8)=3,则f (2)=________.答案12解析因为f (8)=3,所以f (2×4)=f (2)+f (4)=f (2)+f (2×2)=f (2)+f (2)+f (2)=3f (2)=3,所以f (2)=1.因为f (2)=f (2×2)=f (2)+f (2)=2f (2),所以2f (2)=1,所以f (2)=12.(2)设函数f (x )的定义域为R ,对于任意实数x 1,x 2,都有f (x 1)+f (x 2)=2f f f (π)=-1,则f (0)=________.答案1解析令x 1=x 2=π,则f (π)+f (π)=2f (π)f (0),∴f (0)=1.二、抽象函数的定义域例2(1)(2019·皖南八校模拟)已知函数f (x )=ln(-x -x 2),则函数f (2x +1)的定义域为________.答案1解析由题意知,-x -x 2>0,∴-1<x <0,即f (x )的定义域为(-1,0).∴-1<2x +1<0,则-1<x <-12.(2)若函数f (2x )的定义域是[-1,1],则f (log 2x )的定义域为________.答案[2,4]解析对于函数y =f (2x ),-1≤x ≤1,∴2-1≤2x ≤2.则对于函数y =f (log 2x ),2-1≤log 2x ≤2,∴2≤x ≤4.故y =f (log 2x )的定义域为[2,4].1.函数f (x )=1(log 2x )2-1的定义域为()B .(2,+∞)(2,+∞),12∪[2,+∞)解析由题意可知x 满足(log 2x )2-1>0,即log 2x >1或log 2x <-1,解得x >2或0<x <12,故所求(2,+∞).2.下列函数中,与函数y =13x定义域相同的函数为()A .y =1sin x B .y =ln xx C .y =x e x D .y =sin x x答案D 解析因为y =13x的定义域为{x |x ≠0},而y =1sin x 的定义域为{x |x ≠k π,k ∈Z },y =ln xx的定义域为{x |x >0},y =x e x 的定义域为R ,y =sin xx 的定义域为{x |x ≠0},故D 正确.3.函数y =x -1+1的值域为()A .(0,+∞)B .(1,+∞)C .[0,+∞)D .[1,+∞)答案D解析函数y =x -1+1,定义域为[1,+∞),根据幂函数性质可知,该函数为增函数,当x =1时,该函数取得最小值1,故函数y =x -1+1的值域为[1,+∞).4.(2019·衡水中学调研)函数f (x )=-x 2-3x +4lg (x +1)的定义域为()A .(-1,0)∪(0,1]B .(-1,1]C .(-4,-1)D .(-4,0)∪(0,1]答案A解析要使函数f (x )x 2-3x +4≥0,+1>0,+1≠1,解得-1<x <0或0<x ≤1,故选A.5.函数y =1+x -1-2x 的值域为()-∞,32D.32,+∞解析设1-2x =t ,则t ≥0,x =1-t 22,所以y =1+1-t 22-t =12(-t 2-2t +3)=-12t +1)2+2,因为t ≥0,所以y ≤32.所以函数y =1+x -1-2x ∞,32,故选B.6.(2019·佛山模拟)函数f (x )=3x3x +2x的值域为()A .[1,+∞)B .(1,+∞)C .(0,1]D .(0,1)答案D解析f (x )=3x3x +2x=11,>0,∴1>1,∴0<11<1.7.(多选)下列函数中值域为R 的有()A .f (x )=3x -1B .f (x )=lg(x 2-2)C .f (x )2,0≤x ≤2x ,x >2D .f (x )=x 3-1答案ABD解析A 项,f (x )=3x -1为增函数,函数的值域为R ,满足条件;B 项,由x 2-2>0得x >2或x <-2,此时f (x )=lg(x 2-2)的值域为R ,满足条件;C 项,f (x )2,0≤x ≤2,x ,x >2,当x >2时,f (x )=2x >4,当0≤x ≤2时,f (x )=x 2∈[0,4],所以f (x )≥0,即函数的值域为[0,+∞),不满足条件;D 项,f (x )=x 3-1是增函数,函数的值域为R ,满足条件.8.(多选)若函数y =x 2-4x -4的定义域为[0,m ],值域为[-8,-4],则实数m 的值可能为()A .2B .3C .4D .5解析函数y =x 2-4x -4的对称轴方程为x =2,当0≤m ≤2时,函数在[0,m ]上单调递减,x =0时,取最大值-4,x =m 时,有最小值m 2-4m -4=-8,解得m =2.则当m >2时,最小值为-8,而f (0)=-4,由对称性可知,m ≤4.∴实数m 的值可能为2,3,4.9.(2019·江苏)函数y =7+6x -x 2的定义域是________.答案[-1,7]解析要使函数有意义,则7+6x -x 2≥0,解得-1≤x ≤7,则函数的定义域是[-1,7].10.函数f (x )=3x +2x ,x ∈[1,2]的值域为________.答案[5,7]解析令g (x )=3x +2x=x >0,易证g (x )在23,+∴f (x )在[1,2]上为增函数,从而得f (x )的值域为[5,7].11.(2020·石家庄模拟)若函数f (x )=x -2+2x ,则f (x )的定义域是________,值域是________.答案[2,+∞)[4,+∞)解析x -2≥0⇒x ≥2,所以函数f (x )的定义域是[2,+∞);因为函数y =x -2,y =2x 都是[2,+∞)上的单调递增函数,故函数f (x )=x -2+2x 也是[2,+∞)上的单调递增函数,所以函数f (x )的最小值为f (x )min =f (2)=4,故函数f (x )=x -2+2x 的值域为[4,+∞).12.函数y =x 2+2x +3x -1(x >1)的值域为________.答案[26+4,+∞)解析令x -1=t >0,∴x =t +1.∴y =(t +1)2+2(t +1)+3t =t 2+4t +6t =t +6t +4≥26+4,当且仅当t =6t即t =6时等号成立.∴函数的值域为[26+4,+∞).13.若函数y =f (x )的定义域为[0,2],则函数g (x )=f (2x )x -1的定义域是()A .[0,1)B .[0,1]C .[0,1)∪(1,4]D .(0,1)答案A解析函数y =f (x )的定义域是[0,2],要使函数g (x )有意义,≤2x ≤2,-1≠0,解得0≤x <1,故选A.14.定义新运算“★”:当m ≥n 时,m ★n =m ;当m <n 时,m ★n =n 2.设函数f (x )=(2★x )x -(4★x ),x ∈[1,4],则函数f (x )的值域为____________.答案[-2,0]∪(4,60]解析由题意知,f (x )x -4,x ∈[1,2],3-4,x ∈(2,4],当x ∈[1,2]时,f (x )∈[-2,0];当x ∈(2,4]时,f (x )∈(4,60],故当x ∈[1,4]时,f (x )∈[-2,0]∪(4,60].15.已知函数f (x )x 2+2x ,0≤x ≤5,,a ≤x <0的值域为[-15,1],则实数a 的取值范围是()A .(-∞,-2]B .[-2,0)C .[-2,-1]D .{-2}答案B解析当0≤x ≤5时,f (x )=-x 2+2x =-(x -1)2+1,所以-15≤f (x )≤1;当a ≤x <0时,f (x )=1-为增函数,所以1-a ≤f (x )<0,因为f (x )的值域为[-15,1],所以≥-15,<0,故-2≤a <0,故选B.16.(多选)若一系列函数的解析式和值域相同,但定义域不相同,则称这些函数为“同值函数”,例如函数y =x 2,x ∈[1,2]与函数y =x 2,x ∈[-2,-1]即为“同值函数”,给出下面四个函数,其中能够被用来构造“同值函数”的是()A .y =[x ]([x ]表示不超过x 的最大整数,例如[0.1]=0)B .y =x +x +1C .y =1x-log 3x D .y =|x +1x +1|答案AD 解析根据题意,“同值函数”需满足:对于同一函数值,有不同的自变量与其对应.因此,能够被用来构造“同值函数”的函数必须满足在其定义域内不单调.对于选项A ,y =[x ],定义域为R ,在定义域内不是单调函数,有不同的自变量对应同一函数值,故A 可以构造“同值函数”;对于选项B ,y =x +x +1,为定义在[-1,+∞)上的单调增函数,故B 不可以构造“同值函数”;对于选项C ,y =1x-log 3x ,为定义在(0,+∞)上的单调减函数,故C 不可以构造“同值函数”;对于选项D ,y =|x +1x +1|,不是定义域上的单调函数,有不同的自变量对应同一函数值,故D 可以构造“同值函数”.所以能够被用来构造“同值函数”的是A ,D.。