2016年高考数学理试题分类汇编:函数
2016年高考数学理真题分类汇编:三角函数 Word版(学生版)

2016年高考数学理试题分类汇编三角函数一、选择题1、(2016年北京高考)将函数sin(2)3y x π=-图象上的点(,)4P t π向左平移s (0s >) 个单位长度得到点'P ,若'P 位于函数sin 2y x =的图象上,则( )A.12t =,s 的最小值为6πB.t = ,s 的最小值为6πC.12t =,s 的最小值为3π D.t =,s 的最小值为3π2、(2016年山东高考)函数f (x )=x +cos x )x –sin x )的最小正周期是(A )2π (B )π (C )23π (D )2π3、(2016年四川高考)为了得到函数πsin(2)3y x =-的图象,只需把函数sin 2y x =的图象上所有的点 (A )向左平行移动π3个单位长度 (B )向右平行移动π3个单位长度 (C )向左平行移动π6个单位长度 (D )向右平行移动π6个单位长度4、(2016年天津高考)在△ABC 中,若AB ,120C ∠= ,则AC = ( )(A )1 (B )2 (C )3 (D )45、(2016年全国I 高考)已知函数ππ()sin()(0),24f x x+x ,ωϕωϕ=>≤=-为()f x 的零点,π4x =为()y f x =图像的对称轴,且()f x 在π5π()1836,单调,则ω的最大值为 (A )11 (B )9 (C )7 (D )56、(2016年全国II 高考)若将函数2sin 2y x =的图像向左平移12π个单位长度,则平移后图象的对称轴为( ) (A )()26k x k Z ππ=-∈ (B )()26k x k Z ππ=+∈ (C )()212k x k Z ππ=-∈ (D )()212k x k Z ππ=+∈7、(2016年全国III 高考)若3tan 4α=,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)16258、(2016年全国III 高考)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =(A (B (C )- (D )- 9、(2016年浙江高考)设函数2()sin sin f x x b x c =++,则()f x 的最小正周期A .与b 有关,且与c 有关B .与b 有关,但与c 无关C .与b 无关,且与c 无关D .与b 无关,但与c 有关10、(2016年全国II 高考)若3cos()45πα-=,则sin 2α=( ) (A )725 (B )15 (C )15- (D )725-二、填空题1、(2016年上海高考)方程3sin 1cos 2x x =+在区间[]π2,0上的解为___________2、(2016年上海高考)已知ABC ∆的三边长分别为3,5,7,则该三角形的外接圆半径等于_________3、(2016年四川高考)cos 2π8–sin 2π8= . 4、(2016年全国II 高考)ABC ∆的内角,,A B C 的对边分别为,,a b c ,若4cos 5A =,5cos 13C =,1a =,则b = .5、(2016年全国III 高考)函数sin y x x =的图像可由函数sin y x x =的图像至少向右平移_____________个单位长度得到.6、(2016年浙江高考)已知2cos 2x +sin 2x =Asin(ωx +φ)+b (A >0),则A =______,b =________.三、解答题1、(2016年北京高考) 在∆ABC 中,222+=+a c b .(1)求B ∠ 的大小;(2cos cos A C + 的最大值.2、(2016年山东高考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知tan tan 2(tan tan ).cos cos A B A B B A+=+ (Ⅰ)证明:a +b =2c ;(Ⅱ)求cos C 的最小值.3、(2016年四川高考)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos cos sin A B C a b c +=. (I )证明:sin sin sin A B C =;(II )若22265b c a bc +-=,求tan B .4、(2016年天津高考)已知函数f(x)=4tanxsin(2x π-)cos(3x π-(Ⅰ)求f (x )的定义域与最小正周期;(Ⅱ)讨论f(x)在区间[,44ππ-]上的单调性.5、(2016年全国I 高考)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos ).C a B +b A c = (I )求C ;(II )若c ABC △=的面积为2ABC △的周长.6、(2016年浙江高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c . 已知b +c =2a cosB.(I )证明:A =2B ; (II )若△ABC 的面积2=4a S ,求角A 的大小.。
2016年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2016年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)2.(5分)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1B.C.D.23.(5分)已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100B.99C.98D.974.(5分)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D.5.(5分)已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)6.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π7.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.8.(5分)若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c9.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x10.(5分)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2B.4C.6D.811.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.12.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11B.9C.7D.5二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=.14.(5分)(2x+)5的展开式中,x3的系数是.(用数字填写答案)15.(5分)设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.三、解答题:本大题共5小题,满分60分,解答须写出文字说明、证明过程或演算步骤.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.18.(12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(Ⅰ)证明平面ABEF⊥平面EFDC;(Ⅱ)求二面角E﹣BC﹣A的余弦值.19.(12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?20.(12分)设圆x2+y2+2x﹣15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.2016年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)【考点】1E:交集及其运算.【专题】11:计算题;4O:定义法;5J:集合.【分析】解不等式求出集合A,B,结合交集的定义,可得答案.【解答】解:∵集合A={x|x2﹣4x+3<0}=(1,3),B={x|2x﹣3>0}=(,+∞),∴A∩B=(,3),故选:D.【点评】本题考查的知识点是集合的交集及其运算,难度不大,属于基础题.2.(5分)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1B.C.D.2【考点】A8:复数的模.【专题】34:方程思想;4O:定义法;5N:数系的扩充和复数.【分析】根据复数相等求出x,y的值,结合复数的模长公式进行计算即可.【解答】解:∵(1+i)x=1+yi,∴x+xi=1+yi,即,解得,即|x+yi|=|1+i|=,故选:B.【点评】本题主要考查复数模长的计算,根据复数相等求出x,y的值是解决本题的关键.3.(5分)已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100B.99C.98D.97【考点】83:等差数列的性质.【专题】11:计算题;4O:定义法;54:等差数列与等比数列.【分析】根据已知可得a5=3,进而求出公差,可得答案.【解答】解:∵等差数列{a n}前9项的和为27,S9===9a5.∴9a5=27,a5=3,又∵a10=8,∴d=1,∴a100=a5+95d=98,故选:C.【点评】本题考查的知识点是数列的性质,熟练掌握等差数列的性质,是解答的关键.4.(5分)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D.【考点】CF:几何概型.【专题】5I:概率与统计.【分析】求出小明等车时间不超过10分钟的时间长度,代入几何概型概率计算公式,可得答案.【解答】解:设小明到达时间为y,当y在7:50至8:00,或8:20至8:30时,小明等车时间不超过10分钟,故P==,故选:B.【点评】本题考查的知识点是几何概型,难度不大,属于基础题.5.(5分)已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)【考点】KB:双曲线的标准方程.【专题】11:计算题;35:转化思想;4R:转化法;5D:圆锥曲线的定义、性质与方程.【分析】由已知可得c=2,利用4=(m2+n)+(3m2﹣n),解得m2=1,又(m2+n)(3m2﹣n)>0,从而可求n的取值范围.【解答】解:∵双曲线两焦点间的距离为4,∴c=2,当焦点在x轴上时,可得:4=(m2+n)+(3m2﹣n),解得:m2=1,∵方程﹣=1表示双曲线,∴(m2+n)(3m2﹣n)>0,可得:(n+1)(3﹣n)>0,解得:﹣1<n<3,即n的取值范围是:(﹣1,3).当焦点在y轴上时,可得:﹣4=(m2+n)+(3m2﹣n),解得:m2=﹣1,无解.故选:A.【点评】本题主要考查了双曲线方程的应用,考查了不等式的解法,属于基础题.6.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π【考点】L!:由三视图求面积、体积.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5F:空间位置关系与距离.【分析】判断三视图复原的几何体的形状,利用体积求出几何体的半径,然后求解几何体的表面积.【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选:A.【点评】本题考查三视图求解几何体的体积与表面积,考查计算能力以及空间想象能力.7.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】27:图表型;48:分析法;51:函数的性质及应用.【分析】根据已知中函数的解析式,分析函数的奇偶性,最大值及单调性,利用排除法,可得答案.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D.【点评】本题考查的知识点是函数的图象,对于超越函数的图象,一般采用排除法解答.8.(5分)若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c【考点】R3:不等式的基本性质.【专题】33:函数思想;35:转化思想;4R:转化法;51:函数的性质及应用;5T:不等式.【分析】根据已知中a>b>1,0<c<1,结合对数函数和幂函数的单调性,分析各个结论的真假,可得答案.【解答】解:∵a>b>1,0<c<1,∴函数f(x)=x c在(0,+∞)上为增函数,故a c>b c,故A错误;函数f(x)=x c﹣1在(0,+∞)上为减函数,故a c﹣1<b c﹣1,故ba c<ab c,即ab c >ba c;故B错误;log a c<0,且log b c<0,log a b<1,即=<1,即log a c>log b c.故D错误;0<﹣log a c<﹣log b c,故﹣blog a c<﹣alog b c,即blog a c>alog b c,即alog b c<blog a c,故C正确;故选:C.【点评】本题考查的知识点是不等式的比较大小,熟练掌握对数函数和幂函数的单调性,是解答的关键.9.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x【考点】EF:程序框图.【专题】11:计算题;28:操作型;5K:算法和程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量x,y的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:输入x=0,y=1,n=1,则x=0,y=1,不满足x2+y2≥36,故n=2,则x=,y=2,不满足x2+y2≥36,故n=3,则x=,y=6,满足x2+y2≥36,故y=4x,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.10.(5分)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2B.4C.6D.8【考点】K8:抛物线的性质;KJ:圆与圆锥曲线的综合.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5D:圆锥曲线的定义、性质与方程.【分析】画出图形,设出抛物线方程,利用勾股定理以及圆的半径列出方程求解即可.【解答】解:设抛物线为y2=2px,如图:|AB|=4,|AM|=2,|DE|=2,|DN|=,|ON|=,x A==,|OD|=|OA|,=+5,解得:p=4.C的焦点到准线的距离为:4.故选:B.【点评】本题考查抛物线的简单性质的应用,抛物线与圆的方程的应用,考查计算能力.转化思想的应用.11.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5G:空间角.【分析】画出图形,判断出m、n所成角,求解即可.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.【点评】本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.12.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11B.9C.7D.5【考点】H6:正弦函数的奇偶性和对称性.【专题】35:转化思想;4R:转化法;57:三角函数的图像与性质.【分析】根据已知可得ω为正奇数,且ω≤12,结合x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,求出满足条件的解析式,并结合f(x)在(,)上单调,可得ω的最大值.【解答】解:∵x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则﹣=≤,即T=≥,解得:ω≤12,当ω=11时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=﹣,此时f(x)在(,)不单调,不满足题意;当ω=9时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B.【点评】本题考查的知识点是正弦型函数的图象和性质,本题转化困难,难度较大.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=﹣2.【考点】9O:平面向量数量积的性质及其运算.【专题】11:计算题;29:规律型;35:转化思想;5A:平面向量及应用.【分析】利用已知条件,通过数量积判断两个向量垂直,然后列出方程求解即可.【解答】解:|+|2=||2+||2,可得•=0.向量=(m,1),=(1,2),可得m+2=0,解得m=﹣2.故答案为:﹣2.【点评】本题考查向量的数量积的应用,向量的垂直条件的应用,考查计算能力.14.(5分)(2x+)5的展开式中,x3的系数是10.(用数字填写答案)【考点】DA:二项式定理.【专题】11:计算题;34:方程思想;49:综合法;5P:二项式定理.【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为3,求出r,即可求出展开式中x3的系数.==25﹣【解答】解:(2x+)5的展开式中,通项公式为:T r+1r,令5﹣=3,解得r=4∴x3的系数2=10.故答案为:10.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.15.(5分)设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为64.【考点】87:等比数列的性质;8I:数列与函数的综合.【专题】11:计算题;29:规律型;35:转化思想;54:等差数列与等比数列.【分析】求出数列的等比与首项,化简a1a2…a n,然后求解最值.【解答】解:等比数列{a n}满足a1+a3=10,a2+a4=5,可得q(a1+a3)=5,解得q=.a1+q2a1=10,解得a1=8.则a1a2…a n=a1n•q1+2+3+…+(n﹣1)=8n•==,当n=3或4时,表达式取得最大值:=26=64.故答案为:64.【点评】本题考查数列的性质数列与函数相结合的应用,转化思想的应用,考查计算能力.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为216000元.【考点】7C:简单线性规划.【专题】11:计算题;29:规律型;31:数形结合;33:函数思想;35:转化思想.【分析】设A、B两种产品分别是x件和y件,根据题干的等量关系建立不等式组以及目标函数,利用线性规划作出可行域,通过目标函数的几何意义,求出其最大值即可;【解答】解:(1)设A、B两种产品分别是x件和y件,获利为z元.由题意,得,z=2100x+900y.不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y.经过A时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.故答案为:216000.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,不等式组解实际问题的运用,不定方程解实际问题的运用,解答时求出最优解是解题的关键.三、解答题:本大题共5小题,满分60分,解答须写出文字说明、证明过程或演算步骤.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.【考点】HU:解三角形.【专题】15:综合题;35:转化思想;49:综合法;58:解三角形.【分析】(Ⅰ)已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,根据sinC不为0求出cosC的值,即可确定出出C的度数;(2)利用余弦定理列出关系式,利用三角形面积公式列出关系式,求出a+b的值,即可求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sinC≠0已知等式利用正弦定理化简得:2cosC(sinAcosB+sinBcosA)=sinC,整理得:2cosCsin(A+B)=sinC,即2cosCsin(π﹣(A+B))=sinC2cosCsinC=sinC∴cosC=,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=absinC=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+.【点评】此题考查了正弦、余弦定理,三角形的面积公式,以及三角函数的恒等变形,熟练掌握定理及公式是解本题的关键.18.(12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(Ⅰ)证明平面ABEF⊥平面EFDC;(Ⅱ)求二面角E﹣BC﹣A的余弦值.【考点】MJ:二面角的平面角及求法.【专题】11:计算题;34:方程思想;49:综合法;5H:空间向量及应用;5Q:立体几何.【分析】(Ⅰ)证明AF⊥平面EFDC,利用平面与平面垂直的判定定理证明平面ABEF⊥平面EFDC;(Ⅱ)证明四边形EFDC为等腰梯形,以E为原点,建立如图所示的坐标系,求出平面BEC、平面ABC的法向量,代入向量夹角公式可得二面角E﹣BC﹣A的余弦值.【解答】(Ⅰ)证明:∵ABEF为正方形,∴AF⊥EF.∵∠AFD=90°,∴AF⊥DF,∵DF∩EF=F,∴AF⊥平面EFDC,∵AF⊂平面ABEF,∴平面ABEF⊥平面EFDC;(Ⅱ)解:由AF⊥DF,AF⊥EF,可得∠DFE为二面角D﹣AF﹣E的平面角;由ABEF为正方形,AF⊥平面EFDC,∵BE⊥EF,∴BE⊥平面EFDC即有CE⊥BE,可得∠CEF为二面角C﹣BE﹣F的平面角.可得∠DFE=∠CEF=60°.∵AB∥EF,AB⊄平面EFDC,EF⊂平面EFDC,∴AB∥平面EFDC,∵平面EFDC∩平面ABCD=CD,AB⊂平面ABCD,∴AB∥CD,∴CD∥EF,∴四边形EFDC为等腰梯形.以E为原点,建立如图所示的坐标系,设FD=a,则E(0,0,0),B(0,2a,0),C(,0,a),A(2a,2a,0),∴=(0,2a,0),=(,﹣2a,a),=(﹣2a,0,0)设平面BEC的法向量为=(x1,y1,z1),则,则,取=(,0,﹣1).设平面ABC的法向量为=(x2,y2,z2),则,则,取=(0,,4).设二面角E﹣BC﹣A的大小为θ,则cosθ===﹣,则二面角E﹣BC﹣A的余弦值为﹣.【点评】本题考查平面与平面垂直的证明,考查用空间向量求平面间的夹角,建立空间坐标系将二面角问题转化为向量夹角问题是解答的关键.19.(12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?【考点】CG:离散型随机变量及其分布列.【专题】11:计算题;35:转化思想;49:综合法;5I:概率与统计.【分析】(Ⅰ)由已知得X的可能取值为16,17,18,19,20,21,22,分别求出相应的概率,由此能求出X的分布列.(Ⅱ)由X的分布列求出P(X≤18)=,P(X≤19)=.由此能确定满足P (X≤n)≥0.5中n的最小值.(Ⅲ)法一:由X的分布列得P(X≤19)=.求出买19个所需费用期望EX1和买20个所需费用期望EX2,由此能求出买19个更合适.法二:解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,分别求出n=19时,费用的期望和当n=20时,费用的期望,从而得到买19个更合适.【解答】解:(Ⅰ)由已知得X的可能取值为16,17,18,19,20,21,22,P(X=16)=()2=,P(X=17)=,P(X=18)=()2+2()2=,P(X=19)==,P(X=20)===,P(X=21)==,P(X=22)=,∴X的分布列为:X16171819202122P(Ⅱ)由(Ⅰ)知:P(X≤18)=P(X=16)+P(X=17)+P(X=18)==.P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.∴P(X≤n)≥0.5中,n的最小值为19.(Ⅲ)解法一:由(Ⅰ)得P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.买19个所需费用期望:EX1=200×+(200×19+500)×+(200×19+500×2)×+(200×19+500×3)×=4040,买20个所需费用期望:EX2=+(200×20+500)×+(200×20+2×500)×=4080,∵EX1<EX2,∴买19个更合适.解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,当n=19时,费用的期望为:19×200+500×0.2+1000×0.08+1500×0.04=4040,当n=20时,费用的期望为:20×200+500×0.08+1000×0.04=4080,∴买19个更合适.【点评】本题考查离散型随机变量的分布列和数学期望的求法及应用,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.20.(12分)设圆x2+y2+2x﹣15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.【考点】J2:圆的一般方程;KL:直线与椭圆的综合.【专题】34:方程思想;48:分析法;5B:直线与圆;5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)求得圆A的圆心和半径,运用直线平行的性质和等腰三角形的性质,可得EB=ED,再由圆的定义和椭圆的定义,可得E的轨迹为以A,B为焦点的椭圆,求得a,b,c,即可得到所求轨迹方程;(Ⅱ)设直线l:x=my+1,代入椭圆方程,运用韦达定理和弦长公式,可得|MN|,由PQ⊥l,设PQ:y=﹣m(x﹣1),求得A到PQ的距离,再由圆的弦长公式可得|PQ|,再由四边形的面积公式,化简整理,运用不等式的性质,即可得到所求范围.【解答】解:(Ⅰ)证明:圆x2+y2+2x﹣15=0即为(x+1)2+y2=16,可得圆心A(﹣1,0),半径r=4,由BE∥AC,可得∠C=∠EBD,由AC=AD,可得∠D=∠C,即为∠D=∠EBD,即有EB=ED,则|EA|+|EB|=|EA|+|ED|=|AD|=4,故E的轨迹为以A,B为焦点的椭圆,且有2a=4,即a=2,c=1,b==,则点E的轨迹方程为+=1(y≠0);(Ⅱ)椭圆C1:+=1,设直线l:x=my+1,由PQ⊥l,设PQ:y=﹣m(x﹣1),由可得(3m2+4)y2+6my﹣9=0,设M(x1,y1),N(x2,y2),可得y1+y2=﹣,y1y2=﹣,则|MN|=•|y1﹣y2|=•=•=12•,A到PQ的距离为d==,|PQ|=2=2=,则四边形MPNQ面积为S=|PQ|•|MN|=••12•=24•=24,当m=0时,S取得最小值12,又>0,可得S<24•=8,即有四边形MPNQ面积的取值范围是[12,8).【点评】本题考查轨迹方程的求法,注意运用椭圆和圆的定义,考查直线和椭圆方程联立,运用韦达定理和弦长公式,以及直线和圆相交的弦长公式,考查不等式的性质,属于中档题.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.【考点】51:函数的零点;6D:利用导数研究函数的极值.【专题】32:分类讨论;35:转化思想;4C:分类法;4R:转化法;51:函数的性质及应用.【分析】(Ⅰ)由函数f(x)=(x﹣2)e x+a(x﹣1)2可得:f′(x)=(x﹣1)e x+2a (x﹣1)=(x﹣1)(e x+2a),对a进行分类讨论,综合讨论结果,可得答案.(Ⅱ)设x1,x2是f(x)的两个零点,则﹣a==,令g(x)=,则g(x1)=g(x2)=﹣a,分析g(x)的单调性,令m>0,则g(1+m)﹣g(1﹣m)=,设h(m)=,m>0,利用导数法可得h(m)>h(0)=0恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,可得结论.【解答】解:(Ⅰ)∵函数f(x)=(x﹣2)e x+a(x﹣1)2,∴f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①若a=0,那么f(x)=0⇔(x﹣2)e x=0⇔x=2,函数f(x)只有唯一的零点2,不合题意;②若a>0,那么e x+2a>0恒成立,当x<1时,f′(x)<0,此时函数为减函数;当x>1时,f′(x)>0,此时函数为增函数;此时当x=1时,函数f(x)取极小值﹣e,由f(2)=a>0,可得:函数f(x)在x>1存在一个零点;当x<1时,e x<e,x﹣2<﹣1<0,∴f(x)=(x﹣2)e x+a(x﹣1)2>(x﹣2)e+a(x﹣1)2=a(x﹣1)2+e(x﹣1)﹣e,令a(x﹣1)2+e(x﹣1)﹣e=0的两根为t1,t2,且t1<t2,则当x<t1,或x>t2时,f(x)>a(x﹣1)2+e(x﹣1)﹣e>0,故函数f(x)在x<1存在一个零点;即函数f(x)在R是存在两个零点,满足题意;③若﹣<a<0,则ln(﹣2a)<lne=1,当x<ln(﹣2a)时,x﹣1<ln(﹣2a)﹣1<lne﹣1=0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当ln(﹣2a)<x<1时,x﹣1<0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0恒成立,故f(x)单调递减,当x>1时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故当x=ln(﹣2a)时,函数取极大值,由f(ln(﹣2a))=[ln(﹣2a)﹣2](﹣2a)+a[ln(﹣2a)﹣1]2=a{[ln(﹣2a)﹣2]2+1}<0得:函数f(x)在R上至多存在一个零点,不合题意;④若a=﹣,则ln(﹣2a)=1,当x<1=ln(﹣2a)时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当x>1时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故函数f(x)在R上单调递增,函数f(x)在R上至多存在一个零点,不合题意;⑤若a<﹣,则ln(﹣2a)>lne=1,当x<1时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当1<x<ln(﹣2a)时,x﹣1>0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0恒成立,故f(x)单调递减,当x>ln(﹣2a)时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故当x=1时,函数取极大值,由f(1)=﹣e<0得:函数f(x)在R上至多存在一个零点,不合题意;综上所述,a的取值范围为(0,+∞)证明:(Ⅱ)∵x1,x2是f(x)的两个零点,∴f(x1)=f(x2)=0,且x1≠1,且x2≠1,∴﹣a==,令g(x)=,则g(x1)=g(x2)=﹣a,∵g′(x)=,∴当x<1时,g′(x)<0,g(x)单调递减;当x>1时,g′(x)>0,g(x)单调递增;设m>0,则g(1+m)﹣g(1﹣m)=﹣=,设h(m)=,m>0,则h′(m)=>0恒成立,即h(m)在(0,+∞)上为增函数,h(m)>h(0)=0恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,则g(1+1﹣x1)>g(1﹣1+x1)⇔g(2﹣x1)>g(x1)=g(x2)⇔2﹣x1>x2,即x1+x2<2.【点评】本题考查的知识点是利用导数研究函数的极值,函数的零点,分类讨论思想,难度较大.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.【考点】N9:圆的切线的判定定理的证明.【专题】14:证明题;35:转化思想;49:综合法;5M:推理和证明.【分析】(Ⅰ)设K为AB中点,连结OK.根据等腰三角形AOB的性质知OK⊥AB,∠A=30°,OK=OAsin30°=OA,则AB是圆O的切线.(Ⅱ)设圆心为T,证明OT为AB的中垂线,OT为CD的中垂线,即可证明结论.【解答】证明:(Ⅰ)设K为AB中点,连结OK,∵OA=OB,∠AOB=120°,∴OK⊥AB,∠A=30°,OK=OAsin30°=OA,∴直线AB与⊙O相切;(Ⅱ)因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设T是A,B,C,D四点所在圆的圆心.∵OA=OB,TA=TB,∴OT为AB的中垂线,同理,OC=OD,TC=TD,∴OT为CD的中垂线,∴AB∥CD.【点评】本题考查了切线的判定,考查四点共圆,考查学生分析解决问题的能力.解答此题时,充分利用了等腰三角形“三合一”的性质.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.【考点】Q4:简单曲线的极坐标方程;QE:参数方程的概念.【专题】11:计算题;35:转化思想;4A:数学模型法;5S:坐标系和参数方程.【分析】(Ⅰ)把曲线C1的参数方程变形,然后两边平方作和即可得到普通方程,可知曲线C1是圆,化为一般式,结合x2+y2=ρ2,y=ρsinθ化为极坐标方程;(Ⅱ)化曲线C2、C3的极坐标方程为直角坐标方程,由条件可知y=x为圆C1与C2的公共弦所在直线方程,把C1与C2的方程作差,结合公共弦所在直线方程为y=2x可得1﹣a2=0,则a值可求.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1为以(0,1)为圆心,以a为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0满足tanα0=2,得y=2x,∵曲线C1与C2的公共点都在C3上,∴y=2x为圆C1与C2的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3 ,∴1﹣a2=0,∴a=1(a>0).【点评】本题考查参数方程即简单曲线的极坐标方程,考查了极坐标与直角坐标的互化,训练了两圆公共弦所在直线方程的求法,是基础题.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.【考点】&2:带绝对值的函数;3A:函数的图象与图象的变换.【专题】35:转化思想;48:分析法;59:不等式的解法及应用.【分析】(Ⅰ)运用分段函数的形式写出f(x)的解析式,由分段函数的画法,即可得到所求图象;(Ⅱ)分别讨论当x≤﹣1时,当﹣1<x<时,当x≥时,解绝对值不等式,取交集,最后求并集即可得到所求解集.【解答】解:(Ⅰ)f(x)=,由分段函数的图象画法,可得f(x)的图象,如右:(Ⅱ)由|f(x)|>1,可得当x≤﹣1时,|x﹣4|>1,解得x>5或x<3,即有x≤﹣1;当﹣1<x<时,|3x﹣2|>1,解得x>1或x<,即有﹣1<x<或1<x<;当x≥时,|4﹣x|>1,解得x>5或x<3,即有x>5或≤x<3.综上可得,x<或1<x<3或x>5.则|f(x)|>1的解集为(﹣∞,)∪(1,3)∪(5,+∞).【点评】本题考查绝对值函数的图象和不等式的解法,注意运用分段函数的图象的画法和分类讨论思想方法,考查运算能力,属于基础题.。
2016理科数学高考真题分类第二单元 函数与导数

第二单元 函数与导数B1 函数及其表示5.B1[2016·江苏卷] 函数y =3-2x -x 2的定义域是________.5.[-3,1] [解析] 令3-2x -x 2≥0可得x 2+2x -3≤0,解得-3≤x ≤1,故所求函数的定义域为[-3,1].11.B1、B4[2016·江苏卷] 设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0,25-x ,0≤x <1,其中a ∈R .若f (-52)=f (92),则f (5a )的值是________.11.-25 [解析] 因为f (x )的周期为2,所以f (-52)=f (-12)=-12+a ,f (92)=f(12)=110,即-12+a =110,所以a =35,故f (5a )=f (3)=f (-1)=-25.B2 反函数5.B2[2016·上海卷] 已知点(3,9)在函数f (x )=1+a x 的图像上,则f (x )的反函数f -1(x )=________.5.log 2(x -1),x ∈(1,+∞) [解析] 将点(3,9)的坐标代入函数f (x )的解析式得a =2,所以f (x )=1+2x ,所以f -1(x )=log 2(x -1),x ∈(1,+∞).B3 函数的单调性与最值14.B3,B12[2016·北京卷] 设函数f (x )=⎩⎪⎨⎪⎧x 3-3x ,x ≤a ,-2x ,x >a .①若a =0,则f (x )的最大值为________;②若f (x )无最大值,则实数a 的取值范围是________.14.①2 ②(-∞,-1) [解析] 由(x 3-3x )′=3x 2-3=0,得x =±1,作出函数y =x 3-3x 和y =-2x 的图像,如图所示.①当a =0时,由图像可得f (x )的最大值为f (-1)=2.②由图像可知当a ≥-1时,函数f (x )有最大值;当a <-1时,y =-2x 在x >a 时无最大值,且-2a >a 3-3a ,所以a <-1.13.B3、B4[2016·天津卷] 已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是________.13.(12,32) [解析] 由f (x )是偶函数,且f (x )在区间(-∞,0)上单调递增,得f (x )在区间(0,+∞)上单调递减.又f (2|a -1|)>f (-2),f (-2)=f (2),∴2|a -1|<2,即|a -1|<12,∴12<a <32.18.B3,B4[2016·上海卷] 设f (x ),g (x ),h (x )是定义域为R 的三个函数,对于命题:①若f (x )+g (x ),f (x )+h (x ),g (x )+h (x )均是增函数,则f (x ),g (x ),h (x )中至少有一个增函数;②若f (x )+g (x ),f (x )+h (x ),g (x )+h (x )均是以T 为周期的函数,则f (x ),g (x ),h (x )均是以T 为周期的函数.下列判断正确的是( )A .①和②均为真命题B .①和②均为假命题C .①为真命题,②为假命题D .①为假命题,②为真命题18.D [解析] f (x )=[f (x )+g (x )]+[f (x )+h (x )]-[g (x )+h (x )]2.对于①,因为增函数减增函数不一定为增函数,所以f (x )不一定为增函数,同理g (x ),h (x )不一定为增函数,因此①为假命题.对于②,易得f (x )是以T 为周期的函数,同理可得g (x ),h (x )也是以T 为周期的函数,所以②为真命题.B4 函数的奇偶性与周期性 11.B1、B4[2016·江苏卷] 设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0,25-x ,0≤x <1,其中a ∈R .若f (-52)=f (92),则f (5a )的值是________.11.-25 [解析] 因为f (x )的周期为2,所以f (-52)=f (-12)=-12+a ,f (92)=f(12)=110,即-12+a =110,所以a =35,故f (5a )=f (3)=f (-1)=-25.15.B4、B12[2016·全国卷Ⅲ] 已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.15.y =-2x -1 [解析] 设x >0,则-x <0.∵x <0时,f (x )=ln(-x )+3x ,∴f (-x )=ln x-3x ,又∵f (-x )=f (x ),∴当x >0时,f (x )=ln x -3x ,∴f ′(x )=1x-3,即f ′(1)=-2,∴曲线y =f (x )在点(1,-3)处的切线方程为y +3=-2(x -1),整理得y =-2x -1.14.B4[2016·四川卷] 已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f -52+f (1)=________.14.-2 [解析] 因为f (x )是周期为2的函数,所以f (x )=f (x +2). 因为f (x )是奇函数,所以f (x )=-f (-x ), 所以f (1)=f (-1),f (1)=-f (-1),即f (1)=0. 又f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫-12=-f ⎝⎛⎭⎫12,f 12=412=2, 所以f ⎝⎛⎭⎫-52=-2,从而f ⎝⎛⎭⎫-52+f (1)=-2. 9.B4[2016·山东卷] 已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,fx +12=fx -12.则f (6)=( )A .-2B .-1C .0D .29.D [解析] ∵当x >12时,f (x +12)=f (x -12),∴f (x )的周期为1,则f (6)=f (1).又∵当-1≤x ≤1时,f (-x )=-f (x ),∴f (1)=-f (-1).又∵当x <0时,f (x )=x 3-1,∴f (-1)=(-1)3-1=-2,∴f (6)=-f (-1)=2.13.B3、B4[2016·天津卷] 已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是________.13.(12,32) [解析] 由f (x )是偶函数,且f (x )在区间(-∞,0)上单调递增,得f (x )在区间(0,+∞)上单调递减.又f (2|a -1|)>f (-2),f (-2)=f (2),∴2|a -1|<2,即|a -1|<12,∴12<a <32.18.B3,B4[2016·上海卷] 设f (x ),g (x ),h (x )是定义域为R 的三个函数,对于命题:①若f (x )+g (x ),f (x )+h (x ),g (x )+h (x )均是增函数,则f (x ),g (x ),h (x )中至少有一个增函数;②若f (x )+g (x ),f (x )+h (x ),g (x )+h (x )均是以T 为周期的函数,则f (x ),g (x ),h (x )均是以T 为周期的函数.下列判断正确的是( )A .①和②均为真命题B .①和②均为假命题C .①为真命题,②为假命题D .①为假命题,②为真命题18.D [解析] f (x )=[f (x )+g (x )]+[f (x )+h (x )]-[g (x )+h (x )]2.对于①,因为增函数减增函数不一定为增函数,所以f (x )不一定为增函数,同理g (x ),h (x )不一定为增函数,因此①为假命题.对于②,易得f (x )是以T 为周期的函数,同理可得g (x ),h (x )也是以T 为周期的函数,所以②为真命题.B5 二次函数B6 指数与指数函数5.E1,C3,B6,B7[2016·北京卷] 已知x ,y ∈R ,且x >y >0,则( )A.1x -1y>0 B .sin x -sin y >0 C.12x -12y <0 D .ln x +ln y >05.C [解析] 选项A 中,因为x >y >0,所以1x <1y ,即1x -1y <0,故结论不成立;选项B中,当x =5π6,y =π3时,sin x -sin y <0,故结论不成立;选项C 中,函数y =12x 是定义在R 上的减函数,因为x >y >0,所以12x <12y ,所以12x -12y <0;选项D 中,当x =e -1,y =e -2时,结论不成立.19.B6、B9、B12[2016·江苏卷] 已知函数f (x )=a x +b x (a >0,b >0,a ≠1,b ≠1).(1)设a =2,b =12.①求方程f (x )=2的根;②若对于任意x ∈R ,不等式f (2x )≥mf (x )-6恒成立,求实数m 的最大值; (2)若0<a <1,b >1,函数g (x )=f (x )-2有且只有1个零点,求ab 的值.19.解:(1)因为a =2,b =12,所以f (x )=2x +2-x .①方程f (x )=2,即2x+2-x =2,亦即(2x )2-2×2x +1=0, 所以(2x -1)2=0,于是2x =1,解得x =0.②由条件知f (2x )=22x +2-2x =(2x +2-x )2-2=[f (x )]2-2. 因为f (2x )≥mf (x )-6对于x ∈R 恒成立,且f (x )>0,所以m ≤[f (x )]2+4f (x )对于x ∈R 恒成立.而[f (x )]2+4f (x )=f (x )+4f (x )≥2f (x )·4f (x )=4,且[f (0)]2+4f (0)=4,所以m ≤4,故实数m 的最大值为4.(2)因为函数g (x )=f (x )-2只有1个零点,而g (0)=f (0)-2=a 0+b 0-2=0, 所以0是函数g (x )的唯一零点.因为g ′(x )=a x ln a +b x ln b ,又由0<a <1,b >1知ln a <0,ln b >0,所以g ′(x )=0有唯一解x 0=log b a -ln aln b.令h (x )=g ′(x ),则h ′(x )=(a x ln a +b x ln b )′=a x (ln a )2+b x (ln b )2,从而对任意x ∈R ,h ′(x )>0,所以g ′(x )=h (x )是(-∞,+∞)上的单调增函数. 于是当x ∈(-∞,x 0)时,g ′(x )<g ′(x 0)=0;当x ∈(x 0,+∞)时,g ′(x )>g ′(x 0)=0. 因而函数g (x )在(-∞,x 0)上是单调减函数,在(x 0,+∞)上是单调增函数. 下证x 0=0.若x 0<0,则x 0<x 02<0,于是g x 02<g (0)=0,又g (log a 2)=a log a 2+b log a 2-2>a log a 2-2=0,且函数g (x )在以x 02和log a 2为端点的闭区间上的图像不间断,所以在区间x 02,log a 2上存在g (x )的零点,记为x 1.因为0<a <1,所以log a 2<0.又x 02<0,所以x 1<0,与“0是函数g (x )的唯一零点”矛盾. 若x 0>0,同理可得,在x 02和log b 2之间存在g (x )的非0的零点,矛盾.因此,x 0=0.于是-ln a ln b=1,故ln a +ln b =0,所以ab =1.6.B6[2016·全国卷Ⅲ] 已知a =243,b =425,c =2513,则( )A .b <a <cB .a <b <cC .b <c <aD .c <a <b6.A [解析] b =425=245<243=a ,c =523>423=243=a ,故b <a <c .12.B6、B7[2016·浙江卷] 已知a >b >1.若log a b +log b a =52,a b =b a ,则a =________,b=________.12.4 2 [解析] 设t =log a b ,则log b a =1t .∵a >b >1,∴0<t <1.由t +1t =52,化简得t 2-52t +1=0,解得t =12,故b =a ,所以a b =a a ,b a =(a )a =a 12a ,则a =12a ,即a 2-4a =0,得a =4,b =2.B7 对数与对数函数5.E1,C3,B6,B7[2016·北京卷] 已知x ,y ∈R ,且x >y >0,则( )A.1x -1y>0 B .sin x -sin y >0 C.12x -12y <0D .ln x +ln y >05.C [解析] 选项A 中,因为x >y >0,所以1x <1y ,即1x -1y <0,故结论不成立;选项B中,当x =5π6,y =π3时,sin x -sin y <0,故结论不成立;选项C 中,函数y =12x 是定义在R 上的减函数,因为x >y >0,所以12x <12y ,所以12x -12y <0;选项D 中,当x =e -1,y =e -2时,结论不成立.8.B7,B8,E1[2016·全国卷Ⅰ] 若a >b >1,0<c <1,则( ) A .a c <b c B .ab c <ba cC .a log b c <b log a cD .log a c <log b c8.C [解析] 根据幂函数性质,选项A 中的不等式不成立;选项B 中的不等式可化为b c -1<a c -1,此时-1<c -1<0,根据幂函数性质,该不等式不成立;选项C 中的不等式可以化为a b >log a c log b c =log c b log c a =log a b ,此时a b >1,0<log a b <1,故此不等式成立;选项D 中的不等式可以化为lg c lg a <lg c lg b ,进而1lg a >1lg b ,进而lg a <lg b ,即a <b ,故在已知条件下选项D 中的不等式不成立. 21.B12、B14、B7[2016·全国卷Ⅲ] 设函数f (x )=αcos 2x +(α-1)(cos x +1),其中α>0,记|f (x )|的最大值为A .(1)求f ′(x ); (2)求A ;(3)证明:|f ′(x )|≤2A .21.解:(1)f ′(x )=-2αsin 2x -(α-1)sin x .(2)当α≥1时,|f (x )|=|αcos 2x +(α-1)(cos x +1)|≤α+2(α-1)=3α-2=f (0), 因此A =3α-2.当0<α<1时,将f (x )变形为f (x )=2αcos 2x +(α-1)cos x -1.令g (t )=2αt 2+(α-1)t -1,则A 是|g (t )|在[-1,1]上的最大值,g (-1)=α,g (1)=3α-2,且当t =1-α4α时,g (t )取得极小值,极小值为g (1-α4α)=-(α-1)28α-1=-α2+6α+18α.令-1<1-α4α<1,解得α<-13(舍去)或α>15.(i)当0<α≤15时,g (t )在(-1,1)内无极值点,|g (-1)|=α,|g (1)|=2-3α,|g (-1)|<|g (1)|,所以A =2-3α.(ii)当15<α<1时,由g (-1)-g (1)=2(1-α)>0,知g (-1)>g (1)> g (1-α4α).又|g (1-α4α)|-|g (-1)|=(1-α)(1+7α)8α>0,所以A =|g (1-α4α)|=α2+6α+18α.综上,A =⎩⎨⎧2-3α,0<α≤15,α2+6α+18α,15<α<1,3α-2,α≥1.(3)证明:由(1)得|f ′(x )|=|-2αsin 2x -(α-1)sin x |≤2α+|α-1|.当0<α≤15时,|f ′(x )|≤1+α≤2-4α<2(2-3α)=2A .当15<α<1时,A =α8+18α+34≥1,所以|f ′(x )|≤1+α<2A . 当α≥1时,|f ′(x )|≤3α-1≤6α-4=2A ,所以|f ′(x )|≤2A .9.B7,E6[2016·四川卷] 设直线l 1,l 2分别是函数f (x )=⎩⎪⎨⎪⎧-ln x ,0<x <1,ln x ,x >1图像上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△P AB 的面积的取值范围是( )A .(0,1)B .(0,2)C .(0,+∞)D .(1,+∞)9.A [解析] 不妨设P 1(x 1,y 1),P 2(x 2,y 2),其中0<x 1<1<x 2.由l 1,l 2分别是点P 1,P 2处的切线,且f ′(x )=⎩⎨⎧-1x ,0<x <1,1x ,x >1,得l 1的斜率k 1=-1x 1,l 2的斜率k 2=1x 2.又l 1与l 2垂直,且0<x 1<x 2,所以k 1·k 2=-1x 1·1x 2=-1⇒x 1·x 2=1,l 1:y =-1x 1(x -x 1)-ln x 1①,l 2:y =1x 2(x -x 2)+ln x 2②,则点A 的坐标为(0,1-ln x 1),点B 的坐标为(0,-1+ln x 2), 由此可得|AB |=2-ln x 1-ln x 2=2-ln(x 1·x 2)=2.联立①②两式可解得交点P 的横坐标x P =2-ln (x 1x 2)x 1+x 2=2x 1+x 2,所以S △P AB =12|AB |·|x P |=12×2×2x 1+x 2=2x 1+1x 1≤1,当且仅当x 1=1x 1,即x 1=1时,等号成立.而0<x 1<1,所以0<S △P AB <1,故选A.12.B6、B7[2016·浙江卷] 已知a >b >1.若log a b +log b a =52,a b =b a ,则a =________,b=________.12.4 2 [解析] 设t =log a b ,则log b a =1t .∵a >b >1,∴0<t <1.由t +1t =52,化简得t 2-52t +1=0,解得t =12,故b =a ,所以a b =a a ,b a =(a )a =a 12a ,则a =12a ,即a 2-4a =0,得a =4,b =2.B8 幂函数与函数的图像 7.B8,B12[2016·全国卷Ⅰ] 函数y =2x 2-e |x |在[-2,2]的图像大致为( )图1-27.D [解析] 易知该函数为偶函数,只要考虑当x ≥0时的情况即可,此时y =2x 2-e x .令f (x )=2x 2-e x ,则f ′(x )=4x -e x ,则f ′(0)<0,f ′(1)>0,则f ′(x )在(0,1)上存在零点,即f (x )在(0,1)上存在极值,据此可知,只能为选项B ,D 中的图像.当x =2时,y =8-e 2<1,故选D.8.B7,B8,E1[2016·全国卷Ⅰ] 若a >b >1,0<c <1,则( ) A .a c <b c B .ab c <ba cC .a log b c <b log a cD .log a c <log b c8.C [解析] 根据幂函数性质,选项A 中的不等式不成立;选项B 中的不等式可化为b c -1<a c -1,此时-1<c -1<0,根据幂函数性质,该不等式不成立;选项C 中的不等式可以化为a b >log a c log b c =log c b log c a =log a b ,此时a b >1,0<log a b <1,故此不等式成立;选项D 中的不等式可以化为lg c lg a <lg c lg b ,进而1lg a >1lg b ,进而lg a <lg b ,即a <b ,故在已知条件下选项D 中的不等式不成立.12.B8[2016·全国卷Ⅱ] 已知函数f (x )(x ∈R )满足f (-x )=2-f (x ),若函数y =x +1x与y=f (x )图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则(x i +y i )=( )A .0B .mC .2mD .4m12.B [解析] 由f(-x)=2-f(x)得f(x)的图像关于点(0,1)对称,∵y =x +1x =1+1x的图像也关于点(0,1)对称,∴两函数图像的交点必关于点(0,1)对称,且对于每一组对称点(x i ,y i )和(x′i ,y′i )均满足x i +x′i =0,y i +y′i =2,∴=0+2·m2=m.B9 函数与方程19.B6、B9、B12[2016·江苏卷] 已知函数f (x )=a x +b x (a >0,b >0,a ≠1,b ≠1).(1)设a =2,b =12.①求方程f (x )=2的根;②若对于任意x ∈R ,不等式f (2x )≥mf (x )-6恒成立,求实数m 的最大值; (2)若0<a <1,b >1,函数g (x )=f (x )-2有且只有1个零点,求ab 的值.19.解:(1)因为a =2,b =12,所以f (x )=2x +2-x .①方程f (x )=2,即2x +2-x =2,亦即(2x )2-2×2x +1=0, 所以(2x -1)2=0,于是2x =1,解得x =0.②由条件知f (2x )=22x +2-2x =(2x +2-x )2-2=[f (x )]2-2. 因为f (2x )≥mf (x )-6对于x ∈R 恒成立,且f (x )>0,所以m ≤[f (x )]2+4f (x )对于x ∈R 恒成立.而[f (x )]2+4f (x )=f (x )+4f (x )≥2f (x )·4f (x )=4,且[f (0)]2+4f (0)=4,所以m ≤4,故实数m 的最大值为4.(2)因为函数g (x )=f (x )-2只有1个零点,而g (0)=f (0)-2=a 0+b 0-2=0, 所以0是函数g (x )的唯一零点.因为g ′(x )=a x ln a +b x ln b ,又由0<a <1,b >1知ln a <0,ln b >0,所以g ′(x )=0有唯一解x 0=log b a -ln aln b.令h (x )=g ′(x ),则h ′(x )=(a x ln a +b x ln b )′=a x (ln a )2+b x (ln b )2,从而对任意x ∈R ,h ′(x )>0,所以g ′(x )=h (x )是(-∞,+∞)上的单调增函数. 于是当x ∈(-∞,x 0)时,g ′(x )<g ′(x 0)=0;当x ∈(x 0,+∞)时,g ′(x )>g ′(x 0)=0. 因而函数g (x )在(-∞,x 0)上是单调减函数,在(x 0,+∞)上是单调增函数. 下证x 0=0.若x 0<0,则x 0<x 02<0,于是g x 02<g (0)=0,又g (log a 2)=a log a 2+b log a 2-2>a log a 2-2=0,且函数g (x )在以x 02和log a 2为端点的闭区间上的图像不间断,所以在区间x 02,log a 2上存在g (x )的零点,记为x 1.因为0<a <1,所以log a 2<0.又x 02<0,所以x 1<0,与“0是函数g (x )的唯一零点”矛盾. 若x 0>0,同理可得,在x 02和log b 2之间存在g (x )的非0的零点,矛盾.因此,x 0=0.于是-ln a ln b=1,故ln a +ln b =0,所以ab =1.15.B9[2016·山东卷] 已知函数f (x )=⎩⎪⎨⎪⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________.15.(3,+∞) [解析] 画出函数f (x )的图像如图所示,根据已知得m >4m -m 2,又m >0,解得m >3,故实数 m 的取值范围是(3,+∞).B10 函数模型及其应用 B11 导数及其运算21.B11,B12,E8[2016·四川卷] 设函数f (x )=ax 2-a -ln x ,其中a ∈R . (1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使得f (x )>1x -e 1-x 在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数).21.解:(1)f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减.当a >0时,由f ′(x )=0,有x =12a ,此时,当x ∈(0,12a )时,f ′(x )<0,f (x )单调递减;当x ∈(12a,+∞)时,f ′(x )>0,f (x )单调递增.(2)令g (x )=1x -1ex -1,s (x )=e x -1-x ,则s ′(x )=e x -1-1.而当x >1时,s ′(x )>0,所以s (x )在区间(1,+∞)内单调递增. 又s (1)=0,所以当x >1时,s (x )>0, 从而当x >1时,g (x )>0.当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0,故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0.当0<a <12时,12a>1.由(1)有f (12a )<f (1)=0,而g (12a)>0, 所以此时f (x )>g (x )在区间(1,+∞)内不恒成立.当a ≥12时,令h (x )=f (x )-g (x )(x ≥1).当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x >x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x 2>0.因此,h (x )在区间(1,+∞)内单调递增.又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0,即f (x )>g (x )恒成立. 综上,a ∈[12,+∞).B12 导数的应用14.B3,B12[2016·北京卷] 设函数f (x )=⎩⎪⎨⎪⎧x 3-3x ,x ≤a ,-2x ,x >a .①若a =0,则f (x )的最大值为________;②若f (x )无最大值,则实数a 的取值范围是________.14.①2 ②(-∞,-1) [解析] 由(x 3-3x )′=3x 2-3=0,得x =±1,作出函数y =x 3-3x 和y =-2x 的图像,如图所示.①当a =0时,由图像可得f (x )的最大值为f (-1)=2.②由图像可知当a ≥-1时,函数f (x )有最大值;当a <-1时,y =-2x 在x >a 时无最大值,且-2a >a 3-3a ,所以a <-1.17.G1、G7、B12[2016·江苏卷] 形状是正四棱锥P - A 1B 1C 1D 1,下部的形状是正四棱柱ABCD - A 1B 1C 1D 1(如图1-5所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍.(1)若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6 m17.解:(1)由PO 1=2知O 1O =4PO 1=8. 因为A 1B 1=AB =6,所以正四棱锥P - A 1B 1C 1D 1的体积V 锥=13·A 1B 21·PO 1=13×62×2=24(m 3), 正四棱柱ABCD - A 1B 1C 1D 1的体积V 柱=AB 2·O 1O =62×8=288(m 3).所以仓库的容积V =V 锥+V 柱=24+288=312(m 3).(2)设A 1B 1=a (m),PO 1=h (m),则0<h <6,O 1O =4h .连接O 1B 1.因为在Rt △PO 1B 1中,O 1B 21+PO 21=PB 21,所以2a 22+h 2=36,即a 2=2(36-h 2).于是仓库的容积V =V 柱+V 锥=a 2·4h +13a 2·h =133a 2h =263(36h -h 3),0<h <6,从而V ′=263(36-3h 2)=26(12-h 2).令V ′=0,得h =23或h =-23(舍). 当0<h <23时,V ′>0,V 是单调增函数; 当23<h <6时,V ′<0,V 是单调减函数. 故h =23时,V 取得极大值,也是最大值.因此,当PO 1=2 3 m19.B6、B9、B12[2016·江苏卷] x (a >0,b >0,a ≠1,b ≠1).(1)设a =2,b =12.①求方程f (x )=2的根;②若对于任意x ∈R ,不等式f (2x )≥mf (x )-6恒成立,求实数m 的最大值; (2)若0<a <1,b >1,函数g (x )=f (x )-2有且只有1个零点,求ab 的值.19.解:(1)因为a =2,b =12,所以f (x )=2x +2-x .①方程f (x )=2,即2x+2-x =2,亦即(2x )2-2×2x +1=0, 所以(2x -1)2=0,于是2x =1,解得x =0.②由条件知f (2x )=22x +2-2x =(2x +2-x )2-2=[f (x )]2-2. 因为f (2x )≥mf (x )-6对于x ∈R 恒成立,且f (x )>0,所以m ≤[f (x )]2+4f (x )对于x ∈R 恒成立.而[f (x )]2+4f (x )=f (x )+4f (x )≥2f (x )·4f (x )=4,且[f (0)]2+4f (0)=4,所以m ≤4,故实数m 的最大值为4.(2)因为函数g (x )=f (x )-2只有1个零点,而g (0)=f (0)-2=a 0+b 0-2=0, 所以0是函数g (x )的唯一零点.因为g ′(x )=a x ln a +b x ln b ,又由0<a <1,b >1知ln a <0,ln b >0,所以g ′(x )=0有唯一解x 0=log b a -ln aln b.令h (x )=g ′(x ),则h ′(x )=(a x ln a +b x ln b )′=a x (ln a )2+b x (ln b )2,从而对任意x ∈R ,h ′(x )>0,所以g ′(x )=h (x )是(-∞,+∞)上的单调增函数. 于是当x ∈(-∞,x 0)时,g ′(x )<g ′(x 0)=0;当x ∈(x 0,+∞)时,g ′(x )>g ′(x 0)=0. 因而函数g (x )在(-∞,x 0)上是单调减函数,在(x 0,+∞)上是单调增函数. 下证x 0=0.若x 0<0,则x 0<x 02<0,于是g x 02<g (0)=0,又g (log a 2)=a log a 2+b log a 2-2>a log a 2-2=0,且函数g (x )在以x 02和log a 2为端点的闭区间上的图像不间断,所以在区间x 02,log a 2上存在g (x )的零点,记为x 1.因为0<a <1,所以log a 2<0.又x 02<0,所以x 1<0,与“0是函数g (x )的唯一零点”矛盾. 若x 0>0,同理可得,在x 02和log b 2之间存在g (x )的非0的零点,矛盾.因此,x 0=0.于是-ln a ln b=1,故ln a +ln b =0,所以ab =1.7.B8,B12[2016·全国卷Ⅰ] 函数y =2x 2-e |x |在[-2,2]的图像大致为( )图1-27.D [解析] 易知该函数为偶函数,只要考虑当x ≥0时的情况即可,此时y =2x 2-e x .令f (x )=2x 2-e x ,则f ′(x )=4x -e x ,则f ′(0)<0,f ′(1)>0,则f ′(x )在(0,1)上存在零点,即f (x )在(0,1)上存在极值,据此可知,只能为选项B ,D 中的图像.当x =2时,y =8-e 2<1,故选D.21.B12[2016·全国卷Ⅰ] 已知函数f (x )=(x -2)e x +a (x -1)2有两个零点. (1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2.21.解:(1)f ′(x )=(x -1)e x +2a (x -1)=(x -1)(e x +2a ). (i)设a =0,则f (x )=(x -2)e x ,f (x )只有一个零点.(ii)设a >0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0.所以f (x )在(-∞,1)单调递减,在(1,+∞)单调递增.又f (1)=-e ,f (2)=a ,取b 满足b <0且b <ln a 2,则f (b )>a 2(b -2)+a (b -1)2=a (b 2-32b )>0,故f (x )存在两个零点.(iii)设a <0,由f ′(x )=0得x =1或x =ln(-2a ).若a ≥-e2,则ln(-2a )≤1,故当x ∈(1,+∞)时,f ′(x )>0,因此f (x )在(1,+∞)单调递增.又当x ≤1时,f (x )<0,所以f (x )不存在两个零点.若a <-e2,则ln(-2a )>1.故当x ∈(1,ln(-2a ))时,f ′(x )<0;当x ∈(ln(-2a ),+∞) 时,f ′(x )>0.因此f (x )在(1,ln(-2a ))单调递减,在(ln(-2a ),+∞)单调递增.又当x ≤1时,f (x )<0,所以f (x )不存在两个零点.综上,a 的取值范围为(0,+∞).(2)证明:不妨设x 1<x 2.由(1)知,x 1∈(-∞,1),x 2∈(1,+∞),2-x 2∈(-∞,1),f (x )在(-∞,1)单调递减,所以x 1+x 2<2等价于f (x 1)>f (2-x 2),即f (2-x 2)<0.由于f (2-x 2)=-x 2e2-x 2+a (x 2-1)2,而f (x 2)=(x 2-2)e x 2+a (x 2-1)2=0, 所以f (2-x 2)=-x 2e2-x 2-(x 2-2)e x 2.设g (x )=-x e 2-x -(x -2)e x ,则g ′(x )=(x -1)(e 2-x -e x ).所以当x >1时,g ′(x )<0,而g (1)=0,故当x >1时,g (x )<0, 从而g (x 2)=f (2-x 2)<0,故x 1+x 2<2. 15.B4、B12[2016·全国卷Ⅲ] 已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.15.y =-2x -1 [解析] 设x >0,则-x <0.∵x <0时,f (x )=ln(-x )+3x ,∴f (-x )=ln x-3x ,又∵f (-x )=f (x ),∴当x >0时,f (x )=ln x -3x ,∴f ′(x )=1x-3,即f ′(1)=-2,∴曲线y =f (x )在点(1,-3)处的切线方程为y +3=-2(x -1),整理得y =-2x -1.21.B12、B14、B7[2016·全国卷Ⅲ] 设函数f (x )=αcos 2x +(α-1)(cos x +1),其中α>0,记|f (x )|的最大值为A .(1)求f ′(x ); (2)求A ;(3)证明:|f ′(x )|≤2A .21.解:(1)f ′(x )=-2αsin 2x -(α-1)sin x .(2)当α≥1时,|f (x )|=|αcos 2x +(α-1)(cos x +1)|≤α+2(α-1)=3α-2=f (0), 因此A =3α-2.当0<α<1时,将f (x )变形为f (x )=2αcos 2x +(α-1)cos x -1.令g (t )=2αt 2+(α-1)t -1,则A 是|g (t )|在[-1,1]上的最大值,g (-1)=α,g (1)=3α-2,且当t =1-α4α时,g (t )取得极小值,极小值为g (1-α4α)=-(α-1)28α-1=-α2+6α+18α.令-1<1-α4α<1,解得α<-13(舍去)或α>15.(i)当0<α≤15时,g (t )在(-1,1)内无极值点,|g (-1)|=α,|g (1)|=2-3α,|g (-1)|<|g (1)|,所以A =2-3α.(ii)当15<α<1时,由g (-1)-g (1)=2(1-α)>0,知g (-1)>g (1)> g (1-α4α).又|g (1-α4α)|-|g (-1)|=(1-α)(1+7α)8α>0,所以A =|g (1-α4α)|=α2+6α+18α.综上,A =⎩⎨⎧2-3α,0<α≤15,α2+6α+18α,15<α<1,3α-2,α≥1.(3)证明:由(1)得|f ′(x )|=|-2αsin 2x -(α-1)sin x |≤2α+|α-1|.当0<α≤15时,|f ′(x )|≤1+α≤2-4α<2(2-3α)=2A .当15<α<1时,A =α8+18α+34≥1,所以|f ′(x )|≤1+α<2A . 当α≥1时,|f ′(x )|≤3α-1≤6α-4=2A ,所以|f ′(x )|≤2A . 21.B11,B12,E8[2016·四川卷] 设函数f (x )=ax 2-a -ln x ,其中a ∈R . (1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使得f (x )>1x -e 1-x 在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数).21.解:(1)f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减.当a >0时,由f ′(x )=0,有x =12a,此时,当x ∈(0,12a )时,f ′(x )<0,f (x )单调递减;当x ∈(12a,+∞)时,f ′(x )>0,f (x )单调递增.(2)令g (x )=1x -1ex -1,s (x )=e x -1-x ,则s ′(x )=e x -1-1.而当x >1时,s ′(x )>0,所以s (x )在区间(1,+∞)内单调递增. 又s (1)=0,所以当x >1时,s (x )>0, 从而当x >1时,g (x )>0.当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0,故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0.当0<a <12时,12a>1.由(1)有f (12a )<f (1)=0,而g (12a)>0, 所以此时f (x )>g (x )在区间(1,+∞)内不恒成立.当a ≥12时,令h (x )=f (x )-g (x )(x ≥1).当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x >x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x 2>0.因此,h (x )在区间(1,+∞)内单调递增.又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0,即f (x )>g (x )恒成立. 综上,a ∈[12,+∞).16.B12[2016·全国卷Ⅱ] 若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.16.1-ln 2 [解析] 曲线y =ln x +2的切线为y =1x 1·x +ln x 1+1(其中x 1为切点横坐标),曲线y =ln(x +1)的切线为y =1x 2+1·x +ln(x 2+1)-x 2x 2+1(其中x 2为切点横坐标).由题可知⎩⎨⎧1x 1=1x 2+1,ln x 1+1=ln (x 2+1)-x2x 2+1,解得⎩⎨⎧x 1=12,x 2=-12,∴b =ln x 1+1=1-ln 2.21.B12[2016·全国卷Ⅱ] (1)讨论函数f (x )=x -2x +2e x的单调性,并证明当x >0时,(x -2)e x+x +2>0.(2)证明:当a ∈[0,1)时,函数g (x )=e x -ax -ax 2(x >0)有最小值.设g (x )的最小值为h (a ),求函数h (a )的值域.21.解:(1)f (x )的定义域为(-∞,-2)∪(-2,+∞).f ′(x )=x 2e x(x +2)2≥0,当且仅当x =0时,f ′(x )=0,所以f (x )在(-∞,-2),(-2,+∞)上单调递增. 因此当x ∈(0,+∞)时,f (x )>f (0)=-1.所以(x -2)e x >-(x +2),即(x -2)e x +x +2>0.(2)证明:g ′(x )=(x -2)e x +a (x +2)x 3=x +2x3[f (x )+a ].由(1)知,f (x )+a 单调递增,对任意a ∈[0,1),f (0)+a =a -1<0,f (2)+a =a ≥0,因此,存在唯一x a ∈(0,2],使得f (x a )+a =0,即g ′(x a )=0. 当0<x <x a 时,f (x )+a <0,g ′(x )<0,g (x )单调递减; 当x >x a 时,f (x )+a >0,g ′(x )>0,g (x )单调递增. 因此g (x )在x =x a 处取得最小值,最小值为 g (x a )=e x a -a (x a +1)x 2a =e x a +f (x a )(x a +1)x 2a =e x ax a +2, 于是h (a )=e x a x a +2.由e x x +2′=(x +1)e x (x +2)2>0(x >0),可知y =e xx +2(x >0)单调递增,所以,由x a ∈(0,2],得12=e 00+2<h (a )=e x a x a +2≤e 22+2=e 24.因为y =e x x +2单调递增,对任意λ∈(12,e 24],存在唯一的x a ∈(0,2],a =-f (x a )∈[0,1),使得h (a )=λ,所以h (a )的值域是(12,e 24].综上,当a ∈[0,1)时,g (x )有最小值h (a ),h (a )的值域是(12,e 24].10.B12[2016·山东卷] 若函数y =f (x )的图像上存在两点,使得函数的图像在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是( )A .y =sin xB .y =ln xC .y =e xD .y =x 310.A [解析] 由函数图像上两点处的切线互相垂直,可知函数在这两点处的导数之积为-1,经检验,选项A 符合题意.20.B12,B14[2016·山东卷] 已知f (x )=a (x -ln x )+2x -1x 2,a ∈R .(1)讨论f (x )的单调性;(2)当a =1时,证明f (x )>f ′(x )+32对于任意的x ∈[1,2]成立.20.解:(1)f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3=(ax 2-2)(x -1)x 3.当a ≤0时,若x ∈(0,1),则f ′(x )>0,f (x )单调递增,若x ∈(1,+∞),则f ′(x )<0,f (x )单调递减.当a >0时,f ′(x )=a (x -1)x 3(x -2a )(x +2a). (i)当0<a <2时,2a>1. 当x ∈(0,1)或x ∈(2a,+∞)时,f ′(x )>0,f (x )单调递增. 当x ∈(1,2a)时,f ′(x )<0,f (x )单调递减. (ii)当a =2时,2a =1,在区间(0,+∞)内,f ′(x )≥0,f (x )单调递增. (iii)当a >2时,0<2a<1. 当x ∈(0,2a)或x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增, 当x ∈2a,1时,f ′(x )<0,f (x )单调递减. 综上所述,当a ≤0时,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 当0<a <2时,f (x )在(0,1)上单调递增,在(1,2a)上单调递减,在(2a,+∞)上单调递增;当a =2时,f (x )在(0,+∞)上单调递增;当a >2时,f (x )在(0,2a)上单调递增,在(2a,1)上单调递减,在(1,+∞)上单调递增.(2)证明:由(1)知,当a =1时,f (x )-f ′(x )=x -ln x +2x -1x 2-(1-1x -2x 2+2x 3)=x -ln x +3x +1x 2-2x 3-1,x ∈[1,2].设g (x )=x -ln x ,h (x )=3x +1x 2-2x 3-1,x ∈[1,2],则f (x )-f ′(x )=g (x )+h (x ). 由g ′(x )=x -1x≥0, 可得g (x )≥g (1)=1,当且仅当x =1时取得等号. 又h ′(x )=-3x 2-2x +6x 4.设φ(x )=-3x 2-2x +6,则φ(x )在[1,2]上单调递减. 因为φ(1)=1,φ(2)=-10,所以∃x 0∈(1,2),使得当x ∈(1,x 0)时,φ(x )>0,x ∈(x 0,2)时,φ(x )<0. 所以h (x )在(1,x 0)上单调递增,在(x 0,2)上单调递减. 由h (1)=1,h (2)=12,可得h (x )≥h (2)=12,当且仅当x =2时取得等号.所以f (x )-f ′(x )>g (1)+h (2)=32,即f (x )>f ′(x )+32对于任意的x ∈[1,2]成立.20.B12[2016·天津卷] 设函数f (x )=(x -1)3-ax -b ,x ∈R ,其中a ,b ∈R . (1)求f (x )的单调区间;(2)若f (x )存在极值点x 0,且f (x 1)=f (x 0),其中x 1≠x 0,求证:x 1+2x 0=3; (3)设a >0,函数g (x )=|f (x )|,求证:g (x )在区间[0,2]上的最大值不小于14.20.解:(1)由f (x )=(x -1)3-ax -b ,可得f ′(x )=3(x -1)2-a . 下面分两种情况讨论: (i)当a ≤0时,有f ′(x )=3(x -1)2-a ≥0恒成立,所以f (x )的单调递增区间为(-∞,+∞). (ii)当a >0时,令f ′(x )=0,解得x =1+3a 3或x =1-3a3. 当x 变化时,f ′(x ),f (x )的变化情况如下表:所以f (x )的单调递减区间为(1-3a 3,1+3a 3),单调递增区间为(-∞,1-3a 3),(1+3a3,+∞). (2)证明:因为f (x )存在极值点,所以由(1)知a >0,且x 0≠1.由题意,得f ′(x 0)=3(x 0-1)2-a =0,即(x 0-1)2=a 3,进而f (x 0)=(x 0-1)3-ax 0-b =-2a 3x 0-a3-b .又f (3-2x 0)=(2-2x 0)3-a (3-2x 0)-b =8a 3(1-x 0)+2ax 0-3a -b =-2a 3x 0-a3-b =f (x 0),且3-2x 0≠x 0,由题意及(1)知,存在唯一实数x 1满足f (x 1)=f (x 0),且x 1≠x 0,因此x 1=3-2x 0, 所以x 1+2x 0=3.(3)证明:设g (x )在区间[0,2]上的最大值为M ,max{x ,y }表示x ,y 两数的最大值.下面分三种情况讨论:(i)当a ≥3时,1-3a 3≤0<2≤1+3a 3,由(1)知,f (x )在区间[0,2]上单调递减,所以f (x )在区间[0,2]上的取值范围为[f (2),f (0)],因此M =max{|f (2)|,|f (0)|}=max{|1-2a -b |,|-1-b |}=max{|a -1+(a +b )|,|a -1-(a +b )|}=⎩⎪⎨⎪⎧a -1+(a +b ),a +b ≥0,a -1-(a +b ),a +b <0, 所以M =a -1+|a +b |≥2.(ii)当34≤a <3时,1-23a 3≤0<1-3a 3<1+3a 3<2≤1+23a 3.由(1)和(2)知f (0)≥f (1-23a 3)=f (1+3a 3),f (2)≤f (1+23a 3)=f (1-3a 3),所以f (x )在区间[0,2]上的取值范围为[f (1+3a 3),f (1-3a3)], 因此M =max{|f(1+3a 3)|,|f (1-3a 3)|=max ⎩⎨⎧⎭⎬⎫-2a 93a -a -b ,2a 93a -a -b = max ⎩⎨⎧⎭⎬⎫2a 93a +(a +b ),2a 93a -(a +b )=2a 93a +|a +b |≥29×34×3×34=14. (iii)当0<a <34时,0<1-23a 3<1+23a 3<2,由(1)和(2)知f (0)<f (1-23a 3)=f (1+3a3),f (2)>f (1+23a 3)=f (1-3a3).所以f (x )在区间[0,2]上的取值范围为[f (0),f (2)],因此M =max{|f (0)|,|f (2)|}=max{|-1-b |,|1-2a -b |}=max{|1-a +(a +b )|,|1-a -(a +b )|}=1-a +|a +b |>14.综上所述,当a >0时,g (x )在区间[0,2]上的最大值不小于14.03[2016·浙江卷]“复数与导数”模块(1)已知i 为虚数单位.若复数z 满足(z +i)2=2i ,求复数z . (2)求曲线y =2x 2-ln x 在点(1,2)处的切线方程. 解:(1)设复数z =a +b i ,a ,b ∈R ,由题意得 a 2-(b +1)2+2a (b +1)i =2i ,解得⎩⎪⎨⎪⎧a =1,b =0或⎩⎪⎨⎪⎧a =-1,b =-2. 故z =1或z =-1-2i.(2)由于(2x 2-ln x )′=4x -1x,则曲线在点(1,2)处的切线的斜率为3.因此,曲线在点(1,2)处的切线方程为y =3x -1. B13 定积分与微积分基本定理 B14 单元综合18.B14[2016·北京卷] 设函数f (x )=x e a -x +bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y =(e -1)x +4.(1)求a ,b 的值;(2)求f (x )的单调区间.18.解:(1)因为f (x )=x e a -x +bx ,所以f ′(x )=(1-x )e a -x +b .依题设,得⎩⎪⎨⎪⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1,解得a =2,b =e.(2)由(1)知f (x )=x e 2-x +e x .由f ′(x )=e 2-x (1-x +e x -1)及e 2-x >0知,f ′(x )与1-x +e x -1同号.令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.所以,当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减;当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增. 故g (1)=1是g (x )在区间(-∞,+∞)上的最小值, 从而g (x )>0,x ∈(-∞,+∞).综上可知,f ′(x )>0,x ∈(-∞,+∞), 故f (x )的单调递增区间为(-∞,+∞). 21.B12、B14、B7[2016·全国卷Ⅲ] 设函数f (x )=αcos 2x +(α-1)(cos x +1),其中α>0,记|f (x )|的最大值为A .(1)求f ′(x ); (2)求A ;(3)证明:|f ′(x )|≤2A .21.解:(1)f ′(x )=-2αsin 2x -(α-1)sin x .(2)当α≥1时,|f (x )|=|αcos 2x +(α-1)(cos x +1)|≤α+2(α-1)=3α-2=f (0), 因此A =3α-2.当0<α<1时,将f (x )变形为f (x )=2αcos 2x +(α-1)cos x -1.令g (t )=2αt 2+(α-1)t -1,则A 是|g (t )|在[-1,1]上的最大值,g (-1)=α,g (1)=3α-2,且当t =1-α4α时,g (t )取得极小值,极小值为g (1-α4α)=-(α-1)28α-1=-α2+6α+18α.令-1<1-α4α<1,解得α<-13(舍去)或α>15.(i)当0<α≤15时,g (t )在(-1,1)内无极值点,|g (-1)|=α,|g (1)|=2-3α,|g (-1)|<|g (1)|,所以A =2-3α.(ii)当15<α<1时,由g (-1)-g (1)=2(1-α)>0,知g (-1)>g (1)> g (1-α4α).又|g (1-α4α)|-|g (-1)|=(1-α)(1+7α)8α>0,所以A =|g (1-α4α)|=α2+6α+18α.综上,A =⎩⎨⎧2-3α,0<α≤15,α2+6α+18α,15<α<1,3α-2,α≥1.(3)证明:由(1)得|f ′(x )|=|-2αsin 2x -(α-1)sin x |≤2α+|α-1|.当0<α≤15时,|f ′(x )|≤1+α≤2-4α<2(2-3α)=2A .当15<α<1时,A =α8+18α+34≥1,所以|f ′(x )|≤1+α<2A . 当α≥1时,|f ′(x )|≤3α-1≤6α-4=2A ,所以|f ′(x )|≤2A . 15.B14[2016·四川卷] 在平面直角坐标系中,当P (x ,y )不是原点时,定义P 的“伴随点”为P ′yx 2+y 2,-x x 2+y 2;当P 是原点时,定义P 的“伴随点”为它自身.平面曲线C 上所有点的“伴随点”所构成的曲线C ′定义为曲线C 的“伴随曲线”.现有下列命题:①若点A 的“伴随点”是点A ′,则点A ′的“伴随点”是点A ; ②单位圆的“伴随曲线”是它自身;③若曲线C 关于x 轴对称,则其“伴随曲线”C ′关于y 轴对称; ④一条直线的“伴随曲线”是一条直线.其中的真命题是________(写出所有真命题的序号).15.②③ [解析] ①设点A 的坐标为(x ,y ),则其“伴随点”为A ′⎝⎛⎭⎪⎫y x 2+y 2,-x x 2+y 2,故。
2016年全国高考数学(理科)试题及答案-全国1卷(解析版)

绝密 ★ 启用前2016年普通高等学校招生全国统一考试(全国1卷)数学(理科)注意事项: 1。
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2。
答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3。
全部答案在答题卡上完成,答在本试题上无效。
4。
考试结束后,将本试题和答题卡一并交回。
第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合{}2430A x x x =-+< ,{}230x x ->,则A B =(A )33,2⎛⎫-- ⎪⎝⎭ (B)33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭(D)3,32⎛⎫⎪⎝⎭【答案】D考点:集合的交集运算【名师点睛】集合是每年高考中的必考题,一般以基础题形式出现,属得分题。
解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算. (2)设(1i)1i x y +=+,其中x ,y 实数,则i =x y + (A )1 (B 2 (3 (D)2 【答案】B 【解析】试题分析:因为(1)=1+,x i yi +所以=1+,=1,1,||=|1+|2,x xi yi x y x x yi i +==+=故选B.考点:复数运算【名师点睛】复数题也是每年高考必考内容,一般以客观题形式出现,属得分题。
高考中复数考查频率较高的内容有:复数相等,复数的几何意义,共轭复数,复数的模及复数的乘除运算,这类问题一般难度不大,但容易出现运算错误,特别是2i 1=-中的负号易忽略,所以做复数题要注意运算的准确性.(3)已知等差数列{}n a 前9项的和为27,108a =,则100a = (A )100 (B )99 (C )98 (D )97 【答案】C 【解析】试题分析:由已知,1193627,98a d a d +=⎧⎨+=⎩所以110011,1,9919998,a d a a d =-==+=-+=故选C 。
2016年高考数学试题分类解析考点4 函数及其表示

考点4 函数及其表示
一、填空题
1.(2016·全国卷Ⅱ文科·T10)下列函数中,其定义域和值域分别与函数y=10lgx 的定义域和值域相同的是 ( )
A.y=x
B.y=lgx
C.y=2x
1
【解题指南】对数lgx 中x 为正数,函数y=10lgx 不是最简形式,需化简,化简后再比较.
【解析】选D.y=10lgx =x,其定义域与值域均为(0,+∞).函数y=x 的定义域和值域都是R ;函数y=lgx 的定义域为(0,+∞),值域为R ;函数y=2x 的定义域为R ,值域为(0,+∞);函数
y=
的定义域与值域
均为(0,+∞).
2.(2016·浙江高考文科·T12)设函数f(x)=x 3+3x 2+1.已知a ≠0,且f(x)-f(a)=(x-b)(x-a)2,x ∈R ,则实数a= ,b= .
【解题指南】两边式子各自展开各个项的系数相等.
【解析】f(x)-f(a)=x 3+3x 2+1-a 3-3a 2-1
=x 3+3x 2-a 3-3a 2,
(x-b)(x-a)2=x 3-(2a+b)x 2+(a 2+2ab)x-a 2b,
所以22322a b 3,a 2ab 0,a b a 3a ,⎧--=⎪+=⎨⎪-=--⎩解得a 2,b 1.⎧=-⎨=⎩ 答案:-2 1
3.(2016·江苏高考T5)函数
y=错误!未找到引用源。
的定义域是 .
【解题指南】令3-2x-x 2≥0,解不等式即可.
【解析】由3-2x-x 2≥0得x 2+2x-3≤0,即(x-1)(x+3)≤0,解得-3≤x ≤1.
答案:[-3,1]
关闭Word文档返回原板块。
2016年高考全国Ⅰ理科数学试题及答案(word解析版)

2016年普通高等学校招生全国统一考试(全国Ⅰ)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2016年全国Ⅰ,理1,5分】设集合{}2|430A x x x =-+<,{}|230B x x =->,则AB =( )(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭(D )3,32⎛⎫⎪⎝⎭【答案】D【解析】{|13}A x x =<<,3{|}2B x x =>,3{|3}2A B x x ∴=<<,故选D .【点评】考察集合运算和简单不等式解法,属于必考题型,难易程度:易. (2)【2016年全国Ⅰ,理2】设(1i)1i x y +=+,其中x ,y 是实数,则i =x y +( )(A )1 (B )2 (C )3 (D )2 【答案】B【解析】由题意知:1x y ==,i =1i 2x y ∴++=,故选B .【点评】察复数相等条件和复数的模,属于必考题型,难易程度:易. (3)【2016年全国Ⅰ,理3,5分】已知等差数列{}n a 前9项的和为27,108a =,则100a =( )(A )100 (B )99 (C )98 (D )97 【答案】C【解析】解法一:199599272a a S a +===,53a ∴= 1051105a a d -∴==-()100101001089098a a d ∴=+-=+=,选C . 解法二:91989272S a d ⨯=+=,即143a d +=,又10198a a d =+=,解得11,1a d =-=,()1001100119998a a d ∴=+-=-+=,故选C . 【点评】考察等差数列的基本性质、前n 项和公式和通项公式,属于必考题型,难易程度:易. (4)【2016年全国Ⅰ,理4,5分】某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )(A )13(B )12 (C )23 (D )34【答案】B【解析】小明可以到达车站时长为40分钟,可以等到车的时长为20分钟,则他等车时间不超过10分钟的概率是201402P ==,故选B .【点评】考察几何概型的概率计算,第一次考察,难易程度:易.(5)【2016年全国Ⅰ,理5,5分】已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )(A )()1,3- (B )()1,3- (C )()0,3 (D )()0,3 【答案】A【解析】由题意知:2234m n m n ++-=,解得21m =,1030n n +>⎧∴⎨->⎩,解得13n -<<,故选A .【点评】考察双曲线的简单几何性质,属于了解层次,必考题,难易程度:易. (6)【2016年全国Ⅰ,理6,5分】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( )(A )17π (B )18π (C )20π (D )28π 【答案】A【解析】该几何体为球体,从球心挖掉整个球的18(如右图所示),故34728383r ππ=解得2r =,2271431784S r r πππ∴=⋅+⋅=,故选A .【点评】考察三视图还原,球的体积表面积计算,经常考察,难易程度:中等. (7)【2016年全国Ⅰ,理7,5分】函数22xy x e =-在[2,2]-的图像大致为( )(A )(B )(C ) (D )【答案】D【解析】解法1(排除法):2()2xf x x e =-为偶函数,且2(2)887.40.6f e =-≈-=,故选D .解法2:2()2xf x x e =-为偶函数,当0x >时,'()4x f x x e =-,作4y x =与x y e =(如图),故存在实数0(0,1)x ∈,使得'0()0f x =且0(0,)x x ∈时,'0()0f x <,0(,2)x x ∈时, '0()0f x >,()f x ∴在0(0,)x 上递减,在0(,2)x 上递增,故选D .【点评】本题结合导数利用函数奇偶性,综合考察函数解析式与函数图像之间的关系,常规题型,属于必考题,难易程度:中等.这类题型的最佳解法应为结合函数的性质,选取特殊点进行排除.(8)【2016年全国Ⅰ,理8,5分】若101a b c >><<,,则( ) (A )c c a b < (B )c c ab ba < (C )log log b a a c b c < (D )log log a b c c <【答案】C【解析】解法1(特殊值法):令14,22a b c ===,,易知C 正确.解法2:当0α>时,幂函数()f x x α=在(0,)+∞上递增,故A 选项错误;当1a >时,a 越大对数函数()log a f x x =的图像越靠近x 轴,当01c <<时,log log a b c c >,故D 选项错误;c c ab ba <可化为()c a ab b<,由指数函数知,当1a >时,()x f x a =在(0,)+∞上递增,故B 选项错误;log log b a a c b c <可化为11log log abb ac c <,1111abbb b a <<<,故选C .【点评】本题综合考察幂函数、指数函数、对数函数的性质和不等式的性质,属于常考题型,难易程度:中等. 结合函数性质证明不等式是比较麻烦的,最好采用特殊值法验证排除.(9)【2016年全国Ⅰ,理9,5分】执行右面的程序图,如果输入的011x y n ===,,,则输出x ,y 的值满足( )(A )2y x = (B )3y x = (C )4y x = (D )5y x = 【答案】C【解析】011x y n ===,,时,框图运行如下: 1、012x y n ===,,;2、1232x y n ===,,;3、3632x y n ===,,,故选C .【点评】考察算法中的循环结构,必考题型,难易程度:易. (10)【2016年全国Ⅰ,理10,5分】以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C的标准线于D 、E 两点.已知42AB =,25DE =,则C 的焦点到准线的距离为( ) (A )2 (B )4 (C )6 (D )8【答案】B【解析】解法1排除法:当4p =时,不妨令抛物线方程为28y x =,当y =1x =,即A 点坐标为(,所以圆的半径为3r =,此时D 点坐标为(-,符合题意,故B 选项正确.解法2:不妨令抛物线方程为22y px =,D 点坐标为2P ⎛- ⎝,则圆的半径为r =,22834p r -=-,即A 点坐标为⎭,所以22=,解得4p =,故选B . 【点评】考察抛物线和圆的简单性质,必考题型,难易程度:中等. (11)【2016年全国Ⅰ,理11,5分】平面a 过正方体1111ABCD A B C D -的顶点A ,//a 平面11CB D ,a 平面ABCD m =,a 平面11ABA B n =,则m 、n 所成角的正弦值为( )(A (B )2 (C (D )13【答案】A【解析】令平面a 与平面11CB D 重合,则11m B D =,1n CD =,故直线m 、n 所成角为60o ,,故选A . 【点评】考察正方体中线面位置关系和两条直线夹角的计算,必考题型,难易程度:中等.(12)【2016年全国Ⅰ,理12,5分】已知函数()()sin 02f x x +πωϕωϕ⎛⎫=>≤ ⎪⎝⎭,,4x π=-为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫ ⎪⎝⎭,单调,则ω的最大值为( )(A )11 (B )9 (C )7 (D )5 【答案】B【解析】解法1(特殊值验证法)令9ω=,则周期29T π=,区间[]44ππ-,刚为94T ,且在53636ππ⎡⎤⎢⎥⎣⎦,上递减,恰好符合题意,故选B .解法2:由题意知152()24369T πππ≥-=,所以29Tπω=≤,故选B .【点评】综合考察三角函数图像的单调性、对称性、零点、周期等性质,属于必考题型,难易程度:偏难.第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分(13)【2016年全国Ⅰ,理13,5分】设向量(),1m =a ,()1,2=b ,且222+=+a b a b ,则m = . 【答案】2-【解析】解法一(几何法)由向量加法的几何意义知a b ⊥,故20a b m ⋅=+=,所以2m =-;解法二(代数法)22(1)9114m m ++=+++,解得2m =-.【点评】考察向量运算,必考题型,难易程度:易.(14)【2016年全国Ⅰ,理14,5分】(52x +的展开式中,3x 的系数是 .(用数字填写答案) 【答案】10【解析】()555215522r rrrr rr T Cx C x---+==,令532r-=,解得4r =,454525210C -∴=⨯=. 【点评】考察二项式定理展开式中指定项问题,必考题型,难易程度:中等.(15)【2016年全国Ⅰ,理15,5分】设等比数列{}n a 满足1310a a +=,245a a +=,则12n a a a ⋅⋅⋅的最大值为 . 【答案】64【解析】由1310a a +=,245a a +=解得118,2a q ==,14118()()22n n n a --∴==,27321(4)21211()()22n nn n a a a ----+⋅⋅⋅+-∴⋅⋅⋅==,所以当3n =或4时,12n a a a ⋅⋅⋅有最大值64.【点评】考察等比数列的通项公式、等差数列求和及二次函数最值问题,必考题型,难易程度:中等. (16)【2016年全国Ⅰ,理16,5分】某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料。
2016高考文科试题分类分类汇编及详解--集合、函数、导数

一、集合与常用逻辑用语一、集合1、(2016年北京高考)(1)已知集合{|24},{|3>5}A x x B x x x =<<=<或,则A B = (A ){|2<<5}x x (B ){|<45}x x x >或 (C ){|2<<3}x x (D ){|<25}x x x >或 【答案】C2、(2016年江苏省高考)已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B ________▲________. 【答案】{}1,2-3、(2016年山东高考)设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===,则()U A B ð= (A ){2,6} (B ){3,6}(C ){1,3,4,5}(D ){1,2,4,6}【答案】A4、(2016年四川高考)学科网设集合A={x |1≤x ≤5},Z 为整数集,则集合A ∩Z 中元素的个数是(A)6 (B) 5 (C)4 (D)3 【答案】B5、(2016年天津高考)已知集合}3,2,1{=A ,},12|{A x x y y B ∈-==,则A B =( )(A )}3,1{ (B )}2,1{(C )}3,2{(D )}3,2,1{【答案】A6、(2016年全国I 卷高考)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B = (A ){1,3}(B ){3,5}(C ){5,7}(D ){1,7} 【答案】B7、(2016年全国II 卷高考)已知集合{123}A =,,,2{|9}B x x =<,则A B = ( ) (A ){210123}--,,,,, (B ){21012}--,,,, (C ){123},, (D ){12},【答案】D8、(2016年全国III 卷高考)设集合{0,2,4,6,8,10},{4,8}A B ==,则A B ð=(A ){48}, (B ){026},, (C ){02610},,, (D ){0246810},,,,, 【答案】C9、(2016年浙江高考)已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则U PQ ()ð=( ) A.{1} B.{3,5} C.{1,2,4,6} D.{1,2,3,4,5}【答案】C二、常用逻辑用语1、(2016年山东高考)已知直线a ,b 分别在两个不同的平面α,b 内,则“直线a 和直线b 相交”是“平面α和平面b 相交”的(A )充分不必要条件(B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件 【答案】A2、(2016年上海高考)设R a ∈,则“1>a ”是“12>a ”的( )(A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分也非必要条件 【答案】A3、(2016年上海高考)设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +、()()f x h x +、()()g x h x +均为增函数,则()f x 、()g x 、()h x 中至少有一个增函数;②若()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数,下列判断正确的是( ) A 、①和②均为真命题B 、①和②均为假命题C 、①为真命题,②为假命题D 、①为假命题,②为真命题【答案】D4、(2016年四川高考)设p:实数x ,y 满足x>1且y>1,q: 实数x ,y 满足x+y>2,则p 是q 的(A)充分不必要条件 (B)必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件【答案】A5、(2016年天津高考)设0>x ,R y ∈,则“y x >”是“||y x >”的( )(A )充要条件(B )充分而不必要条件(C )必要而不充分条件(D )既不充分也不必要条件【答案】C6、(2016年浙江高考)已知函数f (x )=x 2+bx ,则“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件【答案】A二、函数一、选择题1、(2016年北京高考)下列函数中,在区间(1,1)- 上为减函数的是 (A )11y x=- (B )cos y x = (C )ln(1)y x =+ (D )2x y -= 【答案】D2、(2016年山东高考)已知函数f(x )的定义域为R.当x <0时,f(x )=x 3-1;当-1≤x ≤1时,f(-x )= —f(x );当x >12时,f(x +12)=f(x —12).则f(6)= (A )-2 (B )-1 (C )0 (D )2 【答案】D3、(2016年四川高考)某公司为激励创新,计划逐年加大研发奖金投入。
2016年高考山东理科数学试题及答案(解析版)

2016年普通高等学校招生全国统一考试(山东卷)数学(理科)第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2016年山东,理1,5分】若复数z 满足232i zz,其中i 为虚数为单位,则z ()(A )12i (B )12i (C )12i (D )12i 【答案】B 【解析】设,,zabi a bR ,则2()i23i32i zzz zz ab aab ,所以1,2a b,故选B .【点评】本题考查复数的代数形式混合运算,考查计算能力.(2)【2016年山东,理2,5分】已知集合22,,10xAy yxR B x x ,则A BU ()(A )1,1(B )0,1(C )1,(D )0,【答案】C【解析】由题意0,A,1,1B,所以1,A BU ,故选C .【点评】本题考查并集及其运算,考查了指数函数的值域,考查一元二次不等式的解法,是基础题.(3)【2016年山东,理3,5分】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30,样本数据分组为17.5,20,20,22.5,22.5,25,25,27.5,27.5,30.根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()(A )56(B )60(C )120(D )140 【答案】D【解析】由图可知组距为 2.5,每周的自习时间少于22.5小时的频率为(0.020.1) 2.50.30,所以,每周自习时间不少于22.5小时的人数是20010.30140人,故选D .【点评】本题考查的知识点是频率分布直方图,难度不大,属于基础题目.(4)【2016年山东,理4,5分】若变量x ,y 满足22390xy x y x,则22xy 的最大值是()(A )4 (B )9 (C )10(D )12【答案】C 【解析】由22xy 是点,x y 到原点距离的平方,故只需求出三直线的交点0,2,0,3,3,1,所以3,1是最优解,22xy 的最大值是10,故选C .【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.(5)【2016年山东,理5,5分】有一个半球和四棱锥组成的几何体,其三视图如右图所示,则该几何体的体积为()(A )1233(B )1233(C )1236(D )216【答案】C【解析】由三视图可知,半球的体积为26,四棱锥的体积为13,所以该几何体的体积为1236,故选C .【点评】本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.(6)【2016年山东,理6,5分】已知直线,a b 分别在两个不同的平面,内,则“直线a 和直线b 相交”是“平面和平面相交”的()(A )充分不必要条件(B )必要不充分条件(C )充要条件(D )既不充分也不必要条件【答案】A【解析】由直线a 和直线b 相交,可知平面、有公共点,所以平面和平面相交.又如果平面和平面相交,直线a 和直线b 不一定相交,故选A .【点评】本题考查的知识点是充要条件,空间直线与平面的位置关系,难度不大,属于基础题.(7)【2016年山东,理7,5分】函数()3sin cos 3cos sin f x xxx x 的最小正周期是()(A )2(B )(C )32(D )2【答案】B 【解析】由()2sin cos 3cos22sin 23f x x xxx,所以,最小正周期是,故选B .【点评】本题考查的知识点是和差角及二倍角公式,三角函数的周期,难度中档.(8)【2016年山东,理8,5分】已知非零向量,m n 满足143,cos ,3m n m n,若ntmn 则实数t 的值为()(A )4 (B )4(C )94(D )94【答案】B 【解析】因为21cos ,4nmm n m nn ,由ntmn ,有20n tmn tmn n ,即2104t n,4t ,故选B .【点评】本题考查的知识点是平面向量数量积的运算,向量垂直的充要条件,难度不大,属于基础题.(9)【2016年山东,理9,5分】已知函数()f x 的定义域为R ,当0x时,3()1f x x;当11x 时,()()f x f x ;当12x时,1122f xf x,则6f ()(A )2(B )1(C )0(D )2【答案】D 【解析】由1122f x f x,知当12x时,f x 的周期为1,所以61f f .又当11x 时,f xf x ,所以11f f.于是3611112f f f ,故选D .【点评】本题考查函数值的计算,考查函数的周期性,考查学生的计算能力,属于中档题.(10)【2016年山东,理10,5分】若函数yf x 的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y f x 具有T 性质.下列函数具有T 性质的是()(A )sin y x(B )ln yx(C )xye(D )3yx【答案】A 【解析】因为函数ln yx ,xye 的图象上任何一点的切线的斜率都是正数;函数3y x 的图象上任何一点的切线的斜率都是非负数.都不可能在这两点处的切线互相垂直,即不具有T 性质,故选A .【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,转化思想,难度中档.第II 卷(共100分)二、填空题:本大题共5小题,每小题5分(11)【2016年山东,理11,5分】执行右边的程序框图,若输入的的值分别为0和9,则输出i 的值为.【答案】 3【解析】i 1时,执行循环体后1,8a b ,a b 不成立;i 2时,执行循环体后3,6a b,a b不成立;i 3时,执行循环体后6,3a b ,a b 成立;所以i 3,故填 3. 【点评】本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答.(12)【2016年山东,理12,5分】若521ax x的展开式中5x 的系数是80,则实数a.【答案】2【解析】由23222355551C C 80axa xx x,得2a,所以应填2.【点评】考查了利用二项式定理的性质求二项式展开式的系数,属常规题型.(13)【2016年山东,理13,5分】已知双曲线2222:10,0xyE a ba b,若矩形ABCD 的四个顶点在E 上,,AB CD的中点为E 的两个焦点,且23ABBC ,则E 的离心率为.【答案】 2 【解析】由题意BC 2c ,所以2AB3BC ,于是点3,2c c 在双曲线E 上,代入方程,得2222914c c ab,在由222ab c 得E 的离心率为2c ea.【点评】本题考查双曲线的离心率的求法,注意运用方程的思想,正确设出A B C D ,,,的坐标是解题的关键,考查运算能力,属于中档题.(14)【2016年山东,理14,5分】在1,1上随机的取一个数k ,则事件“直线y kx 与圆2259x y相交”发生的概率为.【答案】34【解析】首先k 的取值空间的长度为2,由直线ykx 与圆22(5)9xy相交,得事件发生时k 的取值空间为33,44,其长度为32,所以所求概率为33224.【点评】本题主要考查了几何概型的概率,以及直线与圆相交的性质,解题的关键弄清概率类型,同时考查了计算能力,属于基础题.(15)【2016年山东,理15,5分】在已知函数2,24,x x m f xxmxm xm,其中0m ,若存在实数b ,使得关于x 的方程f xb 有三个不同的根,则m 的取值范围是.【答案】3,【解析】因为224g x x mxm 的对称轴为xm ,所以xm 时224f x x mx m 单调递增,只要b 大于224g xxmxm 的最小值24m m 时,关于x 的方程f x b 在x m 时有一根;又h xx 在x m ,0m 时,存在实数b ,使方程f x b 在xm 时有两个根,只需0b m ;故只需24m mm即可,解之,注意0m ,得3m ,故填3,.【点评】本题考查根的存在性及根的个数判断,数形结合思想的运用是关键,分析得到24m mm 是难点,属于中档题.三、解答题:本大题共6题,共75分.(16)【2016年山东,理16,12分】在ABC 中,角,,A B C 的对边分别为a,b,c ,已知tan tan 2tan tan cos cos A B A BBA.(1)证明:2a b c ;(2)求cosC 的最小值.解:(1)由tan tan 2tan tan cos cos A BABB A得sin sin sin 2cos cos cos cos cos cos C A B A BA BA B,2sin sin sin C B C ,由正弦定理,得2ab c .(2)由222222cos 22a bab cabcCab ab222333111122222cc aba b.所以cosC 的最小值为12.【点评】考查切化弦公式,两角和的正弦公式,三角形的内角和为,以及三角函数的诱导公式,正余弦定理,不等式222a b ab 的应用,不等式的性质.(17)【2016年山东,理17,12分】在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O 的直径,FB 是圆台的一条母线.(1)已知,G H 分别为,EC FB 的中点,求证://GH 平面ABC ;(2)已知123,2EFFBAC ABBC ,求二面角FBCA 的余弦值.解:(1)连结FC ,取FC 的中点M ,连结,GM HM ,因为//GM EF ,EF 在上底面内,GM 不在上底面内,所以//GM 上底面,所以//GM 平面ABC ;又因为//MH BC ,BC 平面ABC ,MH 平面ABC ,所以//MH 平面ABC ;所以平面//GHM 平面ABC ,由GH 平面GHM ,所以//GH 平面ABC .(2)连结OB ,AB BC Q OA OB ,以为O 原点,分别以,,OA OB OO 为,,x y z 轴,建立空间直角坐标系.123,2EFFBAC ABBC Q ,22()3OOBFBO FO ,于是有23,0,0A ,23,0,0C ,0,23,0B ,0,3,3F ,可得平面FBC 中的向量0,3,3BF uu u r,23,23,0CB u u u r ,于是得平面FBC 的一个法向量为13,3,1n u u r,又平面ABC 的一个法向量为20,0,1n u u r,设二面角F BC A 为,则121217cos 77n n n n u u r u u r u u r u u r.二面角F BC A 的余弦值为77.【点评】本题考查线面平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.(18)【2016年山东,理18,12分】已知数列n a 的前n 项和238nS nn ,n b 是等差数列,且1n n n a b b .(1)求数列n b 的通项公式;(2)令1(1)(2)n n nnna cb .求数列n c 的前n 项和n T .解:(1)因为数列n a 的前n 项和238n S nn ,所以111a ,当2n时,221383(1)8(1)65nnna S S nn n n n,又65na n 对1n 也成立,所以65na n .又因为n b 是等差数列,设公差为d ,则12nn nna b b b d .当1n 时,1211b d ;当2n时,2217b d ,解得3d,所以数列n b 的通项公式为312nn a db n .(2)由111(1)(66)(33)2(2)(33)n n n nnnn n a n c n b n ,于是23416292122(33)2n nT n L ,两边同乘以2,得341226292(3)2(33)2n n n T n n L ,两式相减,得2341262323232(33)2n n n T nL 22232(12)32(33)212nn n 2221232(12)(33)232nn n nT nn .【点评】本题考查数列的通项与求和,着重考查等差数列的通项与错位相减法的运用,考查分析与运算能力,属于中档题.(19)【2016年山东,理19,12分】甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果也互不影响.假设“星队”参加两轮活动,求:(1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和X 的分布列和数学期望EX .解:(1)“至少猜对3个成语”包括“恰好猜对3个成语”和“猜对4个成语”.设“至少猜对3个成语”为事件A ;“恰好猜对3个成语”和“猜对4个成语”分别为事件C B,,则1122332131225()4433443312P B C C;33221()44334P C .所以512()()()1243P A P B P C .(2)“星队”两轮得分之和X 的所有可能取值为0,1,2,3,4,6,于是11111(0)4343144P X ;112212111131105(1)4343434314472P X C C;1211223311132125(2)443344334433144P X C;123211121(3)434314412P XC ;12321231605(4)()43434314412P XC ;3232361(6)43431444P X ;X 的分布列为:X12346P11445722514411251214X 的数学期望15251515522301234614472144121241446EX.【点评】本题考查离散型随机变量的分布列和数学期望,属中档题.(20)【2016年山东,理20,13分】已知221()(ln ),x f x a x x a R x.(1)讨论f x 的单调性;(2)当1a时,证明3()()2f x f x 对于任意的[1,2]x成立.解:(1)求导数3122()(1)x f x a x x---23(1)(2x ax x--),当0a时,x (0,1),()0f x ,()f x 单调递增,x ∈(1,),()0f x ,()f x 单调递减当0a时,23322112()a x x xx axa af x xx①当02a时,21a,x (0,1)或2x a∈,,()0f x ,()f x 单调递增,2x a∈1,,()0f x ,、()f x 单调递减;②当a 2时,21a,x (0,),()0f x ,()f x 单调递增,③当a 2时,201a,2xa 0,或x1,,()0f x ,()f x 单调递增,2xa,1,()0f x ,()f x 单调递减.(2)当1a时,221()ln x f x x x x--,2323(1)(212()1x x f x xx xx--)2--,于是2232112()()ln 1)x f x f x x xx x x x -2---(--23312ln 1x x x x x ,[1,2]x 令g ln xxx ,2332h()x x x x11,[1,2]x ,于是()()g(()f x f x x h x ),1g ()10x x xx1,g x 的最小值为11g ;又22344326326()xx h x xxxx,设2326xxx ,[1,2]x,因为11,210,所以必有0[1,2]x ,使得0x ,且01x x 时,0x,h x 单调递增;02x x 时,0x,h x 单调递减;又11h ,122h ,所以h x 的最小值为122h .所以13()()g(()g(1(2)122f x f x x h x h ))-.即3()()2f x f x 对于任意的[1,2]x 成立.【点评】本题考查利用导数加以函数的单调性,考查了利用导数求函数的最值,考查了分类讨论的数学思想方法和数学转化思想方法,是压轴题.(21)【2016年山东,理21,14分】平面直角坐标系xOy 中,椭圆2222:10x y C a b ab的离心率是32,抛物线2:2E xy 的焦点F 是C 的一个顶点.(1)求椭圆C 的方程;(2)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交于不同的两点,A B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M .(i )求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG 的面积为1S ,PDM 的面积为2S ,求12S S 的最大值及取得最大值时点P 的坐标.解:(1)由离心率是32,有224ab ,又抛物线22xy 的焦点坐标为10,2F ,所以12b,于是1a ,所以椭圆C 的方程为2241xy .(2)(i )设P 点坐标为2,02mP m m,由22x y 得y x ,所以E 在点P 处的切线l 的斜率为m ,因此切线l 的方程为22mymx,设1122,,,A x y B x y ,00,D x y ,将22mymx代入2241xy,得223214410m xm xm.于是3122414mx x m,31222214x x mx m,又2222214mm y mx m,于是直线OD 的方程为14yx m.联立方程14yx m与xm ,得M 的坐标为1,4M m .所以点M 在定直线14y上.(ii )在切线l 的方程为22mymx 中,令0x ,得22my,即点G 的坐标为20,2mG ,又2,2mP m ,10,2F ,所以211(1)24m mS mGF;再由32222,41241mmDmm,得22232222112122441841m m m mm S mm于是有221222241121m mS S m .令221t m,得12221211122tt S S tt t ,当112t 时,即2t 时,12S S 取得最大值94.此时212m ,22m ,所以P 点的坐标为21,24P.所以12S S 的最大值为94,取得最大值时点P 的坐标为21,24P.【点评】本题考查椭圆的方程的求法,注意运用椭圆的离心率和抛物线的焦点坐标,考查直线和抛物线斜的条件,以及直线方程的运用,考查三角形的面积的计算,以及化简整理的运算能力,属于难题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年高考数学理试题分类汇编
函数
一、选择题
1、(2016年北京高考)已知x ,y R ∈,且0x y >>,则( )
A.
110x y
-> B.sin sin 0x y -> C.11
()()022x y -< D.ln ln 0x y +>
【答案】C
2、(2016年山东高考)已知函数f (x )的定义域为R .当x <0时,3
()1f x x =- ;当11x -≤≤ 时,
()()f x f x -=-;当12
x >
时,11()()22
f x f x +=- .则f (6)=
(A )−2
(B )−1
(C )0
(D )2
【答案】D
3、(2016年上海高考)设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +、
()()f x h x +、()()g x h x +均为增函数,则()f x 、()g x 、()h x 中至少有一个增函数;②若()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数,下列
判断正确的是( )
A 、①和②均为真命题
B 、①和②均为假命题
C 、①为真命题,②为假命题
D 、①为假命题,②为真命题
【答案】D
4、(2016年天津高考)已知函数f (x )=2(4,0,
log (1)0
3)31,a x a x x x x a ⎧+<⎨++≥-+⎩学科网(a >0,且a ≠1)在R 上单调递
减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是( ) (A )(0,23] (B )[23,34] (C )[13,23] {34}(D )[13,23) {3
4
}
【答案】C
5、(2016年全国I 高考))函数y =2x 2–e |x |在[–2,2]的图像大致为
(A )
(B
)
(C )
(D
)
【答案】D 【解析】
()22288 2.80f e =->->,排除A ,()22288 2.71f e =-<-<,排除B 0x >时,()22x f x x e =-
()4x f x x e '=-,当10,4x ⎛⎫
∈ ⎪⎝⎭
时,()01404f x e '<⨯-=
因此()f x 在10,4⎛⎫
⎪⎝⎭
单调递减,排除C
故选D .
6、(2016年全国I 高考)若1
01a b c >><<,,则 (A )c c a b <(B )c c
ab ba <(C )log log b a a c b c <(D )log log a b c c <
【答案】C
7、(2016年全国II 高考)已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1
x y x
+=与()y f x =图像的交点为
1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1
()m
i i i x y =+=∑( )
(A )0 (B )m (C )2m (D )4m 【答案】C
8、(2016年全国III 高考)已知43
2a =,25
4b =,13
25c =,则
(A )b a c << (B )a b c << (C )b c a << (D )c a b <<
【答案】A
二、填空题
1、(2016年北京高考)设函数33,()2,x x x a
f x x x a
⎧-≤=⎨->⎩.
①若0a =,则()f x 的最大值为______________; ②若()f x 无最大值,则实数a 的取值范围是________. 【答案】2,(,1)-∞-.
2、(2016年山东高考)已知函数2||,
()24,x x m f x x mx m x m ≤⎧=⎨-+>⎩,,
其中0m >,若存在实数b ,使得关于x 的
方程f (x )=b 有三个不同的根,则m 的取值范围是_________. 【答案】(3,)+∞
3、(2016年上海高考)已知点(3,9)在函数x a x f +=1)(的图像上,则________)()(1=-x f x f 的反函数 【答案】2log (x 1)-
4、(2016年四川高考)已知函数()f x 是定义在R 上的周期为2的奇函数,当01x <<时,()4x f x =,
则5(1)2f f ⎛⎫
-+= ⎪⎝⎭
__________.
【答案】-2
5、(2016年天津高考)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足
1
(2
)(2)a f f ->-,则a 的取值范围是______.
【答案】13(,)22
【解析】由()f x 是偶函数可知,()0-∞,
单调递增;()0+∞,单调递减 又()()
1
2
2a f f ->-,()()22f f -=
可得,1
2
2a -<即112a -<
∴1322
a << 6、(2016年浙江高考) 已知a >
b >1.若log a b +log b a =5
2
,a b =b a ,则a = ,b = . 【答案】4 2
7、(2016江苏省高考)函数y =232x x -- 的定义域是 ▲ 【答案】[]3,1-
8、(2016江苏省高考)设f (x )是定义在R 上且周期为2的函数,在区间[ −1,1)上,,10,()2
,01,5x a x f x x x +-≤<⎧⎪
=⎨-≤<⎪⎩
其中.a ∈R 若59()()22
f f -= ,则f (5a )的值是 ▲ . 【答案】25
-
三、解答题
1、(2016年上海高考) 已知a R ∈,函数21
()log ()f x a x
=+. (1)当5a =时,解不等式()0f x >;
(2)若关于x 的方程2()log [(4)25]0f x a x a --+-=的解集中恰好有一个元素,求a 的取值范围; (3)设0a >,若对任意1[,1]2
t ∈,函数()f x 在区间[,1]t t +上的最大值与最小值的差不超过1,求a 的取值范围. 【解】 (1)由21log 50x ⎛⎫
+>
⎪⎝⎭
,得151x +>,
解得()1,0,4x ⎛
⎫∈-∞-+∞ ⎪⎝⎭
. (2)
()1
425a a x a x
+=-+-,()()24510a x a x -+--=, 当4a =时,1x =-,经检验,满足题意. 当3a =时,121x x ==-,经检验,满足题意. 当3a ≠且4a ≠时,11
4
x a =
-,21x =-,12x x ≠. 1x 是原方程的解当且仅当
1
1
0a x +>,即2a >;
2x 是原方程的解当且仅当
2
1
0a x +>,即1a >. 于是满足题意的(]1,2a ∈.
综上,a 的取值范围为(]{}1,23,4 . (3)当120x x <<时,
12
11
a a x x +>+,221211log log a a x x ⎛⎫⎛⎫+>+ ⎪ ⎪⎝⎭⎝⎭
, 所以()f x 在()0,+∞上单调递减.
函数()f x 在区间[],1t t +上的最大值与最小值分别为()f t ,()1f t +.
()()22111log log 11f t f t a a t t ⎛⎫⎛⎫
-+=+-+≤ ⎪ ⎪+⎝⎭⎝⎭即()2110at a t ++-≥,对任意
1,12t ⎡⎤
∈⎢⎥⎣⎦
成立. 因为0a >,所以函数()211y at a t =++-在区间1,12⎡⎤⎢⎥⎣⎦
上单调递增,1
2
t =时,y 有最小值
3142a -,由31
042
a -≥,得23a ≥. 故a 的取值范围为2,3⎡⎫+∞⎪⎢⎣⎭
.。