第6章控制转移类指令

合集下载

单片机原理及应用第6讲逻辑运算指令及移位、转移指令

单片机原理及应用第6讲逻辑运算指令及移位、转移指令
只有它影响psw其余四个指影响incrnincdirectincriincdptr会影响psw寄存器中的标志位decrndecdirectdecri只有第一条指令影响psw十进制调整指令da影响psw中的标志位乘法指令mulab影响psw中的标志位ov1则结果超过了255除法指令divab影响psw中的标志位ov1则除数为零除法无意义31h单元编出一完整程序把两个数乘积的低位放入32h单元高放入33h单元org0100hmovr030hmovar0incr0movbr0mulabincr0movr0aincr0movr0bend逻辑运算指令anldirectanldirectorldirectorldirectxrldirectxrldirectdata内部数据存储单元30h有一个数试编程保留其低的低四位送入p1低四位p1口高四位不变外部ram30h中有一个数试编程把它的低四位取反内部ram30h中有一负数的补码循环移位指令rla7a0a7a0a7a0cycya7a0后两条指令影响标志位cy
• (2)带进位加法指令 • ADDC A,Rn • ADDC A, #data • ADDC A, direct • ADDC A, @Ri • 注意:影响PSW寄存器中的Cy 、AC、 OV、P标志位
• (3)加1指令 • INC A;只有它影响PSW,其余四个指 令不 影响 INC Rn INC direct INC @Ri INC DPTR
• • • •
4、累加器清零和取反指令 CLR A CPL A 用于对某个存储单元或累加器A中的数进 行清零和取反
• 例: • 1、内部数据存储单元30H有一个数,试 编程保留其低4位,高4位变为0 • 2、试编程把累加器A的低四位送入P1口 低四位, P1口高四位不变 • 3、外部RAM30H中有一个数,试编程把 它的低四位取反 • 4、内部RAM 30H中有一负数x,试编程 求x的补码

电气控制与PLC应用技术(中国电力出版,崔继仁)PPT 第6章 顺序控制指令

电气控制与PLC应用技术(中国电力出版,崔继仁)PPT  第6章 顺序控制指令

PLC的输入/输出地址分配如表所示。
输入/输出地址分配 编程元件 元件地址 10.0 数字量输入 DC24V 10.1 Q0.0 数字量输出 DC24V Q0.1 Q0.2 符号 Start Stop KM1 KM2 KM3 传感器/执行器 常开按钮 常开按钮 接触器,“1”有效 接触器,“1”有效 接触器,“1”有效 说明 启动按钮 停止按钮 控制电机M1 控制电机M2 控制电机M3
人 行 道 交 通 灯 时 序
车道时序
Q0.2
Q0.1
Q0.0
Q0.2
I0.0 I0.1
人行道时序
30s
10s
5s
20s
5s
5s
Q0.3
Q0.4
Q0.3
功能图
自助行人过街信号灯的设计 控制要求: (1)初始状态,车道绿灯亮,人 行道红灯亮; (2)若没有按下过街按钮,车道 绿灯以50秒为周期连续常亮; (3)若有人按下过街按钮,车道 绿灯保持最后一个50秒周期常亮, 周期结束后,车道红灯亮,人行道 绿灯亮,人行道绿灯保持25秒后, 车道绿灯亮,人行道红灯亮。
I0.0
M1 5s M2 10s M3
S0.1
S0.3
S0.5
I0.1
M3 10s M2 5s M1
S0.6
S0.7
S1.0
图6-9 电动机顺序启动/逆序停止控制示意图
该控制系统的功能图如图6-10所示。
图6-10 电动机顺序启动/逆序停止顺序功能图
第三节
顺序控制指令应用举例
当I0.0=1或I0.1=1时, 车道Q0.2=1保持,人 行道Q0.3=1保持; 30s后, Q0.2=0,Q0.1=1; 10s后, Q0.1=0,Q0.0=1; 5s后, Q0.3=0,Q0.4=1; 20s后, 绿灯闪烁(Q0.4=0、 1交替); 5s后, Q0.2=1,Q0.3=1

控制转移类指令.ppt

控制转移类指令.ppt
无条件地转移到其他代码段内标号所指定的目标地址处。 操作: 如果标号为其它代码段内定义的标号,则
(IP)←标号的偏移地址 (CS)←标号的段地址 如果标号为本代码段内定义的标号,则该指令同JMP NEAR PTR lable。 说明: ① 也可直接使用数值表达式来给出目标地址,这时可省略FAR属性说明。 JMP 2000H:0100H ② 机器指令代码直接提供了转向地址的段地址和偏移地址,属于直接转 移方式。 ③ 使用绝对地址来表示转移目标地址,因此属于绝对转移。
(2)条件转移指令分为以下四类。
① 单标志位测试转移指令 通过测试单个标志位的状态来决定是否转移的指令。 例:
ADD AX,BX JC LAB1 ;如果 CF = 1,转至 LAB1
CMP CX,DX JE LAB2 ;如果 ZF = 1,转至 LAB2
② 无符号数比较转移指令
该类指令将参与比较的两个数据看作是无符号数,并根据比较运算后 标志位CF和ZF的状态来判断它们之间的大小关系,从而决定是否转移。 例:
说明:
① 8位位移量是带符号数,因此跳转的范围为( -128 --- +127 )。
② 指令中的转移目标地址用相对于当前IP所指向指令的相对位移量来 表示,因此属于相对转移。
例1:
0000H EB 04 0002H B0 01 0004H B3 02 0006H B1 03

例2:
0000H B0 01 0002H B3 02 0004H B1 03 0006H EB F8 0008H B2 04
JBE/JNA 标 CF=1或ZF=1 号
JG/JNLE 标 SF⊕OF=0且

ZF=0
带符号数 比较转移
JGE/JNL 号

控制转移指令

控制转移指令
下面是一个含有无条件转移指令的简单程序的列表文件,它是由汇编语言源程序翻译后产生的。即:
;行号偏移量机器码程序
1 0000 CODE SEGMENT
2 ASSUME CS:CODE
3 0000 0405 PROG_S:ADD AL, 05H
4 0002 90 NOP
5 0003 EBFB JMP SHORT PROG_S
段内间接转移指令
这类指令转向的16位有效地址存放在一个16位寄存器或字存储单元中
用寄存器间接寻址的段内转移指令,要转向的有效地址存放在寄存器中,执行的操作是寄存器的内容送到IP中

JMP BX
若该指令执行前BX=4500H,则指令执行时,将当前IP修改成4500H,程序转到段内偏移地址为4500H处执行
返回地址的IP入栈
由于存放CALL指令的内存首地址为CS:IP=2000:1050H,该指令占3个字节,所以返回地址为2000:1053H,即IP=1053H.于是1053H被推入堆栈
根据当前IP值和位移量DISP计算出新的IP值,作为子程序的入口地址,即:
IP=IP+DISP=1053H+1234H=2287H
中断:INT—中断、INTO—溢出中断、IRET—中断返回
1、无条件转移和过程调用指令
1)JMP无条件转移指令
指令格式:JMP目的
指令功能:使程序无条件转移到指令中指定的目的地址去执行。
这类指令又分为两种类型:
第一种类型:段内转移或近(NEAR)转移,转移指令目的地址和JMP指令在同一代码段中,转移时仅改变IP寄存器的内容,段地址CS的值不变。
JMP DWORD PTR[SI+0125H]
设指令执行前,CS=1200H,IP=05H,DS=2500H,SI=1300H,内存单元(26425H)=4500H,(26427H)=32F0H.而指令中的位移量DISP=0125H,其中高位部分为DISP_H=01H,低位部分DISP_L=25H

控制转移类指令ppt课件(全)

控制转移类指令ppt课件(全)

(4)CJNE @Ri,#data,rel 该指令功能:若(( Ri ))≥ data,(CY)=0; 若(( Ri ))<data ,CY=1; 若(( Ri ))≠ data,则PC←(PC)+rel,转移; 若(( Ri ))=data,则程序顺序执行.
例:如果(A) ≠ 00H,转移到CX1;如果(R1) ≠ 10H, 转移到CX2;如果(A) ≠(60H),转移到CX3。程序段 如下:
(2)指令长短不一样。LJMP是3字节指令;AJMP、 SJMP是2字节指令;JMP是1字节指令。
(3)指令机器码构成不同。AJMP、LJMP、JMP后跟 的是绝对地址,而SJMP后跟的是相对地址。
(4)地址特点不同。LJMP、AJMP、SJMP的转移目标 地址是固定的,程序执行过程中不变;JMP的转移目 标地址随程序的执行是动态变化的。
1. 长跳转指令 LJMP (3字节) LJMP addr16 ; PC addr16
•执行该指令时, 将目标语句的16位地址addr16装入 PC, 程序无条件转向指定的目标语句执行。 •由于长跳转指令提供的是16位地址,对应64KB的程 序存储器地址空间,所以可跳转到64KB程序存储器 地址空间的任何地方。 •实际应用中长跳转汇编指令写作“LJMP 目标语句 标号”的形式,如“LJMP LOOP”。
• 指令对A、DPTR和标志位均无影响。
注意:以上四条指令结果均不影响程序状态 字寄存器 PSW 。
5.LJMP、AJMP、SJMP、JMP四条无条件转移指令的 区别:
(1)转移范围不一样。LJMP、JMP转移范围是64KB; AJMP转移范围是与当前PC值同一个2KB区间;SJMP 转移范围是相对当前PC值的-128B~+127B范围内。

微机原理6_控制转移类指令

微机原理6_控制转移类指令

还可用SAR、ROR和RCR指令
;将AX的最低位D0移进CF
jnc even
;标志CF=0,即D0=0:AX内是偶数,程序转移
add ax,1
;标志CF=1,即D0=1:AX内的奇数,加1
even: shr ax,1
;AX←AX÷2
第2章:例题2.22解答3 用JNS指令实现
mov bx,ax
ror bx,1
done: ……
第2章:例2.24 偶校验
;对DL寄存器中8位数据进行偶校验 ;校验位存入CF标志
2:将最低位用移位指令移至进位标志,判断进位标志是0, AX就是偶数;否则,为奇数
3:将最低位用移位指令移至最高位(符号位),判断符号 标志是0,AX就是偶数;否则,为奇数
第2章:例题2.22解答1 用JZ指令实现
test ax,01h
;测试AX的最低位D0(不用AND指令,以免改变AX)
jz even
第2章:无条件转移指令JMP(jump)
JMP label
;段内转移、相对寻址
;IP←IP+位移量
演示
JMP r16/m16
;段内转移、间接寻址
;IP←r16/m16
演示 演示
JMP far ptr label ;段间转移、直接寻址
;IP←偏移地址,CS←段地址
演示
JMP far ptr mem ;段间转移,间接寻址
第2章:例题2.22
题目:将AX中存放的无符号数除以2,如果是奇 数则加1后除以2 问题:如何判断AX中的数据是奇数还是偶数? 解答:判断AX最低位是“0”(偶数),还是“1” (奇数)。可以用位操作类指令
1:用逻辑与指令将除最低位外的其他位变成0,保留最低位 不变。判断这个数据是0,AX就是偶数;否则,为奇数

3.5 控制转移和位操作指令(8)

3.5 控制转移和位操作指令(8)

2、条件转移指令 条件转移就是程序转移是有条件的。执行条件转移指 令时,如指令中规定的条件满足,则进行程序转移,否则 程序顺序执行。条件转移有如下指令: (1)累加器判零转移指令:JZ rel和 JNZ rel指令 这两条指令都是二字节指令,是有条件的相对转移指令, 以rel为偏移量。 (2)数值比较条件转移指令 数值比较条件转移指令把两个操作数进行比较,比较 结果作为条件来控制程序转移。共有四条指令: CJNE A,#data,rel;累加器内容与立即数不等转移 CJNE A,direct,rn ,#data,rel ;寄存器内容与立即数不等转移 CJNE @Ri,#data,rel ;内部RAM前128单元内容与立 即数不等转移。
汇编语言程序中,为等待中断或程序结束,常使程 序“原地踏步” ,对此可使用SJMP指令完成:HERE: SJMP HERE 或 HERE:SJMP $指令机器码为 80FEH。在汇编语言中,以“$”代表PC的当前值。 执行指令:L00P:SJMP L00P1,如果L00P的标 号值为0100H(即SJMP这条指令的机器码存于0100H 和0101H两个单元之中),标号L00P1值为0123H,即 跳转的目标地址为0123H,则指令的第二个字节(相对 偏移量)应为:rel=0123H一0102H=21H 。 (4)基址加变址寻址转移(变址转移)指令: JMP @A+DPTR ; (PC)←(A)+(DPTR) 这是一条一字节转移指令,转移的目的地址=(A) +(DPTR)。指令以DPTR内容为基址,而以A的内容 作变址。只要把DPTR的值固定,而给A赋以不同的值, 即可实现程序的多分支转移。键盘译码程序就是本指令 的一个典型应用。 (如P113例3.30)
2、位置位、复位指令 SETB C ; (Cy)←l SETB bit ; (bit)←1 CLR C ; (Cy)←0 CLR bit ; (bit)←0 3、位运算指令 ANL C,bit ; (Cy)←(Cy)∧(bit) ANL C,/ bit ; (Cy)←(Cy)∧/( bit ) ORL C,bit ; (Cy)←(Cy)∨(bit) ORL C,/ bit ; (Cy)←(Cy)∨/( bit ) CPL C ; (Cy)←/(Cy) CPL bit ; (bit)←/(bit)(P120例3.37) 4、位控制转移指令 位控制转移指令就是以位的状态作为实现程序转移的 判断条件。

控制转移类指令

控制转移类指令

MOV A,R7
RL A ;键值2倍,AJMP指令为双字节指令
MOV DPTR,#KEYG
JMP @A+DPTR
•••
KEYG: AJMP KEY0
KEYG+2: AJMP KEY1
•••
KEYG+30: AJMP KEY15
2.条件转移指令
条件转移指令是当满足给定条件时,程序转移到 目标地址去执行;条件不满足则顺序执行下一条 指令
用在中断服务程序的末尾 RETI与RET指令区别: RETI在返回的同
时同时释放中断逻辑
CJNE @Ri,#data,rel;
(PC)←(PC)+3 若data<((Ri)),(PC)←(PC)+rel且Cy←0; 若data>((Ri)),(PC)←(PC)+rel且Cy←1; 若data=((Ri)),顺序执行且Cy←0
例: MOV A, #40H
MOV R0,#10H
DJNZ direct,rel ;
(PC)←(PC)+3,(direct)←(direct)-1 当(diect)≠0时,(PC)←(PC)+rel; 当(direct)=0时,程序顺序执行。
注:操作数的内容先减1再判零,不等于0时转移
3.子程序调用
本指令完成两项操作:①把PC当前值压入堆栈;② 把子程序入口地址送PC。
⑴长调用指令 LCALL addr16 ;
(PC)←(PC)+3
(SP)←(SP)+1,((SP))←(PC)7~0;
(SP)←(SP)+1,((SP))←(PC)15~8;Biblioteka PC15~0←addr16
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档