第7章 平面直角坐标系-面积问题专练
人教版第七章《平面直角坐标系》全章同步练习(含答案)- (4)

2019中考数学一轮复习单元检测试卷第七单元 平面直角坐标系考试时间:120分钟;满分:150分学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,每小题4分,共40分)1.已知点A (﹣3,0),则A 点在( ) A .x 轴的正半轴上 B .x 轴的负半轴上 C .y 轴的正半轴上D .y 轴的负半轴上2.如果P (m +3,2m +4)在y 轴上,那么点P 的坐标是( ) A .(﹣2,0)B .(0,﹣2)C .(1,0)D .(0,1)3.点P 在四象限,且点P 到x 轴的距离为3,点P 到y 轴的距离为2,则点P 的坐标为( ) A .(﹣3,﹣2)B .(3,﹣2)C .(2,3)D .(2,﹣3)4.点P (x ﹣1,x +1)不可能在( ) A .第一象限B .第二象限C .第三象限D .第四象限5.如图是在方格纸上画出的小旗图案,若用(0,0)表示A 点,(0,4)表示B 点,那么C 点的位置可表示为( )A .(0,3)B .(2,3)C .(3,2)D .(3,0)6.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )得 分 评卷人A.(5,4)B.(4,5)C.(3,4)D.(4,3)7.在下列点中,与点A(﹣2,﹣4)的连线平行于y轴的是()A.(2,﹣4)B.(4,﹣2)C.(﹣2,4)D.(﹣4,2)8.平面直角坐标系中,点A(﹣3,2),B(3,4),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,4)B.2,(3,2)C.2,(3,0)D.1,(4,2)9.如图所示,三架飞机P,Q,R保持编队飞行,某时刻在坐标系中的坐标分别为(﹣1,1),(﹣3,1),(﹣1,﹣1).30秒后,飞机P飞到P′(4,3)位置,则飞机Q,R的位置Q′,R′分别为()A.Q′(2,3),R′(4,1)B.Q′(2,3),R′(2,1)C.Q′(2,2),R′(4,1)D.Q′(3,3),R′(3,1)10.如图,在平面直角坐标系xOy中,点P(1,0).点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位至点P3,第4次向右跳动3个单位至点P4,第5次又向上跳动1个单位至点P5,第6次向左跳动4个单位至点P6,….照此规律,点P第100次跳动至点P100的坐标是()A.(﹣26,50)B.(﹣25,50)C.(26,50)D.(25,50)二、填空题(本大题共4小题,每小题5分,共20分)11.如果点P在第二象限内,点P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为.12.已知△ABC的三个顶点分别为A(﹣2,3)、B(﹣4,﹣1)、C(2,0),现将△ABC 平移至△A′B′C′处,且A′坐标为(﹣1,2),则B′、C′点的坐标分别为.13.A、B两点的坐标分别为(1,0)、(0,2),若将线段AB平移至A1B1,点A1、B1的坐标分别为(2,a),(b,3),则a+b=.14.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2018的坐标为.三、解答题(本大题共9小题,满分90分,其中第15,16,17,18题每题8分,19,20题每题10分,21,22题每题12分,23题14分)15.在直角坐标平面内,已点A(3,0)、B(﹣5,3),将点A向左平移6个单位到达C 点,将点B向下平移6个单位到达D点.(1)写出C点、D点的坐标:C,D;得分评卷人得分评卷人(2)把这些点按A﹣B﹣C﹣D﹣A顺次连接起来,这个图形的面积是.16.如图,在平面网格中每个小正方形边长为1.(1)线段CD是线段AB经过怎样的平移后得到的;(2)线段AC是线段BD经过怎样的平移后得到的.17.平面直角坐标系中,△ABC的三个顶点坐标分别为A(0,4)B(2,4)C(3,﹣1).(1)试在平面直角坐标系中,标出A、B、C三点;(2)求△ABC的面积.(3)若△DEF与△ABC关于x轴对称,写出D、E、F的坐标.18.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)填空:点A的坐标是,点B的坐标是;(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′.请写出△A′B′C′的三个顶点坐标;(3)求△ABC的面积.19.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A→C(,),B→C(,),C→D(,);(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的最少路程;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置.20.在平面直角坐标中表示下面各点A(0,3),B(1,﹣3),C(3,﹣5),D(﹣3,﹣5),E(3,5),F(5,7)(1)A点到原点O的距离是.(2)将点C向x轴的负方向平移6个单位它与点重合.(3)连接CE,则直线CE与y轴位置关系是.(4)点F分别到x、y轴的距离分别是.21.小明的爷爷退休生活可丰富了!下表是他某日的活动安排.和平广场位于爷爷家东400米,老年大学位于爷爷家西600米.从爷爷家到和平路小学需先向南走300米,再向西走400米.早晨6:00﹣7:00与奶奶一起到和平广场锻炼上午9:00﹣11:00与奶奶一起上老年大学下午4:30﹣5:30到和平路小学讲校史(1)请依据图示中给定的单位长度,在图中标出和平广场A、老年大学B与和平路小学的位置;(2)求爷爷家到和平路小学的直线距离.22.在平面直角坐标系中,设坐标轴的单位长度为1cm,整数点P从原点O出发,速度为1cm/s,且点P只能向上或向右运动,请回答下列问题:(1)填表:P从O点出发时间可得到整数点的坐标可得到整数点的个数1秒(0,1)、(1,0)22秒3秒(2)当P点从点O出发10秒,可得到的整数点的个数是个.(3)当P点从点O出发秒时,可得到整数点(10,5)23.先阅读下列一段文字,在回答后面的问题.已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离公式,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离;(2)已知A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A、B两点间的距离.(3)已知一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),你能判定此三角形的形状吗?说明理由.参考答案与试题解析一.选择题(共10小题)1.解:点A(﹣3,0)在x轴的负半轴上.故选:B.2.解:∵P(m+3,2m+4)在y轴上,∴m+3=0,解得m=﹣3,2m+4=﹣2,∴点P的坐标是(0,﹣2).故选:B.3.解:∵P在第四象限内,∴点P的横坐标>0,纵坐标<0,又∵点P到x轴的距离为3,即纵坐标是﹣3;点P到y轴的距离为2,即横坐标是2,∴点P的坐标为(2,﹣3).故选:D.4.解:本题可以转化为不等式组的问题,看下列不等式组哪个无解,(1),解得x>1,故x﹣1>0,x+1>0,点在第一象限;(2),解得x<﹣1,故x﹣1<0,x+1<0,点在第三象限;(3),无解;(4),解得﹣1<x<1,故x﹣1<0,x+1>0,点在第二象限.故选:D.5.解:用(0,0)表示A点,(0,4)表示B点,则以点A为坐标原点,AB所在直线为y轴,向上为正方向,x轴是过点A的水平直线,向右为正方向.所以点C的坐标为(3,2)故选:C.6.解:如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).故选:D.7.解:∵平行于y轴的直线上所有点的横坐标相等,已知点A(﹣2,﹣4)横坐标为﹣2,所以结合各选项所求点为(﹣2,4).故选:C.8.解:如图所示:由垂线段最短可知:当BC⊥AC时,BC有最小值.∴点C的坐标为(3,2),线段的最小值为2.故选:B.9.解:由点P(﹣1,1)到P′(4,3)知,编队需向右平移5个单位、向上平移2个单位,∴点Q(﹣3,1)的对应点Q′坐标为(2,3),点R(﹣1,﹣1)的对应点R′(4,1),故选:A.10.解:经过观察可得:P1和P2的纵坐标均为1,P3和P4的纵坐标均为2,P5和P6的纵坐标均为3,因此可以推知P99和P100的纵坐标均为100÷2=50;其中4的倍数的跳动都在y轴的右侧,那么第100次跳动得到的横坐标也在y轴右侧.P1横坐标为1,P4横坐标为2,P8横坐标为3,依此类推可得到:P n的横坐标为n÷4+1(n 是4的倍数).故点P100的横坐标为:100÷4+1=26,纵坐标为:100÷2=50,点P第100次跳动至点P100的坐标是(26,50).故选:C.二.填空题(共4小题)11.解:∵点P在第二象限内,点P到x轴的距离是4,到y轴的距离是3,∴点P的横坐标是﹣3,纵坐标是4,∴点P 的坐标为(﹣3,4). 故答案为:(﹣3,4). 12.解:∵﹣1﹣(﹣2)=1, 2﹣3=﹣1,∴点A 的横坐标加1,纵坐标减1可得A ′的坐标; ∴B ′的横坐标为﹣4+1=﹣3,纵坐标为﹣1﹣1=﹣2; C ′的横坐标为2+1=3,纵坐标为0﹣1=﹣1. 故答案为:B ′(﹣3,﹣2)、C ′(3,﹣1).13.解:由题意可得线段AB 向右平移1个单位,向上平移了1个单位, ∵A 、B 两点的坐标分别为(1,0)、(0,2), ∴点A 1、B 1的坐标分别为(2,1),(1,3), ∴a +b =2, 故答案为:2.14.解:由A 2(1,1),A 6(3,1),A 10(5,1)…可得到以下规律,A 4n ﹣2(2n ﹣1,1)(n 为不为0的自然数), 当n =505时,A 2018(1009,1). 故答案为:(1009,1) 三.解答题(共9小题)15.解:(1)∵点A 向左平移6个单位到达C 点,将点B 向下平移6个单位到达D 点, ∴得C (﹣3,0),D (﹣5,﹣3);(2)如图,S 四边形ABCD =S △ABC +S △ACD , =×3×6+×3×6, =18.故答案为(﹣3,0),(﹣5,﹣3);18.16.解:(1)将线段AB向右(或下)平移3个小格(或4个小格),再向下(或右)平移4个小格(或3个小格),得线段CD.(2)将线段BD向右平移(或向下平移1个小格)3个小格,再向下平移(可左平移3个小格)1个小格,得到线段AC.17.解:(1)如图所示:(2)由图形可得:AB=2,AB边上的高=|﹣1|+|4|=5,∴△ABC的面积=×2×5=5.(3)∵A(0,4),B(2,4),C(3,﹣1),△DEF与△ABC关于x轴对称,∴D(0,﹣4)、E(2,﹣4)、F(3,1).18.解:(1)A(2,﹣1),B(4,3);故答案为(2,﹣1),(4,3);(2)如图,△A′B′C′为所作;A′(0,0),B′(2,4),C′(﹣1,3);(3)△ABC的面积=3×4﹣×2×4﹣×3×1﹣×3×1=5.19.解:(1)A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);(2)1+4+2+1+2=10;(3)点P如图所示.20.解:(1)A点到原点O的距离是3﹣0=3.(2)将点C向x轴的负方向平移6个单位它与点D重合.(3)连接CE,则直线CE与y轴位置关系是平行.(4)点F分别到x、y轴的距离分别是7,5.故答案为:3;D;平行;7,5.21.解:(1)以爷爷家为坐标原点,东西方向为x轴,南北方向为y轴建立坐标系.早晨6:00﹣7:00与奶奶一起到和平广场锻炼上午9:00﹣11:00与奶奶一起上老年大学下午4:30﹣5:30到和平路小学讲校史可得:和平广场A坐标为(400,0);老年大学(﹣600,0);平路小学(﹣400,﹣300).(2)由(1)得:和平路小学(﹣400,﹣300),爷爷家为坐标原点,即(0,0)故爷爷家到和平路小学的直线距离为=500(m).22.解:(1)以1秒时达到的整数点为基准,向上或向右移动一格得到2秒时的可能的整数点;再以2秒时得到的整数点为基准,向上或向右移动一格,得到3秒时可能得到的整数点.P从O点出发时间可得到整数点的坐标可得到整数点的个数1秒(0,1)、(1,0)22秒(0,2),(2,0),(1,31)3秒(0,3),(3,0),(2,41),(1,2)(2)1秒时,达到2个整数点;2秒时,达到3个整数点;3秒时,达到4个整数点,那么10秒时,应达到11个整数点;(3)横坐标为10,需要从原点开始沿x轴向右移动10秒,纵坐标为5,需再向上移动5秒,所以需要的时间为15秒.23.解:(1)∵A(2,4)、B(﹣3,﹣8),∴|AB|==13,即A、B两点间的距离是13;(2)∵A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,∴|AB|=|﹣1﹣5|=6,即A、B两点间的距离是6;(3)∵一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),∴AB=5,BC=6,AC=5,∴AB=AC,∴△ABC是等腰三角形.。
专题07 第七章 平面直角坐标系[能力提优测试卷](解析版)七年级数学下册(人教版)
七年级数学下册(人教版)](https://img.taocdn.com/s3/m/7aa2abe3de80d4d8d05a4fd6.png)
2020-2021学年度人教版七年级数学下册新考向多视角同步训练第七章平面直角坐标系[能力提优测试卷]时间:90分钟满分:120分一、选择题(本大题共8小题,每小题3分,24分在每小题的4个选项中,只有一个选项是符合题目要求的)1.(2020辽宁抚顺期末,6)若点P(m,2-m)的横坐标与纵坐标相同,则点P的坐标是( )A.(1,1)B.(2,2)C.(-1,-1)D.(-2,-2)2.(2020浙江宁波外国语学校期中,6)在平面直角坐标系xOy中,A(2,4),B(-2,3),C(4,-1,将线段AB平移得到线段CD,其中点A的对应点是C,则点B的对应点D的坐标为( )A.(-4,8)B.(4,-8)C.(0,2)D.(0,-2)3.(2020山东枣庄二中月考,7)如图是某战役缴获敌人防御工事的地图碎片,依稀可见,一号暗堡的坐标为(4,2),四号暗堡的坐标为(-2,4),原有情报得知:敌军指挥部的坐标为(0,0),你认为敌军指挥部的大概位置在( ) A.点A B.点B C.点C D.点D4.(2020北京丰台期末,5)如图是老北京城一些地点的分布示意图在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,当表示地安门的点的坐标为(0,4),表示广安门的点的坐标为(-6,-3)时,表示左安门的点的坐标为( )A.(-5,-6)B.(5,-6)C.(6,-5)D.(-5,6)5.(2020独家原创试题)下列语句正确的是( )A.平行于x轴的直线上所有点的横坐标都相同B.在平面直角坐标系中,(-3,5)与(5,-3)表示两个不同的点C.若点P(a,b)在y轴上,则b=0D.若P(-3,4),则点P到x轴的距离为36.(2019河南师大附中期中,7)如图所示,在5×5的方格纸中,每个小正方形的边长都为1,点O,A,B在方格线的交点(格点)上在第四象限内的格点上找一点C使△ABC的面积为3,则这样的点C共有( )A.2个B.3个C.4个D.5个7.(2019河北石家庄辛集四校联考,6)如图所示,在平面直角坐标系中,点A、B、C的坐标分别是(-3,1)、(-2,0)、(-1,3),将三角形ABC平移得到三角形A1B1C1,点B的对应点B1的坐标是(1,-2),则点A1、C1的坐标分别是( ) A.(0,1)、(2,2) B.(0,-1)、(2,1) C.(0,-1)、(2,-1) D.(-1,0)、(3,1)8.(2020独家原创试题)如图,动点P在平面直角坐标系xOy中按图中箭头所示方向运动,第1次从原点运动到点(1,2),第2次接着运动到点(2,0),第3次接着运动到点(,1),第4次接着运动到点(4,0),…按这样的运动规律,经过第2021次运动后,动点P的坐标是( )A.(2020,0)B.(2020,1)C.(2021,1)D.(2021,2)二、填空题(本大题共8小题,每小题4分,共32分)9.(2020独家原创试题)如图是电脑中 Excel(子表格)的一部分,中间工作区被分成若干个单元格如果“一班”在单元格A2内,那么“67”在单元格________内,单元格C1的内容是________10.(2020河南郑州五十七中期中,12)如图是标准围棋盘的一部分,棋盘上有三枚黑子A,B,.若棋子A所在位置的坐标为(-1,8),棋子B所在位置的坐标为(-4,3),则棋子C所在位置的坐标为________。
2020-2021学年人教版数学七年级下学期《第7章平面直角坐标系》测试卷及答案解析

2020-2021学年人教版数学七年级下学期《第7章平面直角坐标系》测试卷一.选择题(共8小题)1.在平面直角坐标系中,对于点P(x,y),我们把点P'(﹣y+1,x+1)叫做点P伴随点已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2A3,…,A n,…若点A1的坐标为(2,4),点A2019的坐标为()A.(﹣3,3)B.(﹣2,﹣2)C.(3,﹣1)D.(2,4)2.已知:在直角坐标系中,点A,B的坐标分别是(1,0),(0,3),将线段AB平移,平移后点A的对应点A′的坐标是(2,﹣1),那么点B的对应点B′的坐标是()A.(2,1)B.(2,3)C.(2,2)D.(1,2)3.预备知识:线段中点坐标公式:在平面直角坐标系中,已知A(x1,y1),B(x2,y2),设点M为线段AB的中点,则点M的坐标为()应用:设线段CD的中点为点N,其坐标为(3,2),若端点C的坐标为(7,3),则端点D的坐标为()A.(﹣1,1)B.(﹣2,4)C.(﹣2,1)D.(﹣1,4)4.定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(5,﹣3),C(﹣1,﹣5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为()A.(1,﹣2)B.(2,﹣1)C.(,﹣1)D.(3.0)5.如图,在平面直角坐标系中,A(﹣3,0),B(3,0),C(3,4),点P为任意一点,已知P A⊥PB,则线段PC的最大值为()A.3B.5C.8D.106.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2019个点的纵坐标为()A.5B.6C.7D.87.如图,在平面直角坐标系中,将正整数按箭头所指的顺序排列,则正整数2019所在的点的坐标是()A.(45,7)B.(45,39)C.(44,6)D.(44,39)8.如图所示,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)、(﹣2,1),将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),则点C对应的点C1的坐标是()A.C1(3,2)B.C1(2,1)C.C1(2,3)D.C1(2,2)二.填空题(共33小题)9.如图,在平面直角坐标系中,已知四个定点A(﹣3,0)、B(1,﹣1)、C(0,3)、D(﹣1,3),点P在四边形ABCD内,则到四边形四个顶点的距离的和P A+PB+PC+PD最小时的点P的坐标为.10.如图,点A1的坐标为(1,0),A2在y轴的正半轴上,且∠A1A2O=30°,过点A2作A2A3⊥A1A2,垂足为A2,交x轴于点A3;过点A3作A3A4⊥A2A3,垂足为A3,交y轴于点A4;过点A4作A4A5⊥A3A4,垂足为A4,交x轴于点A5;过点A5作A5A6⊥A4A5,垂足为A5,交y轴于点A6;…按此规律进行下去,则点A2019的横坐标为.11.如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x 轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2019的坐标为.12.如图,在平面直角坐标系中有一边长为1的正方形OABC,边OA,OC分别在x轴,y 轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OB1为边作第三个正方形OB1B2C2,照此规律作下去,则点B2019的坐标为.13.如图,等边三角形ABC的边长为1,顶点B与原点O重合,点C在x轴的正半轴上,过点B作BA1⊥AC于点A1,过点作A1B1∥OA,交OC于点B1;过点B1作B1A2⊥AC于点A2,过点A2作A2B2∥OA,交OC于点B2;…,按着这个规律进行下去,点A n的坐标是.14.如图,直线l1经过点A(3,),过点A且垂直于l1的直线与x轴交于点B,与直线l2交于点C,且∠BOC=30°,则BC的长等于.15.如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,0A1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2019的坐标是.16.如图,在平面直角坐标系中,点M、A、B、N依次在x轴上,点M、A的坐标分别是(1,0)、(2,0).以点A为圆心,AM长为半径画弧,再以点B为圆心,BN长为半径画弧,两弧交于点C,测得∠MAC=120°,∠CBN=150°.则点N的坐标是.17.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动一个单位,依次得到点P1(0,1);P2(1,1);P3(1,0);P4(1,﹣1);P5(2,﹣1);P6(2,0)……,则点P2019的坐标是.18.如图,点P是第一象限内一点,OP=4,经过点P的直线l分别与x轴、y轴的正半轴交于点A、点B,若OP平分∠AOB,则=.19.在平面直角坐标系xOy中,点A的坐标为(1,0),P是第一象限内任意一点,连接PO,P A,若∠POA=m°,∠P AO=n°,则我们把(m°,n°)叫做点P的“双角坐标”.例如,点(1,1)的“双角坐标”为(45°,90°).(1)点(,)的“双角坐标”为;(2)若点P到x轴的距离为,则m+n的最小值为.20.如图,点A(0,1),点B(﹣,0),作OA1⊥AB,垂足为A1,以OA1为边作Rt△A1OB1,使∠A1OB1=90°,使∠B1=30°;作OA2⊥A1B1,垂足为A2,再以OA2为边作Rt△A2OB2,使∠A2OB2=90°,∠B2=30°,……,以同样的作法可得到Rt△A n OB n,则当n=2018时,点B2018的纵坐标为.21.如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推……则正方形OB2017B2018C2018的顶点B2018的坐标是.22.如图,已知正方形A1A2A3A4,A5A6A7A8,A9A10A11A12…(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12…)的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6…,则顶点A2018的坐标为.23.如图,点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2019次运动后动点P的坐标是.24.如图,将边长为1的正方形OAPB沿x轴正方向连续翻转2018次,点P依次落在点P1,P2,P3,P4,…P2018的位置,则P2018的横坐标x2018=.25.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2018个点的坐标为.26.定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q 的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(5,﹣3),C(﹣1,﹣5),若点M(6,m)表示单车停放点,且满足M到A,B的“实际距离”相等,则m=.若点N表示单车停放点,且满足N到A,B,C的“实际距离”相等,则点N的坐标为.27.如图,动点P从(0,3)出发,沿所示的方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,第一次碰到长方形的边时的位置为P1(3,0),当点P第2018次碰到长方形的边时,点P的坐标为.28.在平面直角坐标系中,将点(﹣b,﹣a)称为点(a,b)的“关联点”(例如点(﹣2,﹣1)是点(1,2)的“关联点”).如果一个点和它的“关联点”在同一象限内,那么这一点在第象限.29.如图,在△ABO中,A(﹣4,0),B(0,3),OC为AB边的中线,以O为圆心,线段OC长为半径画弧,交x轴正半轴于点D,则点D的坐标为.30.如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时,记为点P1,第2次碰到矩形的边时,记为点P2,…第n次碰到矩形的边时,记为点P n,则点P4的坐标是;点P125的坐标是.31.在平面直角坐标系中,当M(x,y)不是坐标轴上点时,定义M的“影子点”为M(,﹣),点P(a,b)的“影子点”是点P’,则点P’的“影子点”P''的坐标为.32.已知直角平面坐标系内有两点,点P(4,2)与点Q(a,a+2),则PQ的最小值为.33.已知平面直角坐标系xOy中,点A(8,0)及在第一象限的动点P(x,),设△OP A 的面积为S.则S随x的增大而.(填“增大”,“不变”或“减小”)34.如图,在平面直角坐标系中,B,C两点的坐标分别为(﹣3,0)和(7,0),AB=AC =13,则点A的坐标为.35.无论m为何值,点A(m﹣1,m+1)不可能在第象限.36.对于任意实数x,点P(x,x2﹣4x)一定不在第象限.37.已知点P(2﹣a,2a﹣7)(其中a为整数)位于第三象限,则点P坐标为.38.在直角坐标系xOy中,对于点P(x,y),我们把点P′(y+1,﹣x+1)叫做点P的影子点.已知点A1的影子点为A2,点A2的影子点为A3,点A3的影子点为A4,…,这样依次得到点A1,A2,A3,…,A n,…若点A1的坐标为(a,b),对于任意的正整数n,点A n均在y轴的右侧,则a,b应满足的条件是.39.在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.已知点A(0,4),点B是x轴正半轴上的整点,若△AOB内部(不包括边)的整点个数为3,则点B的横坐标的所有可能值是.40.平面直角坐标系中,点P(x,y)位于第二象限,并且y≤2x+6,x、y为整数,则点P 的坐标是(任意写一个,正确即可).41.对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(a+kb,ka+b)(其中k 为常数,且k≠0),则称点P′为点P的“k属派生点”,例如:P(1,4)的“2属派生点”为P′(1+2×4,2×1+4),即P′(9,6).若点P在x轴的正半轴上,点P的“k 属派生点”为P′点.且线段PP'的长度为线段OP长度的3倍,则k的值.三.解答题(共9小题)42.在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(﹣3,1),C(2,﹣2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=20.根据所给定义解决下列问题:(1)若已知点D(1,2)、E(﹣2,1)、F(0,6),则这3点的“矩面积”=.(2)若D(1,2)、E(﹣2,1)、F(0,t)三点的“矩面积”为18,求点F的坐标.43.若点P(2a﹣4,a+2)是第二象限内的整点(横纵坐标都是整数),求满足条件的所有P点坐标.44.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足+|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a=,b=,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.45.(1)在数轴上,点A表示数3,点B表示数﹣2,我们称A的坐标为3,B的坐标为﹣2;那么A、B的距离AB=;一般地,在数轴上,点A的坐标为x1,点B的坐标为x2,则A、B的距离AB=;(2)如图,在直角坐标系中点P1(x1,y1),点P2(x2,y2),求P1、P2的距离P1P2;(3)如图,△ABC中,AO是BC边上的中线,利用(2)的结论证明:AB2+AC2=2(AO2+OC2).46.在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到x、y轴的距离中的最大值等于点Q到x、y轴的距离中的最大值,则称P,Q两点为“等距点”.下图中的P,Q两点即为“等距点”.(1)已知点A的坐标为(﹣3,1),①在点E(0,3),F(3,﹣3),G(2,﹣5)中,为点A的“等距点”的是;②若点B的坐标为B(m,m+6),且A,B两点为“等距点”,则点B的坐标为;(2)若T1(﹣1,﹣k﹣3),T2(4,4k﹣3)两点为“等距点”,求k的值.47.已知A(0,a),B(﹣b,﹣1),C(b,0)且满足﹣|b+2|+=0.(1)求A、B、C三点的坐标;(2)如图1所示,CD∥AB,∠DCO的角平分线与∠BAO的补角的角平分线交于点E,求出∠E的度数;(3)如图2,把直线AB以每秒1个单位的速度向左平移,问经过多少秒后,该直线与y 轴交于点(0,﹣5).48.已知点A(a,0)和B(0,b)满足(a﹣4)2+|b﹣6|=0,分别过点A、B作x轴、y 轴的垂线交于点C,如图所示,点P从原点出发,以每秒1个单位长度的速度沿着O﹣B﹣C﹣A﹣O的路线移动.(1)写出A、B、C三点的坐标;A,B,C;(2)点P在运动过程中,当△OAP的面积为6时,求点P的坐标;(3)当P运动14秒时,连结O、P两点,将线段OP向上平移h个单位(h>0),得到O'P',若O'P'将四边形OACB的面积分成相等的两部分,求h的值.49.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3.(1)观察每次变换前后的三角形的变化规律,若将△OA3B3变换成△OA4B4,则A4的坐标是,B4的坐标是.(2)若按第(1)题找到的规律将△OAB进行n次变换,得到△OA n B n,比较每次变换中三角形顶点坐标有何变化,找出规律,推测A n的坐标是,B n的坐标是.(3)若按第(1)题找到的规律将△OAB进行n次变换,得到△OA n B n,则△OA n B n的面积S为50.对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(a+kb,ka+b)(其中k 为常数,且k≠0),则称点P′为点P的“k属派生点”.例如:P(1,4)的“2属派生点”为P′(1+2×4,2×1+4),即P′(9,6).(1)点P(﹣1,6)的“2属派生点”P′的坐标为;(2)若点P的“3属派生点”P′的坐标为(6,2),则点P的坐标;(3)若点P在x轴的正半轴上,点P的“k属派生点”为P′点,且线段PP′的长度为线段OP长度的2倍,求k的值.2020-2021学年人教版数学七年级下学期《第7章平面直角坐标系》测试卷参考答案与试题解析一.选择题(共8小题)1.在平面直角坐标系中,对于点P(x,y),我们把点P'(﹣y+1,x+1)叫做点P伴随点已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2A3,…,A n,…若点A1的坐标为(2,4),点A2019的坐标为()A.(﹣3,3)B.(﹣2,﹣2)C.(3,﹣1)D.(2,4)【分析】据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2019除以4,根据商和余数的情况确定点A2019的坐标即可.【解答】解:观察发现:A1(2,4),A2(﹣3,3),A3(﹣2,﹣2),A4(3,﹣1),A5(2,4),A6(﹣3,3)…∴依此类推,每4个点为一个循环组依次循环,∵2019÷4=504余3,∴点A2019的坐标与A3的坐标相同,为(﹣2,﹣2),故选:B.【点评】本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键,也是本题的难点.2.已知:在直角坐标系中,点A,B的坐标分别是(1,0),(0,3),将线段AB平移,平移后点A的对应点A′的坐标是(2,﹣1),那么点B的对应点B′的坐标是()A.(2,1)B.(2,3)C.(2,2)D.(1,2)【分析】根据点A、A′的坐标确定出平移规律,然后根据规律求解点B′的坐标即可.【解答】解:∵A(1,0)的对应点A′的坐标为(2,﹣1),∴平移规律为横坐标加1,纵坐标减1,∵点B(0,3)的对应点为B′,∴B′的坐标为(1,2).故选:D.【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.3.预备知识:线段中点坐标公式:在平面直角坐标系中,已知A(x1,y1),B(x2,y2),设点M为线段AB的中点,则点M的坐标为()应用:设线段CD的中点为点N,其坐标为(3,2),若端点C的坐标为(7,3),则端点D的坐标为()A.(﹣1,1)B.(﹣2,4)C.(﹣2,1)D.(﹣1,4)【分析】根据线段的中点坐标公式即可得到结论.【解答】解:设D(x,y),由中点坐标公式得:=3,=2,∴x=﹣1,y=1,∴D(﹣1,1),故选:A.【点评】此题考查坐标与图形性质,关键是根据线段的中点坐标公式解答.4.定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(5,﹣3),C(﹣1,﹣5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为()A.(1,﹣2)B.(2,﹣1)C.(,﹣1)D.(3.0)【分析】若设M(x,y),构建方程组即可解决问题.【解答】解:设M(x,y),由“实际距离”的定义可知:点M只能在ECFG区域内,﹣1<x<5,﹣5<y<1,又∵M到A,B,C距离相等,∴|x﹣3|+|y﹣1|=|x﹣5|+|y+3|=|x+1|+|y+5|,①∴|x﹣3|+1﹣y=5﹣x+|y+3|=x+1+y+5,②要将|x﹣3|与|y+3|中绝对值去掉,需要判断x在3的左侧和右侧,以及y在﹣3的上侧还是下侧,将矩形ECFG分割为4部分,若要使M到A,B,C的距离相等,由图可知M只能在矩形AENK中,故x<3,y>﹣3,则方程可变为:3﹣x+1﹣y=y+5+x+1=5﹣x+3+y,解得,x=1,y=﹣2,则M(1,﹣2)故选:A.【点评】此题主要考查了坐标确定位置,正确理解实际距离的定义是解题关键.5.如图,在平面直角坐标系中,A(﹣3,0),B(3,0),C(3,4),点P为任意一点,已知P A⊥PB,则线段PC的最大值为()A.3B.5C.8D.10【分析】根据直角三角形斜边上中线的性质,即可得到OP=AB=3,依据OC﹣OP≤CP≤OP+OC,即可得出当点P,O,C在同一直线上,且点P在CO延长线上时,CP的最大值为OP+OC的长.【解答】解:如图所示,连接OC,OP,PC,∵P A⊥PB,∴∠APB=90°,又∵AO=BO=3,∴Rt△ABP中,OP=AB=3,∵OC﹣OP≤CP≤OP+OC,∴当点P,O,C在同一直线上,且点P在CO延长线上时,CP的最大值为OP+OC的长,∴线段PC的最大值为OP+OC=3+5=8,故选:C.【点评】本题主要考查了坐标与图形性质,判断点P在以O为圆心,AB长为直径的圆上是解决问题的关键.6.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2019个点的纵坐标为()A.5B.6C.7D.8【分析】观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,并且右下角的点的横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,当右下角的点横坐标是偶数时,以横坐标为1,纵坐标为右下角横坐标的偶数减1的点结束,根据此规律解答即可.【解答】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),第2019个点是(45,6),所以,第2019个点的纵坐标为6.故选:B.【点评】本题考查了点的坐标,观察出点个数与横坐标的存在的平方关系是解题的关键.7.如图,在平面直角坐标系中,将正整数按箭头所指的顺序排列,则正整数2019所在的点的坐标是()A.(45,7)B.(45,39)C.(44,6)D.(44,39)【分析】观察图的结构,发现所有奇数的平方数都在第1象限的y=1直线上.依此先确定2025的坐标为(45,1),再根据图的结构求得2019的坐标.【解答】解:观察图的结构,发现所有奇数的平方数都在第1象限的y=1直线上.12=1的坐标为(1,1),32=9的坐标为(3,1),52=25的坐标为(5,1),…452=2025的坐标为(45,1),图中横坐标为45的数共有45个数,∵2025﹣2019=6,∴2019的坐标为(45,7).故选:A.【点评】本题考查了点的坐标,找到所有奇数的平方数所在位置是解题的关键.8.如图所示,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)、(﹣2,1),将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),则点C对应的点C1的坐标是()A.C1(3,2)B.C1(2,1)C.C1(2,3)D.C1(2,2)【分析】根据点B(﹣4,1)的对应点B1的坐标是(1,2)知,需将△ABC向右移5个单位、上移1个单位,据此根据平移的定义和性质解答可得.【解答】解:由点B(﹣4,1)的对应点B1坐标为(﹣4+5,1+1),即(1,2),∴点C(﹣2,1)对应的点C1的坐标为(﹣2+5,1+1),即(3,2),故选:A.【点评】本题主要考查坐标与图形的变化﹣平移,解题的关键是根据对应点的坐标得出平移的方向和距离及平移的定义和性质.二.填空题(共33小题)9.如图,在平面直角坐标系中,已知四个定点A(﹣3,0)、B(1,﹣1)、C(0,3)、D(﹣1,3),点P在四边形ABCD内,则到四边形四个顶点的距离的和P A+PB+PC+PD最小时的点P的坐标为(﹣,).【分析】设AC与BD交于F点,则由不等式的性质可得,|P A|+|PC|≥|AC|=|F A|+|FC|,|PB|+|PD|≥|BD|=|FB|+|FD|,可求最小值.【解答】解:如图,设AC与BD交于F点,则|P A|+|PC|≥|AC|=|F A|+|FC|,|PB|+|PD|≥|BD|=|FB|+|FD|,因此,当动点P与F点重合时,|P A|+|PB|+|PC|+|PD|≥|AC|+|BD|=,此时P的坐标为:(﹣,)故答案为:(﹣,)【点评】本题主要考查了轴对称问题,关键是根据不等式的性质在求解最值中的应用解答.10.如图,点A1的坐标为(1,0),A2在y轴的正半轴上,且∠A1A2O=30°,过点A2作A2A3⊥A1A2,垂足为A2,交x轴于点A3;过点A3作A3A4⊥A2A3,垂足为A3,交y轴于点A4;过点A4作A4A5⊥A3A4,垂足为A4,交x轴于点A5;过点A5作A5A6⊥A4A5,垂足为A5,交y轴于点A6;…按此规律进行下去,则点A2019的横坐标为﹣()2018.【分析】先求出A1、A2、A3、A4、A5坐标,探究规律,序号除以4被整除的在y轴的负半轴上,余数是1在x轴的正半轴上,余数是2在y轴的正半轴上,余数是3在x轴的负半轴上,即可得出结果.【解答】解:∵A1(1,0),A2[0,()1],A3[﹣()2,0].A4[0,﹣()3],A5[()4,0]…,∴序号除以4被整除的在y轴的负半轴上,余数是1在x轴的正半轴上,余数是2在y 轴的正半轴上,余数是3在x轴的负半轴上,∵2019÷4=504…余数是3,∴A2019在x轴的负半轴上,横坐标为﹣()2018,故答案为:﹣()2018.【点评】本题考查了图形与坐标、规律型等知识,找出序号除以4被整除的在y轴的负半轴上,余数是1在x轴的正半轴上,余数是2在y轴的正半轴上,余数是3在x轴的负半轴上的规律是解题的关键.11.如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x 轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2019的坐标为(﹣1008,0).【分析】根据图形得到规律:当脚码是1、5、19…时,横坐标是脚码加3和的一半,纵坐标为0;当脚码是2、6、10…时,横坐标为1,纵坐标为脚码的一半的相反数;当脚码是3、7、11…时,横坐标是脚码减3差的一半的相反数,纵坐标为0;当脚码是4、8、12…时,横坐标是2,纵坐标为脚码的一半.然后确定出第2019个点的坐标即可.【解答】解:∵各三角形都是等腰直角三角形,∴直角顶点的纵坐标的长度为斜边的一半,A1(2,0),A2(1,﹣1),A3(0,0),A4(2,2),A5(4,0),A6(1,﹣3),A7(﹣2,0),A8(2,4),A9(6,﹣1),A10(1,﹣5),A11(﹣4,0),A12(2,6),…,由上可知,当脚码是1、5、19…时,横坐标是脚码加3和的一半,纵坐标为0;当脚码是2、6、10…时,横坐标为1,纵坐标为脚码的一半的相反数;当脚码是3、7、11…时,横坐标是脚码减3差的一半的相反数,纵坐标为0;当脚码是4、8、12…时,横坐标是2,纵坐标为脚码的一半.∵2019÷4=504……3,∴点A2019在x轴负半轴上,横坐标是﹣(2019﹣3)÷2=﹣1008,纵坐标是0,∴A2019的坐标为(﹣1008,0).故答案为:(﹣1008,0).【点评】本题是对点的坐标变化规律的考查,找出“当脚码是1、5、19…时,横坐标是脚码加3和的一半,纵坐标为0;当脚码是2、6、10…时,横坐标为1,纵坐标为脚码的一半的相反数;当脚码是3、7、11…时,横坐标是脚码减3差的一半的相反数,纵坐标为0;当脚码是4、8、12…时,横坐标是2,纵坐标为脚码的一半.”这一变化规律是解题的关键.12.如图,在平面直角坐标系中有一边长为1的正方形OABC,边OA,OC分别在x轴,y 轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OB1为边作第三个正方形OB1B2C2,照此规律作下去,则点B2019的坐标为(0,﹣21010).【分析】首先求出B1、B2、B3、B4、B5、B6、B7、B8、B9的坐标,找出这些坐标的之间的规律,然后根据规律计算出点B2019的坐标.【解答】解:∵正方形OABC边长为1,∴OB=,∵正方形OBB1C1是正方形OABC的对角线OB为边,∴OB1=2,∴B1点坐标为(2,0),同理可知OB2=2,B2点坐标为(2,﹣2),同理可知OB3=4,B3点坐标为(0,﹣4),B4点坐标为(﹣4,﹣4),B5点坐标为(﹣8,0),B6(﹣8,8),B7(0,16)B8(16,16),B9(32,0),由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,∵2019÷8=252…3,∴B2019的横坐标,与点B3的相同为0,横纵坐标都是负值,∴B2013的坐标为(0,﹣21010).故答案为:(0,﹣21010).【点评】本题主要考查正方形的性质和坐标与图形的性质的知识点,解答本题的关键是由点坐标的规律发现每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,此题难度较大.13.如图,等边三角形ABC的边长为1,顶点B与原点O重合,点C在x轴的正半轴上,过点B作BA1⊥AC于点A1,过点作A1B1∥OA,交OC于点B1;过点B1作B1A2⊥AC于点A2,过点A2作A2B2∥OA,交OC于点B2;…,按着这个规律进行下去,点A n的坐标是(,).【分析】根据△ABC是等边三角形,得到AB=AC=BC=1,∠ABC=∠A=∠ACB=60°,解直角三角形得到A(,),C(1,0),根据等腰三角形的性质得到AA1=A1C,根据中点坐标公式得到A1(,),推出△A1B1C是等边三角形,得到A2是A1C的中点,求得A2(,),推出A n(,),即可得到结论.【解答】解:∵△ABC是等边三角形,∴AB=AC=BC=1,∠ABC=∠A=∠ACB=60°,∴A(,),C(1,0),∵BA1⊥AC,∴AA1=A1C,∴A1(,),∵A1B1∥OA,∴∠A1B1C=∠ABC=60°,∴△A1B1C是等边三角形,∴A2是A1C的中点,∴A2(,),同理A3(,),…∴A n(,),故答案为:(,).【点评】本题考查了点的坐标,等边三角形的性质,关键是能根据求出的数据得出规律,题目比较好,但是有一定的难度.14.如图,直线l1经过点A(3,),过点A且垂直于l1的直线与x轴交于点B,与直线l2交于点C,且∠BOC=30°,则BC的长等于4.【分析】根据点A的坐标可以求得∠AOB和OA的长度,再根据锐角三角函数可以求得AC和AB的长,从而可以求得BC的长.【解答】解:∵点A(3,),∴tan∠AOB=,OA=,∴∠AOB=30°,∵AC⊥OA于点A,∠BOC=30°,∴∠OAC=90°,∠AOC=60°,∴tan∠AOB=,tan∠AOC=,即tan30°=,tan60°=,解得,AB=2,AC=6,∴BC=AC﹣AB=4,故答案为:4.【点评】本题考查坐标与图形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.15.如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,0A1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2019的坐标是(﹣21009,21009).【分析】利用等腰直角三角形的性质可得出部分点A n的坐标,根据点的坐标的变化可得出变化规律“点A8n+3的坐标为(﹣24n+1,24n+1)(n为自然数)”,结合2019=252×8+3即可得出点A2019的坐标.【解答】解:由等腰直角三角形的性质,可知:A1(1,1),A2(0,2),A3(﹣2,2),A4(0,﹣4),A5(﹣4,﹣4),A6(0,﹣8),A7(8,﹣8),A8(16,0),A9(16,16),A10(0,32),A11(﹣32,32),…,∴点A8n+3的坐标为(﹣24n+1,24n+1)(n为自然数).∵2019=252×8+3,∴点A2019的坐标为(﹣24×252+1,24×252+1),即(﹣21009,21009),故答案为:(﹣21009,21009).【点评】本题考查了等腰直角三角形以及规律型:点的坐标,根据点的坐标的变化找出变化规律“点A8n+3的坐标为(﹣24n+1,24n+1)(n为自然数)”是解题的关键.16.如图,在平面直角坐标系中,点M、A、B、N依次在x轴上,点M、A的坐标分别是(1,0)、(2,0).以点A为圆心,AM长为半径画弧,再以点B为圆心,BN长为半径画弧,两弧交于点C,测得∠MAC=120°,∠CBN=150°.则点N的坐标是(4+,0).【分析】根据含30°的直角三角形的性质和坐标特点解答即可.【解答】解:∵MAC=120°,∴∠CAB=60°,∵∠CBN=150°,∴∠ABC=30°,∴∠C=90°,∵MA=AC=2﹣1=1,∴AB=2AC=2,∴BC=,∴ON=1+1+2+=4+,∴点N的坐标为(4+,0),故答案为:(4+,0),【点评】此题考查坐标与图形,关键是根据含30°的直角三角形的性质和坐标特点解答.17.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动一个单位,依次得到点P1(0,1);P2(1,1);P3(1,0);P4(1,﹣1);P5(2,﹣1);P6(2,0)……,则点P2019的坐标是(673,0).【分析】由P3、P6、P9 可得规律:当下标为3的整数倍时,横坐标为,纵坐标为0,据此可解.【解答】解:由P3、P6、P9 可得规律:当下标为3的整数倍时,横坐标为,纵坐标为0,∵2019÷3=673,∴P2019 (673,0)则点P2019的坐标是(673,0).故答案为(673,0).【点评】本题属于平面直角坐标系中找点的规律问题,找到某种循环规律之后,可以得解.本题难度中等偏上.18.如图,点P是第一象限内一点,OP=4,经过点P的直线l分别与x轴、y轴的正半轴交于点A、点B,若OP平分∠AOB,则=.【分析】过点P作PD⊥向x轴于D,PE⊥y轴于E,根据角平分线的性质,角平分线上的点到这个角两边的距离相等,求出PD和PE,再根据三角形OAB的面积=三角形OAP 的面积+三角形OPB的面积,此题便可求解【解答】解:如图,过点P作PD⊥向x轴于D,PE⊥y轴于E,则∠PEO=∠PDO=90°∵若OP平分∠AOB∴PD=PE,∵∠AOB=90°,∴∠PEO=∠PDO=∠AOB=90°,∴四边形EPDO是矩形,又PD=PE∴矩形EPDO为正方形,∵OP=4,∴PD=PE=,∵三角形OAB的面积=三角形OAP的面积+三角形OPB的面积,∴,∴,。
精选人教版七年级下册数学第七章平面直角坐标系单元检测试卷(含答案)(1)

人教版七年级数学下册第7章平面直角坐标系能力提升卷一.选择题(共10小题)1.如图,小手盖住的点的坐标可能为()A.(5,2) B.(-7,9) C.(-6,-8) D.(7,-1)2.若线段AB∥x轴且AB=3,点A的坐标为(2,1),则点B的坐标为()A.(5,1) B.(-1,1)C.(5,1)或(-1,1) D.(2,4)或(2,-2)3.若点A(a+1,b-2)在第二象限,则点B(1-b,-a)在()A.第一象限B.第二象限C.第三象限D.第四象限4.在平面直角坐标系中,点D(-5,4)到x轴的距离为()A.5 B.-5 C.4 D.-45.已知点A(2x-4,x+2)在坐标轴上,则x的值等于()A.2或-2 B.-2 C.2 D.非上述答案6.根据下列表述,能确定一个点位置的是()A.北偏东40°B.某地江滨路C.光明电影院6排D.东经116°,北纬42°7.如图是某动物园的平面示意图,若以大门为原点,向右的方向为x轴正方向,向上的方向为y轴正方向建立平面直角坐标系,则驼峰所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限8.若线段AB∥y轴,且AB=3,点A的坐标为(2,1),现将线段AB先向左平移1个单位,再向下平移两个单位,则平移后B点的坐标为()A.(1,2) B.(1,-4)C.(-1,-1)或(5,-1) D.(1,2)或(1,-4)9.课间操时,小明、小丽、小亮的位置如图所示,小明对小亮说:如果我的位置用(0,0)表示,小丽的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4) B.(4,5) C.(3,4) D.(4,3)10.已知点A(-1,2)和点B(3,m-1),如果直线AB∥x轴,那么m的值为()A.1 B.-4 C.-1 D.3二.填空题(共6小题)11.若P(a-2,a+1)在x轴上,则a的值是.12.在平面直角坐标系中,把点A(-10,1)向上平移4个单位,得到点A′,则点A′的坐标为.13.在平面直角坐标系中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),其中a为常数,则称点Q是点P的“a级关联点”,例如,点P(1,4)的3级关联点”为Q(3×1+4,1+3×4)即Q(7,13),若点B的“2级关联点”是B'(3,3),则点B的坐标为;已知点M(m-1,2m)的“-3级关联点”M′位于y轴上,则M′的坐标为.14.已知点A(m-1,-5)和点B(2,m+1),若直线AB∥x轴,则线段AB的长为.15.小刚家位于某住宅楼A座16层,记为:A16,按这种方法,小红家住B座10层,可记为.16.如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是.三.解答题(共7小题)17.如图,在平面直角坐标系中,三角形ABC的顶点A、B、C的坐标分别为(0,3)、(-2,1)、(-1,1),如果将三角形ABC先向右平移2个单位长度,再向下平移2个单位长度,会得到三角形A′B′C′,点A'、B′、C′分别为点A、B、C移动后的对应点.(1)请直接写出点A′、B'、C′的坐标;(2)请在图中画出三角形A′B′C′,并直接写出三角形A′B′C′的面积.18.已知平面直角坐标系中有一点M(m-1,2m+3)(1)当m为何值时,点M到x轴的距离为1?(2)当m为何值时,点M到y轴的距离为2?19.如图是某个海岛的平面示意图,如果哨所1的坐标是(1,3),哨所2的坐标是(-2,0),请你先建立平面直角坐标系,并用坐标表示出小广场、雷达、营房、码头的位置.20.已知:点P(2m+4,m-1).试分别根据下列条件,求出P点的坐标.(1)点P在y轴上;(2)点P的纵坐标比横坐标大3;(3)点P在过A(2,-4)点且与x轴平行的直线上.21.阅读材料:象棋在中国有近三千年的历史,如图是中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形的对角线走.(1)若点A位于点(-4,4),点B位于点(3,1),则“帅”所在点的坐标为;"马”所在点的坐标为;"兵”所在点的坐标为.(2)若“马”的位置在点A,为了到达点B,请按“马”走的规则,在图上画出一种你认为合理的行走路线,并用坐标表示出来.22.对有序数对(m,n)定义“f运算”:f(m,n)=11,,22m a n b⎛⎫+-⎪⎝⎭其中a、b为常数.f运算的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的任意一点A(x,y)规定“F 变换”:点A(x,y)在F变换下的对应点即为坐标为f(x,y)的点A′.(1)当a=0,b=0时,f(-2,4)=;(2)若点P(4,-4)在F变换下的对应点是它本身,则a=,b=.答案:1-5 CCBCA6-10 DDDCD11.-112.(-10,5)13. (1,1)(0,-16)14.915. B1016. (-1,-1)17. 解:(1)根据题意知,点A′的坐标为(2,1)、B'的坐标为(0,-1)、C′的坐标为(1,-1);(2)如图所示,△A′B′C′即为所求,S△A′B′C′=×1×2=1.18. 解:(1)∵|2m+3|=12m+3=1或2m+3=-1∴m=-1或m=-2;(2)∵|m-1|=2m-1=2或m-1=-2∴m=3或m=-1.19. 解:建立如图所示的平面直角坐标系:小广场(0,0)、雷达(4,0)、营房(2,-3)、码头(-1,-2).20. 解:(1)∵点P (2m+4,m-1),点P 在y 轴上,∴2m+4=0,解得:m=-2,则m-1=-3,故P (0,-3);21. 解:(1)由点A 位于点(-4,4人教版七年级下册第7章平面直角坐标系水平测试卷一.选择题(共10小题)1.在平面直角坐标系中,点()23,2P x -+所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 2.下列各点中,位于第四象限的点是( )A .(3,-4)B .(3,4)C .(-3,4)D .(-3,-4) 3.已知点P(-4,3),则点P 到y 轴的距离为( )A .4B .-4C .3D .-34.已知m 为任意实数,则点()2,1A m m +不在( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限5.已知点P 在第二象限,并且到x 轴的距离为1,到y 轴的距离为2.则点P 的坐标是( )A .(1、2)B .(-1,2)C .(2,1)D .(-2,1)6.如图,一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点(0,0)运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第80秒时质点所在位置的坐标是( )A .(0,9)B .(9,0)C .(0,8)D .( 8,0)7.已知点A(-3,0),则A 点在( )A .x 轴的正半轴上B .x 轴的负半轴上C .y 轴的正半轴上D .y 轴的负半轴上8.在平面直角坐标系中,将点P(3,2)向右平移2个单位长度,再向下平移2个单位长度所得到的点坐标为( )A .(1,0)B .(1,2)C .(5,4)D .(5,0)9.将以A(-2,7),B(-2,2)为端点的线段AB 向右平移2个单位得线段11,A B 以下点在线段11A B 上的是( )A .(0,3)B .(-2,1)C .(0,8)D .(-2,0)10.课间操时,小明、小丽、小亮的位置如图所示,小明对小亮说:如果我的位置用(0,0)表示,小丽的位置用(2,1)表示,那么你的位置可以表示成( )A .(5,4)B .(4,5)C .(3,4)D .(4,3)二.填空题(共6小题)11.若P(a-2,a+1)在x 轴上,则a 的值是 .12.在平面直角坐标系中,点A(-5,4)在第 象限.13.点P(3,-2)到y 轴的距离为 个单位.14.小刚画了一张对称的脸谱,他对妹妹说:“如果我用(1,4)表示一只眼,用(2,2)表示嘴,那么另一只眼的位置可以表示成 .15.已知点A(m-1,-5)和点B(2,m+1),若直线AB ∥x 轴,则线段AB 的长为 .16.在平面直角坐标系中,已知点(A B 点C 在x 轴上,且AC+BC=6,写出满足条件的所有点C 的坐标三.解答题(共7小题)17.如图,在平面直角坐标系中,点A 、B 、C 、D 都在坐标格点上,点D 的坐标是(-3,1),点A 的坐标是(4,3).(1)将三角形ABC 平移后使点C 与点D 重合,点A ,B 分别与点E ,F 重合,画出三角形EFD .并直接写出E ,F 的坐标;(2)若AB 上的点M 坐标为(x,y),则平移后的对应点M 的坐标为.18.如图,在正方形网格中建立平面直角坐标系,已知点A(3,2),(4,-3),C(1,-2),请按下列要求操作:(1)请在图中画出△ABC;(2)将△ABC 向左平移5个单位长度,再向上平移4个单位长度,得到111,A B C 在图中画出111,A B C 并直接写出点1A 、1B 、1C 的坐标.19.已知平面直角坐标系中有一点M(m-1,2m+3).(1)当点M到x轴的距离为1时,求点M的坐标;(2)当点M到y轴的距离为2时,求点M的坐标.20.已知平面直角坐标系中有一点M(2m-3,m+1).(1)点M到y轴的距离为l时,M的坐标?(2)点N(5,-1)且MN∥x轴时,M的坐标?21.【阅读材料】平面直角坐标系中,点P(x,y)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为[P],即[P]=|x|+|y|(其中的“+“是四则运算中的加法),例如点P(1,2)的勾股值[P]=|1|+|2|=3 【解决问题】(1)求点(2,4),A B -+的勾股值[A],[B];(2)若点M 在x 轴的上方,其横,纵坐标均为整数,且[M]=3,请直接写出点M 的坐标.22.如图是学校的平面示意图,已知旗杆的位置是(-2,3),实验室的位置是(1,4).(1)根据所给条件建立适当的平面直角坐标系,并用坐标表示食堂、图书馆的位置;(2)已知办公楼的位置是(-2,1),教学楼的位置是(2,2),在图中标出办公楼和教学楼的位置;(3)如果一个单位长度表示30米,请求出宿舍楼到教学楼的实际距离.23.对有序数对(m,n)定义“f 运算”:f(m,n)=11,,22m a n b ⎛⎫+- ⎪⎝⎭其中a 、b 为常数.f 运算的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的任意一点A(x,y)规定“F变换”:点A(x,y)在F 变换下的对应点即为坐标为f(x,y)的点A ′.(1)当a=0,b=0时,f(-2,4)= ;(2)若点P(4,-4)在F 变换下的对应点是它本身,则a= ,b=.答案:1-5 BAADD6-10 CBDAC11.-112.二13.314. (3,4)15.916.. (3,0)或(-3,0)17. 解:(1)如图所示,△EFD即为所求,其中E(0,2)、F(-1,0).(2)由图形知将△ABC向左平移4个单位、再向下平移1个单位可得△EFD,∴平移后点M的坐标为(x-4,y-1),18. 解:(1)如图所示:(2)如图所示:结合图形可得:A1(-2,6),B1(-1,1),C1(-4,2).19. 解:(1)∵|2m+3|=1,∴2m+3=1或2m+3=-1,解得:m=-1或m=-2,∴点M的坐标是(-2,1)或(-3,-1);(2)∵|m-1|=2,∴m-1=2或m-1=-2,解得:m=3或m=-1,∴点M的坐标是:(2,9)或(-2,1).20. 解:(1)∵点M(2m-3,m+1),点M到y轴的距离为1,∴|2m-3|=1,解得m=1或m=2,当m=1时,点M的坐标为(-1,2),当m=2时,点M的坐标为(1,3);综上所述,点M的坐标为(-1,2)或(1,3);(2)∵点M(2m-3,m+1),点N(5,-1)且MN∥x轴,∴m+1=-1,解得m=-2,故点人教版七年级数学下册第七章平面直角坐标系复习检测试题一、选择题。
人教版数学七年级下册 第七章《平面直角坐标系》全章测试题(含答案)

第七章《平面直角坐标系》检测卷题号一二三总分21 22 23 24 25 26 27 28分数一.选择题(共12小题)1、三角形A’B’C’是由三角形ABC平移得到的,点A(-1,-4)的对应点为A’(1,-1),则点B(1,1)的对应点B’、点C(-1,4)的对应点C’的坐标分别为()A、(2,2)(3,4)B、(3,4)(1,7)C、(-2,2)(1,7)D、(3,4)(2,-2)2、一个长方形在平面直角坐标系中三个顶点的坐标为(– 1,– 1)、(– 1,2)、(3,– 1),则第四个顶点的坐标为()A、(2,2)B、(3,2)C、(3,3)D、(2,3)3、如图,下列说法正确的是()A、A与D的横坐标相同B、 C 与D的横坐标相同C、B与C的纵坐标相同D、 B 与D的纵坐标相同4、已知A(-4,2),B(1,2),则A,B两点的距离是()。
A.3个单位长度 B.4个单位长度 C.5个单位长度 D.6个单位长度5.小米同学乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间距离是1km(小圆半径是1km).若小艇C相对于游船的位置可表示为(270°,-1.5),则描述图中另外两个小艇A,B的位置,正确的是( )A.小艇A(60°,3),小艇B(-30°,2)B.小艇A(60°,3),小艇B(60°,2)C.小艇A(60°,3),小艇B(150°,2)D.小艇A(60°,3),小艇B(-60°,2)6.在平面直角坐标系中,点(-1,2m +1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限7.已知坐标平面内,线段AB∥x轴,点A(﹣2,4),AB=1,则B点坐标为()A.(﹣1,4)B.(﹣3,4)C.(﹣1,4)或(﹣3,4)D.(﹣2,3)或(﹣2,5)8.已知过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,则a的值为()A.﹣1 B.1 C.2 D.﹣29.如图,下列说法正确的是()A.A与D的横坐标相同 B.C与D的横坐标相同C.B与C的纵坐标相同 D.B与D的纵坐标相同10.已知点A的坐标为(1,3),点B的坐标为(3,1),将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1),则点B的对应点的坐标为()A.(6,3)B.(0,3)C.(6,﹣1)D.(0,﹣1)11.将点(﹣3,2)先向右平移3个单位,再向下平移4个单位后与N点重合,则点N坐标为()A.(﹣3,﹣2)B.(0,﹣2)C.(0,2)D.(﹣6,﹣2)12.如图,一个机器人从点O出发,向正西方向走2m到达点A1;再向正北方向走4m到达点A2,再向正东方向走6m到达点A3,再向正南方向走8m到达点A4,再向正西方向走10m到达点A5,按如此规律走下去,当机器人走到点A9时,点A9在第()象限A.一B.二C.三D.四二.填空题(共4小题)13.如果将电影票上“8排5号”简记为(8,5),那么“11排10号”可表示为;(5,6)表示的含义是.14.边长为1的正方形网格在平面直角坐标系中,线段A1B1是由线段AB平移得到的,已知A,B两点的坐标分别为A(3,3),B(5,0),若A1的坐标为(﹣5,﹣3),则B1的坐标为.15.点M(3,4)与x轴的距离是个单位长度,与原点的距离是个单位长度.16.已知,点A(a﹣1,b+2),B(3,4),C(﹣1,﹣2)在同一个坐标平面内,且AB所在的直线平行于x轴,AC所在的直线平行于y轴,则a+b=.三.解答题(共4小题)17.在平面直角坐标系中,有点A(a+1,2),B(﹣a﹣5,2a+1).(1)若线段AB∥y轴,求点A、B的坐标;(2)当点B在第二、四象限的角平分线上时,求A点坐标.18.已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3),请回答如下问题:(1)在平面直角坐标系内描出点A、B、C;(2)在坐标系内存在点P,使以A、B、C、P四个点组成的四边形中,相对的两边互相平行且相等,则点P的坐标为.(直接写出答案)(3)平移线段BC,使得C点的对应点刚好与坐标原点重合,求出线段BC在平移的过程中扫过的面积.19.已知平面直角坐标系中有一点M(2m﹣3,m+1).(1)若点M到y轴的距离为2时,求点M的坐标;(2)点N(5,﹣1)且MN∥x轴时,求点M的坐标.20.对于实数a,b定义两种新运算“※”和“*”:a※b=a+kb,a*b=ka+b(其中k为常数,且k≠0),若对于平面直角坐标系xOy中的点P(a,b),有点P′的坐标(a※b,a*b)与之对应,则称点P的“k衍生点”为点P′.例如:P (1,3)的“2衍生点”为P′(1+2×3,2×1+3),即P′(7,5).(1)点P(﹣1,5)的“3衍生点”的坐标为;(2)若点P的“5衍生点”P的坐标为(9,﹣3),求点P的坐标;(3)若点P的“k衍生点”为点P′,且直线PP′平行于y轴,线段PP′的长度为线段OP长度的3倍,求k的值.参考答案与试题解析一.选择题(共12小题)1.【解答】解:将点(2,3)向下平移1个单位长度,所得到的点的坐标是(2,2),故选:B.2.【解答】解:A、东经37°,北纬21°物体的位置明确,故本选项错误;B、电影院某放映厅7排3号物体的位置明确,故本选项错误;C、芝罘区南大街无法确定物体的具体位置,故本选项正确;D、烟台山灯塔北偏东60°方向,距离灯塔3千米物体的位置明确,故本选项错误;故选:C.3.【解答】解:如图所示:点C的坐标为(5,3),故选:D.4.【解答】解:∵A(﹣1,5)向右平移2个单位,向下平移1个单位得到A′(1,4),∴C(0,1)右平移2个单位,向下平移1个单位得到C′(2,0),故选:C.5.【解答】解:根据点A(m,n),且有mn≤0,所以m≥0,n≤0或m≤0,n≥0,所以点A一定不在第一象限,故选:A.6.【解答】解:在坐标系中,点(﹣3,2)先向右平移5个单位得(2,2),再把(2,2)向下平移3个单位后的坐标为(2,﹣1),则A点的坐标为(2,﹣1).故选:C.7.【解答】解:∵坐标平面内,线段AB∥x轴,∴点B与点A的纵坐标相等,∵点A(﹣2,4),AB=1,∴B点坐标为(﹣1,4)或(﹣3,4).故选:C.8.【解答】解:∵过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,∴a=﹣2,故选:D.9.【解答】解:根据题意,点Q的横坐标为:﹣2﹣3=﹣5;纵坐标为﹣3+2=﹣1;即点Q的坐标是(﹣5,﹣1).故选:C.10.【解答】解:∵A(1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∴点B(3,1)的对应点的坐标为(0,﹣1).故选:D.11.【解答】解:如图,点A(﹣3,2)先向右平移3个单位得到B,再向下平移4个单位后与N点重合,观察图象可知N(0,﹣2),故选:B.12.【解答】解:由题可知,第一象限的规律为:3,7,11,15,19,23,27,…,3+4n;第二象限的规律为:2,6,10,14,18,22,26,…,2+4n;第三象限的规律为:1,5,9,13,17,21,25,…,1+4n;第四象限的规律为:4,8,12,16,20,24,…,4n;所以点A9符合第三象限的规律.故选:C.二.填空题(共4小题)13.【解答】解:∵8排5号简记为(8,5),∴11排10号表示为(11,10),(5,6)表示的含义是5排6号.故答案为:(11,10);5排6号.14.【解答】解:由点A到A1可知:各对应点之间的关系是横坐标加﹣8,纵坐标加﹣7,那点B到B1的移动规律也如此,则B1的横坐标为5+(﹣8)=﹣3;纵坐标为0+(﹣7)=﹣7;∴B1的坐标为(﹣3,﹣7).故答案为:(﹣3,﹣7).15.【解答】解:点M(3,4)与x轴的距离是4个单位长度,与原点的距离是5个单位长度,故答案为:4;516.【解答】解:由点A(a﹣1,b+2),B(3,4),C(﹣1,﹣2)在同一个坐标平面内,且AB所在的直线平行于x轴,AC所在的直线平行于y轴,可得:4=b+2,﹣1=a﹣1,解得:b=2,a=0,所以a+b=2,故答案为:2三.解答题(共4小题)17.【解答】解:(1)∵线段AB∥y轴,∴a+1=﹣a﹣5,解得:a=﹣3,∴点A(﹣2,2),B(﹣2,﹣5);(2)∵点B(﹣a﹣5,2a+1)在第二、四象限的角平分线上,∴(﹣a﹣5)+(2a+1)=0.解得a=4.∴点A的坐标为(5,2).18.【解答】解:(1)点A,B,C如图所示.(2)满足条件的点P的坐标为(8,3)或(﹣3,3)或(﹣1,﹣1).故答案为(8,3)或(﹣3,3)或(﹣1,﹣1).(3)线段BC在平移的过程中扫过的面积=2S△OBC=2×(3×3﹣×1×3﹣×1×2﹣×2×3)=7.19.【解答】解:(1)∵点M(2m﹣3,m+1),点M到y轴的距离为2,∴|2m﹣3|=2,解得m=2.5或m=0.5,当m=2.5时,点M的坐标为(2,3.5),当m=0.5时,点M的坐标为(﹣2,1.5);综上所述,点M的坐标为(2,3.5)或(﹣2,1.5);(2)∵点M(2m﹣3,m+1),点N(5,﹣1)且MN∥x轴,∴m+1=﹣1,解得m=﹣2,故点M的坐标为(﹣7,﹣1).20.【解答】解:(1)点P(﹣1,5)的“3衍生点”P′的坐标为(﹣1+3X5,﹣1X3+5),即(14,2),故答案为:(14,2);(2)设P(x,y)依题意,得方程组.解得.∴点P(﹣1,2);(3)设P(a,b),则P′的坐标为(a+kb,ka+b).∵PP′平行于y轴∴a=a+kb,即kb=0,又∵k≠0,∴b=0.∴点P的坐标为(a,0),点P'的坐标为(a,ka),∴线段PP′的长度为|ka|.∴线段OP的长为|a|.根据题意,有|PP′|=3|OP|,∴|ka|=3|a|.∴k=±3.。
人教版七年级数学下册第七章《平面直角坐标系》测试卷(一)(附答卷)

人教版七年级数学下册第七章《平面直角坐标系》测试卷1(附答卷)时间:120分钟满分:120分一、选择题(每小题3分,共30分1.如果(6,3)表示电影票上“6排3号”那么3排6号就表示为 ( )A.(6,3)B.(3,6)C.(-3,-6)D.(-6,-3)2.若点A的坐标为(3,-2),则点A所在的象限是 ( )A第一象限B.第二象限C.第三象限D.第四象限,合3.课间操时,小华、小军、小刚的位置如图,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成 ( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)4.若点P(x,y)在第四象限,且|x|=2,|y|=3,则x+y= ( )A.-1B.1C.5D.-55.若点P(a,b)在第三象限,则点Q(a-3,-b)一定在 ( )A.第一象限B.第二象限C.第三象限D第四象限6.点A的位置如图所示,则关于点A的位置下列说法中正确的是 ( )A.距点05km处B.北偏东60°方向上5km处C.在点O北偏东30°方向上5km处D.在点O北偏东60°方向上5km处7.已知点P在x轴上,且点P到y轴的距离为1,则点P的坐标为 ( )A.(0,1)B.(1,0)C.(0,1)或(0,-1)D.(1,0)或(-1,0)8.将点P(m+2,2m+1)向左平移1个单位长度到P′,且P′在y轴上,那么P′的坐标是 ( )B.(0,-2)A.(0,-1)C.(0.-D.(1,1)3)9.如图,长方形OABC的顶点O为坐标原点,点A在x轴上,点B的坐标为(2,1).如果将长方形OABC平移后,点B与点O重合,得长方形O1A1OC1,那么点O1的坐标为 ( )A.(2,1)B.(-2,1)C.(-2,-1)D.(2,-1)10.如图,点A,B的坐标分别为(-5,6),(3,2),则三角形ABO的面积为 ( )A.12B.14C.16D.18二、填空题(每小题3分,共24分)11.点M(2,-1)到x轴的距离是________.12.点P到x轴的距离是2,到y轴的距离是3,且点P在第三象限,则点P的坐标是___________.13.平面直角坐标系中,点A(-3,2),C(x,y),若AC∥x轴,则点C的纵坐标为 _ __________.14.如图,在平面直角坐标系xOy中,点A(a2-4,3)在y轴上,点B在x轴上,且横坐标为a,则点B的坐标为___________________.15.如图,已知棋子“车”的坐标为(3,2),棋子“炮”的坐标为(-2,1),则棋子“马”的坐标为___________.16.如图,点A,B的坐标分别为(1,2),(2,0),将△AOB沿x轴向右平移,得到△CDE,若DB=1,则点C的坐标为___________.17.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则点A的坐标为___________.18.如图,动点P从坐标原点(0,0)出发,以每秒一个单位长度的速度按图中箭头所示方向运动,第1秒运动到点(1,0),第2秒运动到点(1,1),第3秒运动到点(0,1),第4秒运动到点(0,2)……则第2068秒点P所在位置的坐标是________.三、解答题(共66分)19.(6分)如图是学校的平面示意图,已知旗杆的位置是(-2,3),实验室的位置是(1,4).(1)根据所给条件建立适当的平面直角坐标系,并用坐标表示食堂、图书馆的位置;(2)已知办公室的位置是(-2,1),教学楼的位置是(2,2),在图中标出办公室和教学楼的位置;(3)如果一个单位长度表示30米,请求出宿舍楼到教学楼的实际距离.20.(8分)已知平面直角坐标系中有一点M(m-1,2m+3).(1)当点M到x轴的距离为1时,求点M的坐标;(2)当点M到y轴的距离为2时,求点M的坐标.21.(8分)点P 是平面直角坐标系中的一点且不在坐标轴上,过点P 向x 轴、y 轴作垂线段,若垂线段的长度的和为4,则点P 叫做“垂距点”,例如:如图中的点P (1,3)是“垂距点” (1)判断点A (-2,2),B (21,-25),C (-1,5)是不是“垂距点” (2)若D (23m ,25m )是“垂距点”,求m 的值.22.(8分)在如图所示的平面直角坐标系中描出下列各点: A (-3,-2),B (2,-2),C (-2,1),D (3,1),连接AB ,CD (1)将点A 向右平移5个单位长度,它将与点_____重合;(2)猜想:AB 与x 轴的位置关系是_________,CD 与AB 的位置关系是_______;(3)线段CD 可以看成是由线段AB 通过怎样的平移得到的?23.(12分)已知△ABC的三个顶点坐标分别为A(4,3),B(3,1),C(1,2)(1)请在平面直角坐标系(如图)中标出这三个点;(2)将△ABC沿x轴的负方向平移5个单位长度,纵坐标不变,得到△A1B1C1,请在图中画出△A1B1C1,并写出△A1B1C1三个顶点的坐标;(3)将△ABC作怎样的平移,得到△A2B2C2,使得这个三角形三个顶点的坐标分别为A2(6,-2),B2(5,-4),C2(3,-3)24.(12分)如图,在平面直角坐标系中,A(0,1),B(2,0),C(4,3)(1)求△ABC的面积;(2)设点P在x轴上,且△ABP与△ABC的面积相等,求点P的坐标.25.(12分)综合与实践.问题背景:(1)已知A(1,2),B(3,2),C(1,-1),D(-3,-3)在平面直角坐标系中描出这几个点,并分别找到线段AB和CD的中点P1,P2,然后写出它们的坐标,则P1___________, P2____________;探究发现:(2)结合上述计算结果,你能发现若线段的两个端点的坐标分别为(x1,y1),(x2,y2),则线段的中点坐标为____________;拓展应用:(3)利用上述规律解决下列问题:已知三点E(-1,2),F(3,1),G(1,4),第四个点H(x,y)与点E,点F,点G中的一个点构成的线段的中点与另外两个端点构成的线段的中点重合,求点H的坐标.人教版七年级数学下册第七章《平面直角坐标系》测试卷(答卷)时间:120分钟 满分:120分一、选择题(每小题3分,共30分1.如果(6,3)表示电影票上“6排3号”那么3排6号就表示为 ( )A .(6,3)B .(3,6)C .(-3,-6)D .(-6,-3) 2.若点A 的坐标为(3,-2),则点A 所在的象限是 ( ) A 第一象限 B .第二象限 C .第三象限 D .第四象限,合 3.课间操时,小华、小军、小刚的位置如图,小华对小刚说,如果我的位置用(0,0) 表示,小军的位置用(2,1)表示,那么你的位置可以表示成 ( ) A .(5,4) B .(4,5) C .(3,4) D .(4,3)4.若点P (x ,y )在第四象限,且|x |=2,|y |=3,则x +y = ( )A .-1B .1C .5D .-55.若点P (a ,b )在第三象限,则点Q (a -3,-b )一定在 ( ) A .第一象限 B .第二象限 C .第三象限 D 第四象限6.点A 的位置如图所示,则关于点A 的位置下列说法中正确的是 ( ) A .距点O 5km 处 B .北偏东60°方向上5km 处C .在点O 北偏东30°方向上5km 处D .在点O 北偏东60°方向上5km 处7.已知点P 在x 轴上,且点P 到y 轴的距离为1,则点P 的坐标为 ( ) A .(0,1) B .(1,0) C .(0,1)或(0,-1) D .(1,0)或(-1,0) 8.将点P (m +2,2m +1)向左平移1个单位长度到P ′,且P ′在y 轴上,那么P ′的坐标是 ( )B D D A B D D A D.(1,1)3)-C.(0. B.(0,-2) A.(0,-1)9.如图,长方形OABC 的顶点O 为坐标原点,点A 在x 轴上,点B 的坐标为(2,1).如果将长方形OABC 平移后,点B 与点O 重合,得长方形O 1A 1OC 1,那么点O 1的坐标为 ( ) A .(2,1) B .(-2,1) C .(-2,-1) D .(2,-1)10.如图,点A ,B 的坐标分别为(-5,6),(3,2),则三角形ABO 的面积为 ( ) A .12 B .14 C .16 D .18 二、填空题(每小题3分,共24分)11.点M (2,-1)到x 轴的距离是________.12.点P 到x 轴的距离是2,到y 轴的距离是3,且点P 在第三象限,则点P 的坐标是___________.13.平面直角坐标系中,点A (-3,2),C (x ,y ),若AC ∥x 轴,则点C 的纵坐标为 ___________.14.如图,在平面直角坐标系xOy 中,点A (a 2-4,3)在y 轴上,点B 在x 轴上,且横坐标为a ,则点B 的坐标为_____________________.15.如图,已知棋子“车”的坐标为(3,2),棋子“炮”的坐标为(-2,1),则棋子“马”的坐标为___________.16.如图,点A ,B 的坐标分别为(1,2),(2,0),将△AOB 沿x 轴向右平移,得到△CDE ,若DB =1,则点C 的坐标为___________.C B 1 (-3,-2) 2 (2,0)或(-2,0) (1,0) (2,2)17.已知点A (a ,0)和点B (0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则点A 的坐标为_____________________.18.如图,动点P 从坐标原点(0,0)出发,以每秒一个单位长度 的速度按图中箭头所示方向运动,第1秒运动到点(1,0), 第2秒运动到点(1,1),第3秒运动到点(0,1),第4秒运动到点(0,2)……则第2068秒点P 所在位置的坐标是________.三、解答题(共66分)19.(6分)如图是学校的平面示意图,已知旗杆的位置是(-2,3),实验室的位置是 (1,4).(1)根据所给条件建立适当的平面直角坐标系,并用坐标表示食堂、图书馆的位置;(2)已知办公室的位置是(-2,1),教学楼的位置是(2,2),在图中标出办公室和教学楼的位置;(3)如果一个单位长度表示30米,请求出宿舍楼到教学楼的实际距离.20.(8分)已知平面直角坐标系中有一点M (m -1,2m +3). (1)当点M 到x 轴的距离为1时,求点M 的坐标; (2)当点M 到y 轴的距离为2时,求点M 的坐标.(4,0)或(-4,0) (45,43) xy(1)建立平面直角坐标系如图所示:食堂(-5,5),图书馆(2,5)(2)办公室和教学楼的位置如图所示 (3)宿舍楼到教学楼的实际距离为: 8×30=240(米)教学楼 ·办公楼 ·(1)∵|2m+3|=1,∴2m+3=1或2m+3=-1,解得m=-1或m=-2, ∴点M 的坐标是(-2,1)或(-3,-1)(2)∵|m-1|=2,∴|m-1|=2或|m-1|=-2,解得m=3或m=-1, ∴点M 的坐标是(2,9)或(-2,1)21.(8分)点P 是平面直角坐标系中的一点且不在坐标轴上,过点P 向x 轴、y 轴作垂线段,若垂线段的长度的和为4,则点P 叫做“垂距点”,例如:如图中的点P (1,3)是“垂距点” (1)判断点A (-2,2),B (21,-25),C (-1,5)是不是“垂距点” (2)若D (23m ,25m )是“垂距点”,求m 的值.22.(8分)在如图所示的平面直角坐标系中描出下列各点: A (-3,-2),B (2,-2),C (-2,1),D (3,1),连接AB ,CD(1)将点A 向右平移5个单位长度,它将与点_____重合; (2)猜想:AB 与x 轴的位置关系是_________,CD 与AB 的位置关系是_______; (3)线段CD 可以看成是由线段AB 通过怎样的平移得到的?A ·(1)根据题意,A 所以A 是“垂距点”,对于点B 而言,|21|+|-25|=3,所以B 不是“垂距点”,对于点C 而言≠C 不是“垂距点”(2)由题意可知:|23m|+|25m|=4,①当m>0时,则4m=4,解得m=1;②当m<0时,m=-1;∴m=±1平行 B 平行 D · C · B·(3)线段CD 是由线段AB 先向右平移1个单位长度,再向上平移3个单位长度得到的(答案不唯一)23.(12分)已知△ABC 的三个顶点坐标分别为A (4,3),B (3,1),C (1,2) (1)请在平面直角坐标系(如图)中标出这三个点;(2)将△ABC 沿x 轴的负方向平移5个单位长度,纵坐标不变,得到△A 1B 1C 1,请在图中画出△A 1B 1C 1,并写出△A 1B 1C 1三个顶点的坐标;(3)将△ABC 作怎样的平移,得到△A 2B 2C 2,使得这个三角形三个顶点的坐标分别为A 2(6,-2),B 2(5,-4),C 2(3,-3)24.(12分)如图,在平面直角坐标系中,A (0,1),B (2,0),C (4,3) (1)求△ABC 的面积;(2)设点P 在x 轴上,且△ABP 与 △ABC 的面积相等,求点P 的坐标.(1)点A 、B 、C 三点的位置如图所示 B ·A · C ·(2)△A 1B 1C 1的位置如图所示,A 1(-1,3),B 1(-2,1),C 1(-4,2) (3)将△ABC 先沿x 轴的正方向平移2个单位长度,再沿y 轴的负方向平移5个单位长度可得到△A 2B 2C 2 A 2·C 2· B 2·A 1·C 1· B 1·10或x=-6,∴点P 的坐标为(10,0)或(-6,0))2,2(2121y y x x ++25.(12分)综合与实践. 问题背景:(1)已知A (1,2),B (3,2),C (1,-1),D (-3,-3)在平面直角坐标系中描出这几 个点,并分别找到线段AB 和CD 的中点P 1,P 2,然后写出它们的坐标,则 P 1___________, P 2____________; 探究发现:(2)结合上述计算结果,你能发现若线段的两个端点的坐标分别为(x 1,y 1),(x 2,y 2),则线段的中点坐标为 ; 拓展应用: ____________________(3)利用上述规律解决下列问题:已知三点E (-1,2),F (3,1),G (1,4),第四个 点H (x ,y )与点E ,点F ,点G 中的一个点构成的线段的中点与另外两个端点构成的线段的中点重合,求点H 的坐标.P 1·B · A · P 2·D ·(2, 2) (-1, -2) C ·。
人教版七年级下册第7章平面直角坐标系单元测试题(含答案解析)

人教版七年级数学下册第7章平面直角坐标系单元测试题学校:姓名:班级:考号:一、单选题1.某同学的座位号为(2,4)那么该同学的位置是()A.第2排第4列B.第4排第2列C.第2列第4排D.不好确定2.下列四个点中,在第二象限的点是( ).A.(2,-3)B.(2,3)C.(-2,3)D.(-2,-3)3.若),轴上的点尸到x轴的距离为3,则点夕的坐标是( )A.(3,0)B.(0,3)C.(3,0)或(-3,0)D.(0,3)或(0,-3)4.点M(根+1,〃2+3)在y轴上,则点M的坐标为()A.(0,-4)B.(4,0)C.(-2,0)D.(0,2)5.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A.(2,3)B.(-2,-3)C.(-3,2)D.(3,-2)6.如果点P(5,y)在第四象限,则y的取值范围是( )A.y<0B.y>0C.y大于或等于0D.y小于或等于()7.如图:正方形ABCD中点A和点C的坐标分别为(・2,3)和(3,-2),则点B和点D的坐标分别为( ).A.(2,,2)和(3,3)B.(-2,-2)和(3,3)C.(-2,-2)和(-3,-3) D.(2,2)和(-3,-3)8.一个长方形在平面直角坐标系中,三个顶点的坐标分别是(-1,-1)、(-1,2)、(3,-1),则第四个顶点的坐标是( )A.(2,2)B.(3,3)C.(3,2)D.(2,3)9.线段A8两端点坐标分别为A(-1,4),8(-4,1),现将它向左平移4个单位长度,得到线段4囱,则4、S的坐标分别为()A.Ai(-5,0),Bi(-8,-3)B.4(3,7),B\(0,5)10.在方格纸上有A、B两点,若以B点为原点建立直角坐标系,则A点坐标为(2,5),若以A 点为原点建立直角坐标系,则B 点坐标为( ).A.(-2,-5)B.(-2,5)C.(2,-5)D.(2,5)11 .七年级(2)班教室里的座位共有7排8歹U,其中小明的座位在第3排第7歹U,简记为(3,7),小华坐在第5排第2列,则小华的座位可记作.12 .若点P(a,-b)在第二象限,则点Q(-ab,a+b)在第象限.13 .若点P 到x 轴的距离是12JIJy 轴的距离是15,那么P 点坐标可以是 __________________ (写出一个即可).14 .小华将直角坐标系中的猫眼的图案向右平移了3个单位长度,平移前猫眼的坐标为 (-4,3)、(-2,3),则移动后猫眼的坐标为o15 .已知点P(x,y)在第四象限,且|x|二3,|y|=5,则点P 的坐标是 ___________________ . 16 .如图,中国象棋中的“象”,在图中的坐标为(1,0),•若"象''再走一步,试写出下一步它可能走到的位置的坐标.17 .如下图,小强告诉小华图中A 、B 两点的坐标分别为(-3,5),(3,5),•小华一下就说出了C 在同一坐标系下的坐标.三、解答题18 .已知点N 的坐标为(2-a,3a+6),且点N 到两坐标轴的距离相等,求点N 的坐标.C.Ai (-5, 4), Bi (-8, 1)D.Ai (3, 4), Bi (0, 1)19.如图,这是某市部分简图,请建立适当的平面直角坐标系,分别写出各地的坐标.20.适当建立直角坐标系,描出点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0),并用线段顺次连接各点.⑴看图案像什么?⑵作如下变化:纵坐标不变,横坐标减2,并顺次连接各点,所得的图案与原来相比有什么变化?21.某学校校门在北侧,进校门向南走30米是旗杆,再向南走30米是教学楼,从教学楼向东走60米,再向北走20米是图书馆,从教学楼向南走60米,再向北走10米是实验楼,请你选择适当的比例尺,画出该校的校园平面图.22.已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),求△ABO的面积.23.请自己动手,建立平面直角坐标系,在坐标系中描出下列各点的位置:你发现这些点有什么位置关系?你能再找出类似的点吗?(再写出三点即可)A(-4,4),B(-2,2).C(3,-3).D(5,-5).E(-3,3)F(0,0)24.这是一个动物园游览示意图,试设计描述这个动物园图中每个景点位置的一个方法,参考答案1. D【分析】1、分析题意,回忆用坐标确定位置的方法;2、观察发现题中没有规定排和列的前后顺序;3、接下来根据有序实数对的知识,解答本题.【详解】解:题中没有规定排在前,列在后;还是列在前,排在后,因此无法确定该同学的所坐位置.故选D.【点睛】在使用有序数对前,一定要先对有序数进行定义,否则很可能导致前后数表示的意义不明确, 从而确定不出位置.例如本题没有规定有序数对的列和排谁在前,所以无法得知其所表示的含义.2. C【分析】根据第二象限内点的横坐标为负,纵坐标为正进行判断即可.【详解】解:A.(2,-3)在第四象限内;B.(2,3)在第一象限内;C.(-2,3)在第二象限内;D.(-2,-3)在第三象限内.故选C.【点睛】本题主要考查平面直角坐标系,熟练掌握各个象限的坐标特点是解此题的关键.3. D【分析】由点在y轴上首先确定点P的横坐标为0,再根据点P到x轴的距离为3,确定P点的纵坐标,要注意考虑两种情况,可能在原点的上方,也可能在原点的下方.【详解】・・万轴上的点P,・・・尸点的横坐标为0,又丁点P到x轴的距离为3,・・・P点的纵坐标为±3,所以点。
人教版数学七年级下册第7章平面直角坐标系单元测试(Word版含答案)

人教版初中七年级数学下册第7章平面直角坐标系班级:________ 姓名:________ 分数:________ 一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,每小题3分,共36分.1.如果(7,2)表示电影票上“7排2号”,那么2排7号应该表示为()A.(7,2) B.(2,7) C.(-2,-7) D.(-7,-2)2.已知点A(-2,3),则点A在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.下列数据中不能确定物体位置的是()A.中原路398号 B.红星小区4号楼801号C.北偏东30° D.东经130°,北纬54°4.在下列点中,与点A(-2,-4)的连线平行于y轴的是()A.(2,-4) B.(4,-2) C.(-2,4) D.(-4,2)5.点C在x轴下方,y轴右侧,距离x轴3个单位长度,距离y轴2个单位长度,则点C的坐标为()A.(2,3) B.(2,-3) C.(-3,2) D.(3,-2)6.平面直角坐标系中,将点A(-2,1)向右平移3个单位长度,再向下平移2个单位长度得到点A′,则点A′的坐标为()A.(1,3) B.(-5,1) C.(-5,-1) D.(1,-1)7.如图是棋盘的一部分,建立适当的平面直角坐标系,已知棋子“车”的坐标为(-2,1),棋子“马”的坐标为(3,-1),则棋子“炮”的坐标为()A.(1,1) B.(2,1) C.(2,2) D.(3,1)8.如图,与图①中的三角形相比,图②中的三角形发生的变化是()A.向左平移3个单位长度 B.向左平移1个单位长度C.向上平移3个单位长度 D.向下平移1个单位长度9.在平面直角坐标系中,对于坐标P(3,4),下列说法中错误的是()A.P(3,4)表示这个点在平面内的位置B.点P的纵坐标是4C.点P到x轴的距离是4D.它与点(4,3)表示同一个坐标10.如果P(a,b)在第三象限,那么点Q(a+b,ab)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知点A(-1,0),B(2,0),在y轴上存在一点C,使三角形ABC 的面积为6,则点C的坐标为()A.(0,4) B.(0,2)C.(0,2)或(0,-2) D.(0,4)或(0,-4)12.如图,平面直角坐标系中,一蚂蚁从A点出发,沿着A→B→C→D→A…的方向循环爬行,其中A点的坐标为(2,-2),B点的坐标为(-2,-2),C点的坐标为(-2,6),D点的坐标为(2,6),当蚂蚁爬了52个单位长度时,蚂蚁所处位置的坐标为()A.(-2,-2) B.(2,-2) C.(-2,6) D.(0,-2)二、填空题:每小题4分,共16分.13.如图,货船A与港口B相距47海里,我们用有序数对(南偏西40°,47海里)来描述货船B相对港口A的位置,那么港口A相对货船B的位置可描述为.14.如图,已知用手盖住的点P到x轴的距离为4,到y轴的距离为5,则点P的坐标是.15.在平面直角坐标系中,已知点M(2,1),N(1,-1),平移线段MN,使点M落在点M′(-1,2)处,则点N对应的点N′的坐标为.16.(东湖区期末)如果点P(x,y)的坐标满足x+y=xy,那么称点P 为“和谐点”,若某个“和谐点”到x轴的距离为3,则该点的坐标为.三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本题满分12分)如图,在平面直角坐标系中,(1)写出点A,B,C,D,E的坐标;(2)描出点P(-2,-1),Q(3,-2),S(2,5),T(-4,3),分别指出各点所在的象限.18.(本题满分10分)请给下图建立平面直角坐标系,使文化馆的坐标为(-3,1),超市的坐标为(2,-3).(1)画出坐标轴,并写出火车站、体育场、医院的坐标;(2)在(1)的坐标系中,标出小明家(4,-4),小刚家(-3,2),学校(-2,-1)的位置.19.(本题满分10分)如图,已知长方形ABCD四个顶点的坐标分别是A(2,-22),B(5,-22),C(5,-2),D(2,-2).(1)四边形ABCD的面积是多少?(2)将四边形ABCD向上平移2个单位长度,求所得的四边形A′B′C′D′的四个顶点的坐标.20.(本题满分10分)如图是某次海战演习中敌我双方舰艇对峙的示意图.对我方舰艇3号来说:(1)北偏东40°方向上有哪些目标?要想确定敌方舰艇B的位置,还需要什么数据?(2)距我方舰艇3号图上距离约0.6 cm的敌方舰艇有哪几艘?(3)要确定每艘敌方舰艇的位置,各需要几个数据?21.(本题满分10分)如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,三角形ABC的三个顶点均在格点上.(1)将三角形ABC先向右平移6个单位长度,再向上平移3个单位长度,得到三角形A1B1C1,画出平移后的三角形A1B1C1;(2)建立适当的平面直角坐标系,使得点A的坐标为(-4,3);(3)在(2)的条件下,直接写出点A1的坐标.22.(本题满分10分)如图,有一块不规则的四边形地皮ABCO,各个顶点的坐标分别为A(-2,6),B(-5,4),C(-7,0),O(0,0)(图上一个单位长度表示10 m).现在想对这块地皮进行规划,需要确定它的面积.(1)求这个四边形的面积;(2)如果把四边形ABCO的各个顶点的纵坐标保持不变,横坐标加2,所得到的四边形面积是多少?23.(本题满分12分)“若点P ,Q 的坐标分别是(x 1,y 1),(x 2,y 2),则线段PQ 中点的坐标为⎝⎛⎭⎪⎫x 1+x 22,y 1+y 22.”如图所示,已知点A ,B ,C 的坐标分别为(-5,0),(3,0),(1,4),利用上述结论求线段AC ,BC 的中点D ,E 的坐标,并判断DE 与AB 的位置关系.24.(本题满分12分)(阳谷县期末)在平面直角坐标系中.(1)若点M(m-6,2m+3),点N(5,2),且MN∥y轴,求点M的坐标;(2)若点M(a,b),点N(5,2),且MN∥x轴,MN=3,求点M的坐标;(3)若点M(m-6,2m+3)到两坐标轴的距离相等,求点M的坐标.25.(本题满分12分) 如图,BA⊥x轴于点A,点B的坐标为(-1,2),将线段BA沿x轴方向平移3个单位长度,平移后的线段为CD.(1)点C的坐标为;线段BC与线段AD的位置关系是;(2)在四边形ABCD中,点P从点A出发,沿“AB→BC→CD”移动,移动到点D停止.若点P的速度为每秒1个单位长度,运动时间为t s,回答下列问题.①直接写出点P在运动过程中的坐标(用含t的式子表示);②当5<t<7时,四边形ABCP的面积为4,求点P的坐标.参考答案一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,每小题3分,共36分.1.如果(7,2)表示电影票上“7排2号”,那么2排7号应该表示为(B)A.(7,2) B.(2,7) C.(-2,-7) D.(-7,-2)2.已知点A(-2,3),则点A在(B)A.第一象限 B.第二象限 C.第三象限 D.第四象限3.下列数据中不能确定物体位置的是(C)A.中原路398号 B.红星小区4号楼801号C.北偏东30° D.东经130°,北纬54°4.在下列点中,与点A(-2,-4)的连线平行于y轴的是(C)A.(2,-4) B.(4,-2) C.(-2,4) D.(-4,2)5.点C在x轴下方,y轴右侧,距离x轴3个单位长度,距离y轴2个单位长度,则点C的坐标为(B)A.(2,3) B.(2,-3) C.(-3,2) D.(3,-2)6.平面直角坐标系中,将点A(-2,1)向右平移3个单位长度,再向下平移2个单位长度得到点A′,则点A′的坐标为(D)A.(1,3) B.(-5,1) C.(-5,-1) D.(1,-1)7.如图是棋盘的一部分,建立适当的平面直角坐标系,已知棋子“车”的坐标为(-2,1),棋子“马”的坐标为(3,-1),则棋子“炮”的坐标为(B)A.(1,1) B.(2,1) C.(2,2) D.(3,1)8.如图,与图①中的三角形相比,图②中的三角形发生的变化是(A)A.向左平移3个单位长度 B.向左平移1个单位长度C.向上平移3个单位长度 D.向下平移1个单位长度9.在平面直角坐标系中,对于坐标P(3,4),下列说法中错误的是(D)A.P(3,4)表示这个点在平面内的位置B.点P的纵坐标是4C.点P到x轴的距离是4D.它与点(4,3)表示同一个坐标10.如果P(a,b)在第三象限,那么点Q(a+b,ab)在(B)A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知点A(-1,0),B(2,0),在y轴上存在一点C,使三角形ABC 的面积为6,则点C的坐标为(D)A.(0,4) B.(0,2)C.(0,2)或(0,-2) D.(0,4)或(0,-4)12.如图,平面直角坐标系中,一蚂蚁从A点出发,沿着A→B→C→D→A…的方向循环爬行,其中A点的坐标为(2,-2),B点的坐标为(-2,-2),C点的坐标为(-2,6),D点的坐标为(2,6),当蚂蚁爬了52个单位长度时,蚂蚁所处位置的坐标为(A)A.(-2,-2) B.(2,-2) C.(-2,6) D.(0,-2)二、填空题:每小题4分,共16分.13.如图,货船A与港口B相距47海里,我们用有序数对(南偏西40°,47海里)来描述货船B相对港口A的位置,那么港口A相对货船B的位置可描述为(北偏东40°,47海里).14.如图,已知用手盖住的点P到x轴的距离为4,到y轴的距离为5,则点P的坐标是(5,-4).15.在平面直角坐标系中,已知点M(2,1),N(1,-1),平移线段MN,使点M落在点M′(-1,2)处,则点N对应的点N′的坐标为(-2,0).16.如果点P(x,y)的坐标满足x+y=xy,那么称点P为“和谐点”,若某个“和谐点”到x 轴的距离为3,则该点的坐标为⎝ ⎛⎭⎪⎫32,3或⎝ ⎛⎭⎪⎫34,-3. 三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本题满分12分)如图,在平面直角坐标系中,(1)写出点A ,B ,C ,D ,E 的坐标;(2)描出点P(-2,-1),Q(3,-2),S(2,5),T(-4,3),分别指出各点所在的象限.解:(1)A(3,3),B(-5,2),C(-4,-3),D(4,-3),E(5,0).(2)如图所示.点P 在第三象限,点Q 在第四象限,点S 在第一象限, 点T 在第二象限.18.(本题满分10分)请给下图建立平面直角坐标系,使文化馆的坐标为(-3,1),超市的坐标为(2,-3).(1)画出坐标轴,并写出火车站、体育场、医院的坐标;(2)在(1)的坐标系中,标出小明家(4,-4),小刚家(-3,2),学校(-2,-1)的位置.解:(1)画坐标轴如图所示,火车站(0,0),体育场(-4,3),医院(-2,-2).(2)如图所示.19.(本题满分10分)如图,已知长方形ABCD四个顶点的坐标分别是A(2,-22),B(5,-22),C(5,-2),D(2,-2).(1)四边形ABCD的面积是多少?(2)将四边形ABCD向上平移2个单位长度,求所得的四边形A′B′C′D′的四个顶点的坐标.解:(1)四边形ABCD的面积为(5-2)×(22-2)=3 2.(2)A′(2,-2),B′(5,-2),C′(5,0),D′(2,0).20.(本题满分10分)如图是某次海战演习中敌我双方舰艇对峙的示意图.对我方舰艇3号来说:(1)北偏东40°方向上有哪些目标?要想确定敌方舰艇B的位置,还需要什么数据?(2)距我方舰艇3号图上距离约0.6 cm的敌方舰艇有哪几艘?(3)要确定每艘敌方舰艇的位置,各需要几个数据?解:(1)北偏东40°方向上有两个目标:敌方舰艇B和小岛,要想确定敌方舰艇B的位置,还需知道敌方舰艇B距我方舰艇3号的距离.(2)距我方舰艇3号图上距离约0.6 cm的敌方舰艇有两艘:敌方舰艇A和敌方舰艇C.(3)要确定每艘敌方舰艇的位置,各需要两个数据:距离和方位角.(如对我方舰艇3号来说,敌方舰艇A在正南方向,图上距离为0.6 cm 处;敌方舰艇B在北偏东40°方向,图上距离为1 cm处;敌方舰艇C在正东方向,图上距离为0.6 cm处)21.(本题满分10分)如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,三角形ABC的三个顶点均在格点上.(1)将三角形ABC先向右平移6个单位长度,再向上平移3个单位长度,得到三角形A1B1C1,画出平移后的三角形A1B1C1;(2)建立适当的平面直角坐标系,使得点A的坐标为(-4,3);(3)在(2)的条件下,直接写出点A1的坐标.解:(1)如图所示,△A1B1C1为所求.(2)如图所示.(3)点A1的坐标为(2,6).22.(本题满分10分)如图,有一块不规则的四边形地皮ABCO,各个顶点的坐标分别为A(-2,6),B(-5,4),C(-7,0),O(0,0)(图上一个单位长度表示10 m).现在想对这块地皮进行规划,需要确定它的面积.(1)求这个四边形的面积;(2)如果把四边形ABCO的各个顶点的纵坐标保持不变,横坐标加2,所得到的四边形面积是多少?解:(1)过点B 作BF ⊥x 轴于点F ,过点A 作AG ⊥x 轴于点G ,如图所示.∴S 四边形ABCO =S 三角形BCF +S 梯形ABFG +S 三角形AGO=⎣⎢⎡⎦⎥⎤12×2×4+12×(4+6)×3+12×2×6×102 =2 500(m 2).(2)把四边形ABCO 的各个顶点的纵坐标保持不变,横坐标加2,即将这个四边形向右平移2个单位长度,故所得到的四边形的面积与原四边形的面积相等,为2 500 m 2.23.(本题满分12分)“若点P ,Q 的坐标分别是(x 1,y 1),(x 2,y 2),则线段PQ 中点的坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22.”如图所示,已知点A ,B ,C 的坐标分别为(-5,0),(3,0),(1,4),利用上述结论求线段AC ,BC 的中点D ,E 的坐标,并判断DE 与AB 的位置关系.解:由点A ,B ,C 的坐标分别为(-5,0),(3,0),(1,4), 得D(-2,2),E(2,2).∵点D ,E 的纵坐标相等,且都不为0,∴DE ∥x 轴,又∵AB 在x 轴上,∴DE ∥AB.24.(本题满分12分)(阳谷县期末)在平面直角坐标系中.(1)若点M(m-6,2m+3),点N(5,2),且MN∥y轴,求点M的坐标;(2)若点M(a,b),点N(5,2),且MN∥x轴,MN=3,求点M的坐标;(3)若点M(m-6,2m+3)到两坐标轴的距离相等,求点M的坐标.解:(1)∵MN∥y轴,∴点M的横坐标和点N的横坐标相同,∴m-6=5,得m=11,故点M的坐标为(5,25).(2)∵MN∥x轴,∴点M的纵坐标和点N的纵坐标相同,∴b=2,∵MN=3,∴|a-5|=3,解得a=8或a=2,故点M的坐标为(8,2)或(2,2).(3)∵点M到两坐标轴距离相等,点M的横坐标和纵坐标不能同时为0,∴点M不在原点上,分别在第一、三象限或第二、四象限,当在第一、三象限时,可知m-6=2m+3,得m=-9,点M的坐标为(-15,-15),当在第二、四象限时,可知m-6=-(2m+3),得m=1,点M的坐标为(-5,5),故点M的坐标为(-15,-15)或(-5,5).25.(本题满分12分)(官渡区月考)如图,BA⊥x轴于点A,点B的坐标为(-1,2),将线段BA沿x轴方向平移3个单位长度,平移后的线段为CD.(1)点C的坐标为(-4,2);线段BC与线段AD的位置关系是平行;(2)在四边形ABCD中,点P从点A出发,沿“AB→BC→CD”移动,移动到点D 停止.若点P 的速度为每秒1个单位长度,运动时间为t s ,回答下列问题.①直接写出点P 在运动过程中的坐标(用含t 的式子表示); ②当5<t <7时,四边形ABCP 的面积为4,求点P 的坐标.解:(2)①当0≤t <2时,p(-1,t);当2≤t ≤5时,p(-t +1,2);当5<t ≤7时,p(-4,7-t).②由题意知AB =2,AD =3,PD =7-t ,∴S 四边形ABCP =S 四边形ABCD -S △ADP =4,∴2×3-12×3×(7-t)=4,解得t =173,∴7-t =7-173=43, ∴点P ⎝⎛⎭⎪⎫-4,43.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7章平面直角坐标系-面积问题专练
姓名___________班级__________学号__________分数___________
一、解答题
1.已知:四边形ABCD四个顶点的坐标分别是A(-2 ,-4)、B(2,0)、C(1,5)、D(-6,0),且在直角坐标平面内,画出四边形ABCD,并计算它的面积.
2.如图,求阴影部分的总面积.
x
3.如图,四边形ABCD各个顶点的坐标分别为(- 2,8),(- 11,6),(- 14,0),(0,0)。
⑴四边形ABCD的面积是多少?
⑵如果把原来ABCD各个顶点纵坐标保持不变,横坐标增加2,所得的四边形面积又是多少?
4.在如图所示的直角坐标系中,△ABC的顶点坐标分别是A(0,0),B(6,0),C(5,5)。
x
⑴求△ABC的面积。
⑵如果将△ABC向上平移1个单位,得到△A1B1C1,再向右平移2个单位,得到△A2B2C2,试求出点A2、B2、C2的坐标;
⑶△A2B2C2与△ABC的大小、形状有什么关系?
5.(2011云南中专)如图,下列网格中,每个小方格的边长都是1.
(1)分别作出四边形ABCD关于x轴、y轴、原点的对称图形;
(2)求出四边形ABCD的面积.
6.如图,△AOB中,A﹑B两点的坐标分别为(-2,3)﹑(-6,-4),求ΔAOB的面积.
第7章 平面直角坐标系-面积问题专练答案
一、解答题
1.36(平方单位);
2.三个阴影部分的总面积拼成了一个边长为5的正方形,故三个阴影部分的总面积为25.
3.⑴80(可分别割成直角三角形和长方形或补直角三角形成长方形),⑵80;
4.⑴ 过点C 作CD ⊥x 轴,交x 轴于D ,因为A (0,0),B (6,0),所以AB =6,又因为C (5,5)所以CD =5,所以11651522
ABC S AB CD ∆=⨯⨯=⨯⨯=。
⑵向上平移1个单位,所有点的纵坐标都加上1,向右平移两个单位,再把所有点的横坐标都加上2,则A 2(2,1),B 2(8,1),C 2(7,6)
⑶根据平移特征,因为△A 2B 2C 2是由△ABC 平移两次得到的,所以△A 2B 2C 2与△ABC 大小、形状完全相同。
5.[答案] ⑴略; 2.⑵
[解析] ⑴如图,四边形ABCD 关于x 轴、y 轴、原点的对称图形分别是四边形1111A B C D 、四边形2222A B C D 、四边形3333A B C D ;
⑵四边形ABCD 的面积1222122
ABD S ∆==⨯⨯⨯= 6.解:过点A 作AC ⊥y 轴,过点B 作BD ⊥y 轴. ∴S 梯形ACDB =(2+6
)×72=28(平方单位)
∴S △ACO =2×32=3(平方单位)
∴S △BOD =6×42=12(平方单位)
∴S △ABO =28-3-12=13(平方单位)。