泵站工艺设计.
(完整版)雨水提升泵站工艺设计说明计算书:城市雨水,8.5秒流量,立式轴流泵

排涝泵站计算:1.总说明①城市暴雨强度公式**市距南京仅45km,地理气象条件相似,本次雨水设计暴雨强度公式仍采用南京市暴雨强度公式,即:8.02989++=tlgP1(3.q13.0/()3.)671式中:q-暴雨强度(1/s ha)p-设计重现期(a)t-设计降雨历时(min)**市近20年的雨水工程规划及设计均采用以上公式。
从多年的实际使用效果看,此公式能较准确地反映本地区降雨特征,可作为本次雨水计算的基本依据。
根据城市性质、重要性以及汇水地区类型(广场、干道、厂区、居住区)特点和气候条件等因素确定。
根据《**市城市总体规划》(2002~2020)所确定的城市性质及本市的地形和气象特点,并参照周围相近城市所采用的标准,本次整治范围内设计重现期取1年。
②径流系数根据《城市排水工程规划》,城市排水工程规划宜采用城市综合径流系数,即按规划建筑密度将城市用地分为城市中心区、一般规划区和市政绿地等,由不同的区域,分别确定不同的径流系数。
综合考虑**市现状绿化率较高和总体规划发展目标等因素,雨水综合径流系数见表1.1。
表1.1 **市城市雨水综合径流系数③地面集水时间(t1)地面集水时间受距离长短、地形坡度和地面铺盖等因素影响,结合**市实际和国内相似城市的采用数值,本次选用t 1=15min 。
2.同意**泵站(1) 流量确定汇水面积 2.01km 2,按照市政雨水泵站规模进行计算,集流距离最长为L=2.28km 。
其中管道长度L=380m ,明渠长度L=1900m ,根据《**市城市排水工程规划》中的设计水力要素,径流系数取0.5,管道流速取0.7v =(m/s ),折减系数取2,明渠流速取0.86v =(m/s ),折减系数取1.2。
则集流时间121529.05 1.236.877.26min t t mt =+=+⨯+⨯= 重现期为P=2计算的情况下:0.80.82989.3(10.671)2989.3(10.6712)97.5(/)(13.3)(78.3413.3)lgP lg q l s ha t ++===•++则对应的雨水流量为:330.597.5 2.01100109.8(/)Q qF m s ψ-==⨯⨯⨯⨯=根据排水规划中西塘水系的水力要素,同意二水系的水力计算表格为:考虑新建同意**泵站具有调蓄条件,根据《给水排水设计手册》(第五册P33)中对雨水调蓄计算,调蓄池的作用是高峰流量入池调蓄,低流量是脱过,通过调蓄后的进入泵站的脱过流量如下:()V f W α=(m3)1.20.150.650.50.215()[(1.1]lg(0.3)]0.2b f a n n nατ=-+++++ 式中:,,;Q Q Q Qαα''-=脱过系数既是脱过流量与池前管渠设计流量之比();f αα-的函数式3,(m );W Q W Q ττ-=池前管渠的设计流量与相应集流时间的乘积,;b n -暴雨公式参数,b=13.3,n=0.8,(min);τ-管渠在进入调蓄池前的断面汇流历时不计延缓系数调蓄水体面积S=10500m 2,根据相关资料,调蓄水深为0.4m ,因此调蓄容积为:310500*0.44200V m ==39.8(9.0536.8)*6026959.8()W Q m τ==*+=()0.1558f α=通过公式推导, 0.7758Q Qα'== 39.8*0.77587.60()Q Q m α'===因此,泵站流量为7.60m 3/s同意**泵站初拟设三台水泵,单台流量2.84m 3/s 。
取水泵站的设计s..

一、设计概述(一) 设计题目取水泵站工艺初步设计(二) 设计资料设计水量为200000m3/d,采用固定取水泵房用自流管从吸水井取水,自流管长度150m,水源洪水位标高为99.05m,枯水位标高为87.35m。
净化厂混合水井的水面标高为127.95m,自流取水管全长280m,泵站到净化场的输水干管全长2000m。
自用水系数α=1.05,取水头部到泵房吸水间的全部水头损失为1kPa(0.1m),泵房底板高度取1~1.5m。
二、设计概要取水泵站在水厂中也称一级泵站.在地面水水源中,取水泵站一般由吸水井、泵房及闸阀井三部分组成。
取水泵站由于它靠江临水的确良特点,所以河道的水文、水运、地质以及航道的变化等都会影响到取水泵上本身的埋深、结构形式以及工程造价等。
其从水源中吸进所需处理的水量,经泵站输送到水处理工艺流程进行净化处理。
本次课程设计仅以取水泵房为例进行设计,设计中通过粗估流量以及扬程的方法粗略的选取水泵;作水泵并联工况点判断各水泵是否在各自的高效段工作,以此来评估经济合理性以及各泵的利用情况。
取水泵房布置采用圆形钢筋混凝土结构,以此节约用地,根据布置原则确定各尺寸间距及长度,选取吸水管路和压水管路的管路配件,各辅助设备之后,绘制得取水泵站平面图及取水泵站立体剖面图各一张。
设计取水泵房时,在土建结构方面应考虑到河岸的稳定性,在泵房的抗浮、抗裂、抗倾覆、防滑波等方面均应有周详的计算。
在施工过程中,应考虑到争取在河道枯水位时施工,要抢季节,要有比较周全的施工组织计划。
在泵房投产后,在运行管理方面必须很好地使用通风、采光、起重、排水以及水锤防护等设施。
三、设计计算<一> 设计流量的确定和设计扬程估算:(1) 设计流量Q为了减小取水构筑物、输水管道各净水构筑物的尺寸,节约基建投资,在这种情况下,我们要求一级泵站中的泵昼夜不均匀工作。
因此,泵站的设计流量应为:式中 Qr ——一级泵站中水泵所供给的流量(m3/h);Qd ——供水对象最高日用水量(m3/d);α——为计及输水管漏损和净水构筑物自身用水而加的系数,一般取α=1.05T ——为一级泵站在一昼夜内工作小时数。
(完整版)取水提升泵站工艺设计说明计算书:河道取水,10.0万吨每天,中开式双吸离心泵

取水泵站设计计算书一、流量确定考虑到输水管漏渗和净化站本身用水,取自用水系数α=1.5,则近期设计流量:Q=1.05×100000÷3600÷24=1.215 m³/s远期设计流量:Q=1.05×1.5×100000÷3600÷24=1.823 m³/s二、设计扬程(1)水泵扬程:H=HST+Σh式中HST 为水泵静扬程.Σh 包括压水管水头损失、吸水管路水头损失和泵站内部水头损失采用灵菱型式取水头部。
在最不利情况下的水头损失,即一条虹吸自流管检修时要求另一条自流管通过75%最大设计流量,取水头部到吸水间的全部水头损失为1 米,则吸水间最高水面标高为4.36-1=39.36 米,最低水位标高为32.26-1=31.26 米。
正常情况时,Q=1.215/2=0.608 m³/s,一般不会淤泥,所以设计最小静扬程:HST=42.50-39.36=3.14 m设计最大静扬程:HST=42.50-31.26=11.24 m(2)输水管中的水头损失∑h设采用两条φ900 铸铁管,由徽城给水工程总平面图可知,泵站到净水输水管干线全长1000m ,当一条输水管检修时,另一条输水管应通过75% 设计流量,即:Q=0.75×1.823=1.367 m³ /s,查水力计算表得管内流速v=2.16 m/s, 1000i=5.7m ,所以∑h=1.1×5.7×1000/1000=6.27m (式中1.1 系包括局部水头损失而加大的系数)。
(3)泵站内管路中的水头损失hp其值粗估为2 m(4)安全工作水头hp其值粗估为2 m综上可知,则水泵的扬程为: 设计高水位时:Hmax=11.24+1+6.27+2+2=21.51 m设计低水位时:Hmin=3.14+1+6.27+2+2=13.41 m三、机组选型及方案比较:水泵选型有以下二种方案:方案一: 一台 20sh-19 型水泵(Q=450~650 l/s,H=15~27m, N=148~137KW),近期4 台,3 台工作,一台备用,远期增加一台,4 台工作,一台备用。
泵与泵站课程设计

《泵与泵站》课程设计任务书一、设计题目:某城镇自来水厂取水泵站工艺设计二、设计任务:新建给水取水泵站设计三、设计阶段:初步设计四、主要设计资料1.、基础资料冻土深度:0.8m地下水位:9m2、水文资料最高洪水位(百年一遇)1047.280m最低水位(保证率97%)1036.780m3、某市新建第二水厂工程近期设计水量为25万m3/d,要求远期发展到40万m3/d,取水泵站近远期结合,泵房土建部分按远期设计,设备只安装近期要求的设备。
采用固定取水泵房用两条自流管从江中取水。
净水构筑物前配水井的水面标高为1054.780m,自流取水管全长300m,泵站到净化场的输水干管全长1500m。
自用水系数α=1.05~1.1,泵房底板高度取1~1.5m。
室外地面标高为1048.780m。
五、设计时间安排设计计算、选择水泵机组、泵房内机组布置、吸压水管的选择与计算、选择辅助设备等2天,编写计算书3天,画图2天。
六、设计成果要求1、设计说明书一份(包括计算),要求书面整洁、文理通顺、论证合理、层次分明、计算无误。
2、设计图纸:要求布置合理、图面整洁、按绘图规定制图:泵站平面及剖面图(机器间)。
第二章 计算说明书2.1设计流量的确定和设计扬程的估算:(1)设计流量Q考虑到输水干管漏损和净化厂本身的自用水,取综合系数=1.05α,则 近期设计流量为332500001.05/=3.0382/2410937.5Q m h m s =⨯= 远期设计流量为334000001.0517500.0/=4.8611/24Q m h m s '=⨯=(2)设计扬程 H ①泵所需的静扬程ST H通过取水部分的计算已知在最不利的情况下,即一条自流管检修,另一条自流管通过75%的设计流量时:33'75%'13125.0/ 3.6458/Q Q m h m s '=⨯==从取水头部到泵房吸水间全300m,管径DN1400,给水排水设计手册.第01册.常用资料查得,v取=2.404m/s ,1000i=3.911,则从取水头部到泵房吸水间全长的沿程水头损失:’'1 3.9113001000 1.17h i l m =⨯=⨯÷= ’'20.30.3 3.91130010000.35h i l m =⨯⨯=⨯⨯÷=''’’'12’1.170.35 1.52h h h m =+=+=②输水干管中的水头损失h ∑查询给水排水设计手册.第01册.常用资料,DN1200钢管在远期75%流量数据下无数据,本次通过经验公式计算沿程水损。
泵站设计要点与步骤

10
水泵及水泵站
4、水泵机组和吸、压水管路的布置设计与尺寸计算
2)经济比较(当泵房深度大于8.0米时,圆形
泵房比较经济)。 2)送水泵房:矩形。 3)吸水池与泵房:合建式; 分建式。 合建式的优点:布置紧凑,水泵的吸水管路短,运行安全, 管理维护方便。要求河岸地质条件好,岸边水深较大。 分建式:取水构筑建在岸边,泵房建在离岸边较远的地质条 件好的地方;水泵吸水管路长,管理维护不方便,对吸入式工作 的水泵,水泵启动时间较长。 4)泵房的构筑形式:参考《给水排水设计手册》第3册。
号。
3)选泵方案比较 原则:① 应选择效率高的水泵——尽可能地选大泵; ② 应有适当的供水组合,以满足用水量的变化——水泵台数一般 选择为3 ~ 9台,不同用水量情况下,扬程利用率比较高 扬程利用率 = H装置/H水泵×100% ③ 在平均用水量附近应使水泵运行在最高效率点处; ④ 维护管理方便,基建设备投资较少。 方法:绘制水泵并联运行组合特性曲线,分析水泵运行效率和扬程利用 率(见教材p.131),此时管道损失特性曲线H = Hst +∑SQ2。
(2)水泵设计扬程的确定
分为两种情况:1)泵站向水塔或净水构筑物的配水井供水; 2)泵站直接向用水户供水。 1)取水泵站向净水构筑物的配水井供水 H = Hst +∑h + Hsafety ∑h = ∑hs + ∑hd = ∑hp + ∑hd1
Hsafety :安全水头可取 Hsafety =1.0 ~ 2.0 (m); ∑hd1:水泵站闸阀井出口 至配水井的输水管水头损失; ∑hp:站内水头损失, 初选水泵时取 ∑hp ≈2.0 m; ∑hin:引水管道水头损失。
7
水泵及水泵站
1、初选水泵机组——电机选择和水泵基础尺寸的确定 (4)水泵配套电机的选择 1)水泵厂已推荐该型号的水泵配套电机型号; 2)水泵厂未推荐配套电机,可按教材p.27公式(2-49)计 算。 注意:水泵装置在运行中的最大轴功率的确定,安单 泵运行时的极限工况确定,可通过图解法或解析法确定水 泵工况点。 (5)确定水泵机组基础尺寸(参考教材pp.143~144)
一体化污水提升泵站工艺施工平面图剖面图

泵站设计
设计资料1.1设计题目:送水泵站(二泵站)设计。
1.2原始资料:1.2.1泵站的设计水量为 3 万m3/d。
,1.2.2管网设计的部分成果:1)根据用水曲线确定的二泵站工作制度,分 2 及工作。
第一级,从 7 时到 16 时,每小时占全天用水量的 65 % 。
第二级,从 16 时到 7 时,每小时占全天用水量的 35 % 。
2)城市的设计最不利点的地面标高15 m ,建筑层数 6 层,自由水压2 m 。
3)管网平差得出泵站至最不利点的输水管和管网的总水头损失为 30 m 。
4)消防流量为 200 m3/h ,消防扬程为 50 m 。
转输流量为 50 m3/h ,转输扬程为 60 m 。
5)清水池所在地面标高为 20 m ,清水池最低水位在地面下 -4 m 。
1.2.3城市的冰冻线为 1.5 m ,最高温度为 35°,最低温度为 -24°.1.2.4泵站所在地土壤土质良好,地下水位为 -6 m 。
1.2.5泵站为双电源。
1.3设计任务:城市送水泵站的技术设计的工艺部分。
1.4课程设计工作量:1.4.1设计说明书一份(A4纸打印)。
1)设计概述、设计范围、设计资料。
2)选泵方案。
3)布置机组和管道、机组基础的设计、吸水管和压水管的设计。
4)泵房中各标高的确定。
5)复合水泵和电机。
6)泵站平面图布置,包括配电室、机器间、值班室、修理间等。
1.4.2完成设计图纸泵站总平面及平面图(机器间两方面)一张,应绘出主要设备、管路、配件及辅助设备的位置、尺寸、标高,列出主要设备表和材料表(比例尺:1:50:100)。
1.5设计要求:1.5.1独立按时完成课程设计。
1.5.2要求图面正确、整洁、字迹工整。
(二)、泵站工艺设计第一节、水泵的初步选择1.1泵站设计参数的确定泵站一级工作时的流量Q1=9% 65 **Q Khd=9%65 *3.1*30000=2816.7m3/h=782.4L/S 泵站二级工作时的流量Q2=15% 35 **Q Khd=15%35 *3.1*30000=910 m3/h=252.8L/S 泵站一级工作时的设计扬程H=⊿Z+h安全+∑h泵站损失+∑h管网损失+h服务水头=(15-16)+2+2+30+35=68m其中,⊿Z——为地形高差h安全——自由水压∑h泵站损失——泵站内的损失(初步估计为2m)∑h管网损失——为管网的总损失h服务水头——为管网最不利点的服务水头1.2水泵选择可用管路特性曲线进行选泵,先求出管道的特性曲线方程因为,HST =⊿Z+ h服务水头+ h自由=(15-16)+35+2=36m且,S=(∑h泵站损失+∑h管网损失)/Q12=32/2816.7=4.03×106-h2/m5或,S=(∑h泵站损失+∑h管网损失)/Q12=32/(782.4×106-)=52.33s52/m 则,管道的特性曲线方程为:H= H+SQ2=36+4.03×106 Q2(Q取m3/h)ST+SQ2=36+52.33 Q2(Q取L/s)或H= HST根据特性曲线方程得到流量和扬程的关系:(表1)(表2)为了方便以后水泵的维修和管理,选择4台水泵,一级工作时3台泵工作,1台备用,二级工作时1台泵单独工作,其余泵备用。
(完整版)污水提升泵站工艺设计说明计算书:城市污水,0.20万吨每天,潜水排污泵
1、调蓄池概况调蓄池调蓄容积600m3,调蓄池平面内空尺寸为L×B=17.2m×11.2m,有效水深3.0m。
调蓄池有2个冲洗廊道,轴距宽度为6m。
调蓄池含一座提升泵站,泵站内设两组泵,一组泵为初雨水提升泵,压力管出水至一体化提升回用设施,另一组为冲洗水提升泵,压力管出水进入附近DN500市政污水管。
2、冲洗水提升泵2.1水泵流量计算设2台提升泵,1用1备。
调蓄池有2个冲洗门,每个冲洗储存室的水量为21m3,总水量为21×2=42m3,泵站集水池尺寸为4.6×2.0×0.95m=8.74m3(泵站尺寸计算详见后面内容),总水量为42+8.7=50.7m3,冲洗水泵流量确定为50m3/h,排空时间为1.0h。
将其中1台泵安装于集水坑中,集水坑尺寸为L×B×H=0.8×0.8×0.8m,用于检修时泵站排水,另一台水泵安装于泵站底,平常两台泵互为备用提升冲洗水。
单台水泵流量为50m3/h=0.014m3/s2.2水泵扬程计算:H=H ST(静扬程)+Σh(水头损失)+富裕水头h3(1)静扬程计算:水泵工作最低水位:为集水坑中水泵的停泵水位即泵站底标高286.25m,另一台水泵停泵水位为287.00m,水泵工作最高水位:冲洗完成后水位=冲洗水量/调蓄池表面积+调蓄池池底标高=50.7/(17.2×11.2)+286.25=0.26+286.25=286.51m(泵站集水池增加水量忽略不计)。
提升水管至市政污水检查井地面标高293.34m,井底标高291.76m,本次设计压力管出水口管顶标高为292.34m。
静扬程H ST=292.34-286.25=6.09m(2)水头损失计算:Σh=沿程损失h1+局部损失h2沿程损失h1:根据《室外排水设计规范(2016版)》,泵站出水管流速宜为0.8~2.5 m/s;暂选取出水管流速为1.5m/s。
(完整版)污水提升泵站工艺设计说明计算书:城市污水,3.00万吨每天,潜水排污泵
1、泵站工艺计算泵站设计分为两个泵组,其中一个用于抽排箱涵旱季污水。
另一个用于提升内湖水进行河道补水。
2、补水泵组(1)泵组规模:补水泵组规模::设计抽排规模为3.0万m3/d。
30000=24÷=÷÷Ls60Q/34760(2)泵站主要设计参数:设计最低运行水位:1m设计最高运行水位:2m设计水位:1.60m(F1内湖水位)出水管水面高程为:4m则最小提升高度=4-2=2m设计提升高度=4-1.6=2.4m最大提升高度=4-1=3m(3)泵组扬程设计计算估算安全水头0.5m ,站内管线水头损失2m,格栅水头损失0.2m ;根据Q 查水力计算表得,出水总管:DN=600mm ;V=0.8m/s ;1000i=1.37。
站外输水管直接接入通过压力PE 管(L=1562m )输送至补水点,则沿程损失:(H 3=(10.67 Q^1.852L)/(C^1.852 D^4.87)+ H 32H 3=3.11+0.36=3.47m局部损失:DN=600mm ;V=0.8m/s ;1000i=1.37。
DN600弯头(90°)8个(ξ=1.01),出口(ξ=0.3),三通1个(ξ=1.5) m g v H 36.08.928.088.102)5.13.0801.11(2223=⨯⨯=++⨯+= 则对应最低工作扬程=2+0.5+2+0.2+3.47=8.17m设计扬程=2.4+0.5+2+0.2+3.47=8.57m最高工作扬程=3+0.5+2+0.2+3.47=9.17m设计扬程选择H=11m 。
复核如下:泵站扬程H>H 1+H 2+H 3+H 4其中:H 1为站内管线水头损失,H 2为安全水头,H 3为站外管线水头损失,H 4为提升水头。
站内管线含DN250弯头一个(ξ=0.87),DN250×300异径管一个(ξ=0.05),DN300弯头一个(ξ=0.78),伸缩节一个(ξ=0.21),DN300蝶阀一个(ξ=0.30),DN300单向阀一个(ξ=3.5),,DN300电动阀一个(ξ=0.30),丁字管一个(ξ=2.02),V=2.68m/s ,1000i=36.1g h 220νξ∑= 则m g v H 30.38.9268.203.92)02.230.05.330.021.078.005.087.01(221=⨯⨯=++++++++=;DN300管沿程损失=6.87×36.1=0.25m取安全水头H 2=0.5m;出水管: H 3=3.43m提升高度H 4=4-1=3mH=3.30+0.5+3.47+3+0.25=10.52m所选水泵H=11m>10.52米,所选设计扬程合理。
泵站设计
泵站设计负责人:陈英炜一、 设计条件1、当地自然气候条件年平均气温22 ℃最高气温39.1 ℃,最低气温0 ℃ 地面最高水温30 ℃地下水位:-2,地耐力:12~20T/㎡2、水文资料最高洪水位(百年一遇):132.5m 最低水位(保证率97%):128.68m 常水位:130.80m 河床底标高:120.50m 河床标高:131.00m 河水最大流量:360m 3/s 河水最小流量:60 m 3/s 3、部分标高资料。
净水厂混合池水面标高为166.50m, 泵站到净水厂的输水管全长为3000m , 室外管道的全部水头损失为7.5m,站的取水头部到吸水井内管道的总水头损失为0.5m, 进行泵站工艺设计。
设计水量:近期为(150000-1000*j )T/日(自己的学号),远期为250000T/二、 设计内容1、设计水量近期为(150000-1000*25)=125000T/d ,远期为250000T/d 所以近期为1.447m 3/s ,远期为2.894m 3/s TQ Q dr α=式中r Q —取水泵站中水泵所供给的流量,m 3/h ;d Q 供水对象最高日用水量,m 3/d ;α—输水管漏损和净水构筑物自身用水而加的系数,一般取α=1.05~1.1; T —取水泵站在一昼夜内工作小时数。
近期设计流量为:Q=1.05×125000÷24=10937.5m3/h=1.519m3/s 远期设计流量为:Q=1.05×250000÷24=10937.5m3/h=3.038m3/s2、扬程计算公式:安全水头泵管h h h H H ST +++= 式中H —泵站的扬程,m 或kPa ;ST H —静扬程,采用吸水井的最枯水位(或最低动水位)与净水构筑物进口水面标高差,37.82m ;管h —输水管上的总水头损失,8mH 2O泵h —取水泵房内的总水头损失,0.024mH 2O安全水头h —安全水头,mH 2O 或kPa 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
起重量(t) <0.5 0.5~2.0 2.0~5.0 >5.0 起重设备形式 固定吊钩或移动吊架 手动或电动单轨吊车 手动或电动单轨吊车 电动桥式行车
6 泵站水锤及防护
(2)停泵水锤
停泵水锤是指水泵机组因突然失电或其它原因,造成开阀停车时,
在水泵及管路中水流速度发生变化而引起的压力递变现象。
发生突然停泵的原因可能有:
(1)由于电力系统或电气设备突然发生故障,人为的误操作等致使电力供 应突然中断。 (2)雨天雷电引起突然断电。 (3)水泵机组突然发生机械故障,如联轴器断开,水泵密封环被咬住,致 使水泵转动发生困难而使电机过载,由于保护装置的作用而将电机切除。 (4)在自动化泵站中由于维护管理不善,也可能导致机组突然停电。
3 确定备用泵的型号和参数
不允许减少供水量和不允许间断供水的泵站,应 有两套备用机组; 允许减少供水量,或允许间断供水时最大泵型号相同 备用泵台数一般为工作泵的50%,备用泵要处于 完好准备状态,和工作泵是互为备用、轮流工作的 关系。
3 确定备用泵的型号和参数
最大真空值HVmax一般可根据吸水池最低水位至水泵最高点垂直距离H计 算,即: HVmax=760 H /10.33 =73.6H( mmHg)。
7 泵站辅助设备
(2)计量设备
电磁流量计 结构简单、工作可靠;水头损失小,且不易堵塞, 电耗少;反应灵敏,可测量脉动流量,测量范围大;测
量精度约为±1.5%;重量轻、体积小、占地少;价格
2 确定工作泵的型号和参数
【例题】一个小区给水泵站的管路总长度L=3000m,管径 为DN=500mm,管材为钢管,最大工况时的流量 Qmax=800m3/h,最小流量Qmin=400m3 /h,吸水井最低水
位与最不利点地形高差HST =1m,自由水压HC=12m,泵
站内部水头损失h泵站=2m,安全水头取H 安全=1.5m,最 大流量Qmax时从泵站至最不利点的管路水头损失∑h=3.3m。 试选择水泵?
水泵基础的作用是支承并固定机组,以便于机组运行平
稳,不产生振动。因而要求基础坚实牢固,不发生下沉和 不均匀沉降现象,卧式泵多采用混凝土块式基础,立式泵 多采用圆柱式混凝土基础或与泵房基础、楼板合建。
4 水泵机组的布置和基础设计
基础尺寸
I)带底座的小型水泵 基础长度L=水泵底座长度L1+(0.15~0.20)m; 基础宽度B=水泵底座螺孔间距B1+(0.15~0.20)m; 基础高度H=水泵底脚螺栓长度l+(0.15~0.20)m;
型号整齐,互为备用
水泵换轮运行
水泵调速运行
2 确定工作泵的型号和参数
(5)提高运行效率途径
尽量选用大泵 若有多种工况,要尽可能使各种工况下水泵都 在高效区工作,如不能应保证频率出现较高的大 泵工况点一定在高效区。 尽可能减少管路水头损失,管路设计时,尽量 缩短管路长度,减少阀门、配件等。
泵站内主要通道宽度应不小于1.2m。
5 吸水和压水管路系统
(1)吸水管路设计要求
不允许有泄漏 不积气,应避免形成气囊 尽可能减少吸水管长度,减少损失和埋深 每台水泵应有自己独立的吸水管 吸水井水位高于泵轴时,应设手动、常开检修闸阀 吸水管内流速:DN<250mm,v=1.0-1.2m/s;DN>250mm,v=1.21.6m/s 灌水启动时,应设底阀 吸水管设底阀时,应设喇叭口,使水流平稳,减少损失,喇叭 口直径D=(1.3-1.5)d,高度H=(3.5-7.0)(D-d)
选泵时还需考虑的其他因素: (1)水泵类型必须与抽送的水质相适应 (2)要考虑水泵的吸水能力,在保证吸水条件下,尽
可能减少泵站埋深。
(3)考虑远期发展,远近结合。 (4)水泵的构造形式对泵房的大小、结构形式和布置 都有影响,可直接影响泵房造价。 (5)应选择当地生产、性能良好、便于维护的设备。
4 水泵机组的布置和基础设计
III)用缓闭止回阀、自动缓闭水力闸阀
IV)还可考虑采用增加管道直径和壁厚
7 泵站辅助设备
(1)引水设备
水泵的工作有自灌式和吸入式两种方式。 真空泵:
真空泵的排气量计算式 为:QV K(WP WS)H a T(H a H SS)
式中:K——为漏气系数,一般K=1.05~1.10; Wp——为泵站中最大一台水泵泵壳空气容积(m3); W s——为泵站中最大一台水泵吸水管空气容积(m3); Ha——为大气压,用水柱高度表示; H ss——为水泵安装高度(m); T——为水泵引水时间(h),一般应小于5min。
在转弯、三通等处设支墩或拉杆
闸阀直径D>400mm,应设电动闸阀 压水管流速: DN<250mm,v=1.5-2.0m/s; DN>250mm,v=2.0-2.5m/s 不允许倒流时,设置止回阀
6 泵站水锤及防护
(1)水锤概述
水锤也称为水击,是有压水管路中由于液体流速的突然变化而引 起的压力急剧的交替升高和降低的水力冲击现象。 在简单管路中若发生关阀水锤,阀门瞬时关闭,则发生直接水锤,
较高,怕潮,怕水浸。
7 泵站辅助设备
超声波流量计 水头损失小,电耗少;反应灵敏;测量精度约为 ±2%;可计量瞬时流量,也可计累积流量。
安装部位要求上游的直管段不小于10倍管径,下游
的直管段不小于5倍管径。 目前,国产的超声波流量计已可测得管径为1002000mm之间的任何管道流量。
7 泵站辅助设备
5 吸水和压水管路系统
(2)吸水井设计安装要求
垂直安装的喇叭口:
I)淹没深度h≥0.5~1.0m,否则应设水平隔板,水平隔板边长为2D或3d II)喇叭口与井底间距要大于0.8D,使水行进流速小于吸水管进口流速 III)喇叭口距吸水井井壁距离要大于(0.75~1.0)D IV)喇叭口之间距离要大于(1.5~2.0)D
5 吸水和压水管路系统
水平安装的喇叭口:
I)淹没深度h≥0.5~1.5m。
II)叭口与井底间距要大于0.33D,行进流速小于吸水管进口流速 III)喇叭口之间距离要大于(1.5~2.0)D
5 吸水和压水管路系统
(3)压水管路设计要求
承受高压,要求坚固不漏水 为安装方便和减小水锤应力,必要地方设柔性接口
2 确定工作泵的型号和参数
(3)选择水泵:
按最不利工况(最大流量和扬程)来选择水泵,查得
12SH-19型水泵(高效区Q=612-935m3/h,H=23-14m) 符合要求。 (4)绘制水泵工况点:
2 确定工作泵的型号和参数
(5)校核工况:
2 确定工作泵的型号和参数
(4)减少能量浪费途径
大小兼顾,调配灵活
其压力增值:△P=ρa(v0-v),则有:
av0 H g
阀门关闭缓慢,则发生间接水锤,其压力增值:
av0 TC 2 Lv H g TZ gTz
6 泵站水锤及防护
av0 TC 2 Lv0 H g TZ gTz
式中:a——水锤波传播速度;
v0——水流原速度; v——水流速度改变后的速度,关阀水锤V=0 TC=2L/a——水锤波传播一个来回的时间; TZ ——阀门关闭时间。
2 确定工作泵的型号和参数
【解】
(1)确定流量:
Qmax=800m3/h=0.22m3/s;Qmin=400m3 /h=0.11m3 /s (2)计算扬程: Hmax=1+12+2+3.3+1.5=19.8m 总水头损失=2+3.3=5.5m,计算得到管路阻抗S为113.64, 管路特性曲线方程为:H=13+113.64Q2 计算得到,Hmin=13+113.64×0.112=14.37m
II)不带底座的大、中型水泵
基础长度 L=水泵机组底脚螺孔长度方向间距L1+(0.40~0.50)m; 基础宽度B=水泵底脚螺孔宽度方向间距B1+(0.40~0.50)m;
基础高度H=水泵底脚螺栓长度l+(0.15~0.20)m 。
4 水泵机组的布置和基础设计
基础高度校核
为保证水泵稳定工作,基础必须有相当的重量,一
般基础重量应大于(2.5~4.0)倍水泵机组总重量,在 已知基础平面尺寸的条件下,根据基础的总重量可以算 出其高度。基础最小高度不小于500~700mm,以保证 基础的稳定性,基础一般用混凝土浇筑,混凝土基础应
高出室内地坪约10~20cm。
4 水泵机组的布置和基础设计
(4)水泵机组布置的一些规定
要有一定宽度的人员通道,电动机功率不大于55kW时,净距应不小于
6 泵站水锤及防护
(3)停泵水锤的危害及其防护
停泵水锤的危害: 一般停泵水锤事故会造成“跑水”、停水;严重 的事故造成泵房被淹;有的还引起次生灾害,如冲 坏铁路,中断运输;还有的设备被损坏,伤及操作
人员,甚至造成人身死亡的事故。
6 泵站水锤及防护
水锤防护措施: I)尽可能不设止回阀 II)管路设有止回阀时,应设置防止压力升高的措施
2 确定工作泵的型号和参数 (3)选泵依据与原则
依据:工程所需的水量和水压及其变化规律 原则:在满足最不利工况的条件下,考虑各种工况,
尽可能节约投资,减少能耗。从技术上对流量、扬程
进行合理计算,对水泵台数和型号进行选定,满足用 户对水量和水压的要求。从经济和管理上对水泵台数 和工作方式进行确定,做到投资、维修费最低,正常 工作能耗最低。
北京林业大学 环境科学与工程学院
《泵与风机》
Pumps and Fans
主讲人:张立秋(环境科学与工程学院) zhangliqiu@ 2014年10月
第九章
泵站工艺设计
(一)
给水泵站工艺设计