课时跟踪训练26

合集下载

第三章第三节课时跟踪训练

第三章第三节课时跟踪训练

[课时跟踪训练](满分100分时间30分钟)一、选择题(每小题5分,共60分)(2019·北京东城区模拟)据中国地震网测定,北京时间2011年3月11日13时46分,日本发生里氏9.0级地震,震中位于宫城县以东太平洋海域,震源深度10千米,地震引发海啸及重大人员伤亡。

地震发生后,国际社会纷纷伸出援手,向日本提供人道主义援助。

据此回答1~3题。

1.对本次地震进行灾后救援的主要技术是()A.RS和GISB.雷达和网络技术[来源:]C.GPS和RSD.GPS和GIS2.地方救灾办公室能迅速、准确地掌握受灾范围、面积等情况,所利用的技术手段主要是()A.遥感技术B.全球定位技术C.地理信息系统D.卫星通信技术3.在营救地震被困人员的过程中,政府相关部门利用的现代地理技术主要是()①GIS技术②GPS技术③RS技术④“数字地球”技术A.①④B.②③C.③④D.①②解析:在地震灾后救灾中,RS可以快速获取受灾区域的状况,GIS可对受灾区域的信息进行分析,并制定救灾方案,GPS可以用来确定被困人员或救灾目的地的精确位置。

答案:1.C 2.A 3.D4.1999年3月27日,北约部队一架F-117A隐形战斗机被南联盟防空部队击落。

飞行员跳伞后在脚触地的一刹那,通过手持式信号发射器发出紧急呼救信号,当间谍卫星把呼救信号传送到北约空袭南联盟指挥所后,美军立即安排了救援行动。

6小时后,一架EA-6B电子干扰机发现飞行员的准确位置,一架MH-60G搜索与救援直升机降落在飞行员面前,把飞行员接上直升机并安全返回基地。

飞行员发出的呼救信号是()A.GIS系统信号B.GPS系统信号[来源:][来源:Z&xx&]C.RS系统信号D.以上都不对解析:本题考查全球定位系统的作用,解题关键是明确了“3S”技术的主要分工(功能)的不同。

题干材料主要表达了“寻找”的含义。

结合所学的“3S”知识,不难判断出飞行员发出的呼救信号是GPS系统信号。

第四章 第二节 课时跟踪训练

第四章  第二节  课时跟踪训练

[课时跟踪训练](满分50分时间25分钟)一、选择题(每小题3分,共24分)1.同源染色体上的DNA分子之间最可能相同的是()A.碱基对的排列顺序B.磷酸二酯键的数目C.脱氧核苷酸的种类D.(A+T)/(G+C)的比值解析:同源染色体上的DNA可能相同,也可能不同,但都是由4种脱氧核苷酸组成的。

答案:C2.下图是一个DNA分子的片段,从图中不能得到的信息是()A.DNA是双螺旋结构B.碱基严格互补配对C.嘌呤数等于嘧啶数D.两条脱氧核苷酸链反向平行解析:DNA分子的两条脱氧核苷酸链是反向平行的,但图中并未显示两链的方向。

答案:D3.某DNA分子中含有1 000个碱基对(P元素只是32P),若将DNA分子放在只含31P 的脱氧核苷酸的培养液中,让其在适宜的条件下复制两次,则子代DNA的平均相对分子质量比原来()A.增加1 000 B.减少1 000C.增加1 500 D.减少1 500解析:具有1 000个碱基对的DNA分子连续分裂两次,形成四个DNA分子,这四个DNA分子中有两个DNA分子的每条链都是含31P,还有两个DNA分子都是一条链含31P,另一条链是32P。

前两个DNA分子的相对质量比原来共减少了2 000,后两个DNA分子的相对质量比原DNA共减少了4 000,这样四个DNA分子平均比原来减少了6 000/4=1 500个。

答案:D4.(2010·江苏高考)下列关于核酸的叙述中,正确的是()A.DNA和RNA中的五碳糖相同B.组成DNA与ATP的元素种类不同C.T2噬菌体的遗传信息贮存在RNA中D.双链DNA分子中嘌呤数等于嘧啶数解析:DNA含的五碳糖是脱氧核糖,RNA含的五碳糖是核糖;组成DNA和ATP的元素种类都是C、H、O、N、P;T2噬菌体的遗传信息贮存在DNA中;DNA中A与T配对、G与C配对,故双链DNA分子中嘌呤数等于嘧啶数。

答案:D5.若将果蝇的一个精原细胞核中的DNA分子用15N进行标记,并供给14N作原料。

高二历史人民版选修3作业:专题三 第一课 课时跟踪训练

高二历史人民版选修3作业:专题三  第一课  课时跟踪训练

[课时跟踪训练](时间:25分钟满分:50分)一、选择题(每小题4分,共24分)1.造成1936年埃塞俄比亚沦亡的最主要原因是()A.国家贫困、武器装备落后B.缺少国际援助C.统治者不敢发动群众,指挥失误D.英法等国对意大利采取绥靖政策解析:本题是一道最佳式选择题,以上四个选项都是埃塞俄比亚迅速沦亡的原因,但最主要的还是国家贫困及武器装备的落后,其他三项均为次要原因。

故A项为最佳选项。

答案:A2.在埃塞俄比亚和西班牙反法西斯斗争失败的原因中,具有共性的是()A.武器落后B.内奸破坏C.没有国际援助D.英、法纵容侵略解析:本题考查辨别历史事物与历史解释的能力。

A、C两项为埃塞俄比亚失败的原因,B项为西班牙反法西斯斗争失败的原因,它们都属于个性,只有D项属于两者的共性。

答案:D3.1936年8月法国政府声明:“法兰西共和国政府……决心严格避免直接或间接对该国(西班牙)内政的一切干涉。

”这表明法国政府()A.充分尊重西班牙的主权B.支持西班牙的革命力量C.支持西班牙的反动势力D.推行纵容侵略的政策解析:本题考查正确解读历史材料并得出历史结论的能力。

从表面上看,法国声明不干涉西班牙内战,而实质上这种不干涉就是对法西斯德国的纵容,因为德国对西班牙进行了武装干涉,支持佛朗哥叛军。

故D项符合题意。

答案:D4.观察右边漫画,该漫画()A.讥讽了英国的均势政策B.讽刺了英法的绥靖政策C.揭示了西方社会的和平思潮D.反映了英德矛盾是当时的主要矛盾解析:本题考查阅读图片获取有效信息的能力。

画面中的人物为希特勒,那只鸡象征着正要遭受法西斯侵略的东欧小国。

从画面及下面的文字可判断出这是在讽刺英法对德国法西斯侵略扩张采取了纵容的政策,即绥靖政策。

答案:B5.德国法西斯头子戈培尔在他的日记中写道:“1939年初,元首有个更大的计划。

这个计划的实施,是慕尼黑协定的扩大,将使帝国处于更有利的地位。

”这个计划是指() A.吞并奥地利B.割占苏台德地区C.吞并捷克斯洛伐克D.进攻波兰解析:本题考查解读历史材料获取有效信息的能力。

第四章 第四节 第1课时 课时跟踪训练

第四章  第四节  第1课时  课时跟踪训练

[课时跟踪训练](满分50分时间25分钟)一、选择题(每小题4分,共28分)1.原核生物某基因原有213对碱基,现经过突变,成为210对碱基(未涉及终止密码子改变),它指导合成的蛋白质分子与原蛋白质相比,差异可能为()A.少一个氨基酸,氨基酸顺序不变B.少一个氨基酸,氨基酸顺序改变C.氨基酸数目不变,但顺序改变D.A、B都有可能解析:该基因突变后减少了3对碱基,若3对碱基转录产生的mRNA上的三个碱基恰相当于原来的密码子,则仅涉及一个氨基酸减少,其他氨基酸不变,如A所述;若3对碱基转录出的密码子打破了原密码子序列,则将出现B所述状况。

答案:D2.相同条件下,小麦植株哪一部位的细胞最难产生新的基因()A.叶肉B.根分生区C.茎尖D.花药解析:新基因是通过基因突变产生的,而基因突变往往发生在DNA分子复制过程中,只有分裂的细胞才进行DNA分子复制,故细胞分裂频率高的组织易产生新基因。

不分裂的细胞产生新基因的难度最大。

答案:A3.用人工诱变方法使黄色短杆菌的质粒中脱氧核苷酸序列发生如下变化:CCGCTAACG→CCGCGAACG,那么黄色短杆菌将发生的变化和结果是() (可能相关的密码子为:脯氨酸:CCG,CCA;甘氨酸:GGC,GGU;天冬氨酸:GAU,GAC;丙氨酸:GCA,GCU,GCC,GCG;半胱氨酸:UGU,UGC)A.基因突变,性状改变B.基因突变,性状没有改变C.基因和性状均没有改变D.基因没变,性状改变解析:从基因突变的情况可看出:基因片段中的T突变为G,对应的mRNA上的密码子由GAU变成GCU,编码的氨基酸由天冬氨酸变为丙氨酸,氨基酸的改变引起生物性状的改变。

答案:A4.如果一个基因的中部缺失了1个核苷酸对,不可能的后果是()A.没有蛋白质产物B.翻译为蛋白质时在缺失位置终止C.所控制合成的蛋白质减少多个氨基酸D.翻译的蛋白质中,缺失部位以后的氨基酸序列发生变化解析:基因的中部若编码区缺少一个核苷酸对,该基因仍然能表达,但是表达产物(蛋白质)的结构发生变化,有可能出现下列三种情况:翻译为蛋白质时在缺失位置终止、所控制合成的蛋白质减少或者增加多个氨基酸、缺失部位以后的氨基酸序列发生变化。

2020年高中数学课时跟踪检测含解析(全一册)新人教A版

2020年高中数学课时跟踪检测含解析(全一册)新人教A版

2020年高中数学课时跟踪检测含解析新人教A版课时跟踪检测一变化率问题导数的概念课时跟踪检测二导数的几何意义课时跟踪检测三几个常用函数的导数基本初等函数的导数公式及导数的运算法则课时跟踪检测四复合函数求导及应用课时跟踪检测五函数的单调性与导数课时跟踪检测六函数的极值与导数课时跟踪检测七函数的最大小值与导数课时跟踪检测八生活中的优化问题举例课时跟踪检测九定积分的概念课时跟踪检测十微积分基本定理课时跟踪检测十一定积分的简单应用课时跟踪检测十二合情推理课时跟踪检测十三演绎推理课时跟踪检测十四综合法和分析法课时跟踪检测十五反证法课时跟踪检测十六数学归纳法课时跟踪检测十七数系的扩充和复数的概念课时跟踪检测十八 复数的几何意义课时跟踪检测十九 复数代数形式的加减运算及其几何意义 课时跟踪检测二十 复数代数形式的乘除运算课时跟踪检测(一) 变化率问题、导数的概念一、题组对点训练对点练一 函数的平均变化率1.如果函数y =ax +b 在区间[1,2]上的平均变化率为3,则a =( ) A .-3 B .2 C .3 D .-2解析:选C 根据平均变化率的定义,可知Δy Δx =(2a +b )-(a +b )2-1=a =3.2.若函数f (x )=-x 2+10的图象上一点⎝ ⎛⎭⎪⎫32,314及邻近一点⎝ ⎛⎭⎪⎫32+Δx ,314+Δy ,则Δy Δx =( )A .3B .-3C .-3-(Δx )2D .-Δx -3解析:选D ∵Δy =f ⎝ ⎛⎭⎪⎫32+Δx -f ⎝ ⎛⎭⎪⎫32=-3Δx -(Δx )2,∴Δy Δx =-3Δx -(Δx )2Δx =-3-Δx . 3.求函数y =f (x )=1x在区间[1,1+Δx ]内的平均变化率.解:∵Δy =f (1+Δx )-f (1)=11+Δx-1=1-1+Δx 1+Δx =1-(1+Δx )(1+1+Δx )1+Δx=-Δx(1+1+Δx )1+Δx, ∴Δy Δx =-1(1+1+Δx )1+Δx. 对点练二 求瞬时速度4.某物体的运动路程s (单位:m)与时间t (单位:s)的关系可用函数s (t )=t 3-2表示,则此物体在t =1 s 时的瞬时速度(单位:m/s)为( )A .1B .3C .-1D .0 答案:B5.求第4题中的物体在t 0时的瞬时速度. 解:物体在t 0时的平均速度为v =s (t 0+Δt )-s (t 0)Δt=(t 0+Δt )3-2-(t 30-2)Δt =3t 20Δt +3t 0(Δt )2+(Δt )3Δt=3t 20+3t 0Δt +(Δt )2.因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20,故此物体在t =t 0时的瞬时速度为3t 20 m/s. 6.若第4题中的物体在t 0时刻的瞬时速度为27 m/s,求t 0的值.解:由v =s (t 0+Δt )-s (t 0)Δt =(t 0+Δt )3-2-(t 30-2)Δt=3t 20Δt +3t 0(Δt )2+(Δt )3Δt =3t 20+3t 0Δt +(Δt )2,因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20. 所以由3t 20=27,解得t 0=±3, 因为t 0>0,故t 0=3,所以物体在3 s 时的瞬时速度为27 m/s. 对点练三 利用定义求函数在某一点处的导数 7.设函数f (x )可导,则lim Δx →0 f (1+3Δx )-f (1)3Δx等于( )A .f ′(1)B .3f ′(1)C .13f ′(1) D .f ′(3)解析:选A lim Δx →0f (1+3Δx )-f (1)3Δx=f ′(1).8.设函数f (x )=ax +3,若f ′(1)=3,则a 等于( ) A .2 B .-2 C .3 D .-3 解析:选C ∵f ′(1)=lim Δx →0 f (1+Δx )-f (1)Δx=lim Δx →0a (1+Δx )+3-(a +3)Δx=a ,∴a =3.9.求函数f (x )=x 在x =1处的导数f ′(1).解:由导数的定义知,函数在x =1处的导数f ′(1)=lim Δx →0f (1+Δx )-f (1)Δx,而f (1+Δx )-f (1)Δx =1+Δx -1Δx =11+Δx +1,又lim Δx →0 11+Δx +1=12,所以f ′(1)=12.二、综合过关训练1.若f (x )在x =x 0处存在导数,则lim h →0 f (x 0+h )-f (x 0)h( )A .与x 0,h 都有关B .仅与x 0有关,而与h 无关C .仅与h 有关,而与x 0无关D .以上答案都不对解析:选B 由导数的定义知,函数在x =x 0处的导数只与x 0有关.2.函数y =x 2在x 0到x 0+Δx 之间的平均变化率为k 1,在x 0-Δx 到x 0之间的平均变化率为k 2,则k 1与k 2的大小关系为( )A .k 1>k 2B .k 2<k 2C .k 1=k 2D .不确定解析:选D k 1=f (x 0+Δx )-f (x 0)Δx =(x 0+Δx )2-x 20Δx=2x 0+Δx ;k 2=f (x 0)-f (x 0-Δx )Δx =x 20-(x 0-Δx )2Δx=2x 0-Δx .因为Δx 可正也可负,所以k 1与k 2的大小关系不确定. 3.A ,B 两机关开展节能活动,活动开始后两机关的用电量W 1(t ),W 2(t )与时间t (天)的关系如图所示,则一定有( )A .两机关节能效果一样好B .A 机关比B 机关节能效果好C .A 机关的用电量在[0,t 0]上的平均变化率比B 机关的用电量在[0,t 0]上的平均变化率大D .A 机关与B 机关自节能以来用电量总是一样大解析:选B 由题图可知,A 机关所对应的图象比较陡峭,B 机关所对应的图象比较平缓,且用电量在[0,t 0]上的平均变化率都小于0,故一定有A 机关比B 机关节能效果好.4.一个物体的运动方程为s =1-t +t 2,其中s 的单位是:m,t 的单位是:s,那么物体在3 s 末的瞬时速度是( )A .7 m/sB .6 m/sC .5 m/sD .8 m/s解析:选C ∵Δs Δt =1-(3+Δt )+(3+Δt )2-(1-3+32)Δt=5+Δt ,∴lim Δt →0 Δs Δt =lim Δt →0 (5+Δt )=5 (m/s). 5.如图是函数y =f (x )的图象,则(1)函数f (x )在区间[-1,1]上的平均变化率为________; (2)函数f (x )在区间[0,2]上的平均变化率为________. 解析:(1)函数f (x )在区间[-1,1]上的平均变化率为f (1)-f (-1)1-(-1)=2-12=12.(2)由函数f (x )的图象知,f (x )=⎩⎪⎨⎪⎧x +32,-1≤x ≤1,x +1,1<x ≤3.所以,函数f (x )在区间[0,2]上的平均变化率为f (2)-f (0)2-0=3-322=34.答案:(1)12 (2)346.函数y =-1x在点x =4处的导数是________.解析:∵Δy =-14+Δx+14=12-14+Δx =4+Δx -224+Δx =Δx24+Δx (4+Δx +2). ∴Δy Δx =124+Δx (4+Δx +2). ∴lim Δx →0 Δy Δx =lim Δx →0124+Δx (4+Δx +2) =12×4×(4+2)=116.∴y ′|x =4=116.答案:1167.一做直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2(位移:m ;时间:s). (1)求此物体的初速度;(2)求此物体在t =2时的瞬时速度; (3)求t =0到t =2时平均速度.解:(1)初速度v 0=lim Δt →0 s (Δt )-s (0)Δt =lim Δt →0 3Δt -(Δt 2)Δt=lim Δt →0 (3-Δt )=3(m/s). 即物体的初速度为3 m/s. (2)v =lim Δt →0s (2+Δt )-s (2)Δt=lim Δt →0 3(2+Δt )-(2+Δt )2-(3×2-4)Δt=lim Δt →0 -(Δt )2-Δt Δt =lim Δt →0 (-Δt -1)=-1(m/s). 即此物体在t =2时的瞬时速度为1 m/s,方向与初速度相反. (3)v =s (2)-s (0)2-0=6-4-02=1(m/s).即t =0到t =2时的平均速度为1 m/s.8.若函数f (x )=-x 2+x 在[2,2+Δx ](Δx >0)上的平均变化率不大于-1,求Δx 的范围.解:因为函数f (x )在[2,2+Δx ]上的平均变化率为: Δy Δx =f (2+Δx )-f (2)Δx=-(2+Δx )2+(2+Δx )-(-4+2)Δx=-4Δx +Δx -(Δx )2Δx =-3-Δx ,所以由-3-Δx ≤-1, 得Δx ≥-2. 又因为Δx >0,即Δx 的取值范围是(0,+∞).课时跟踪检测(二) 导数的几何意义一、题组对点训练对点练一 求曲线的切线方程1.曲线y =x 3+11在点(1,12)处的切线与y 轴交点的纵坐标是( ) A .-9 B .-3 C .9 D .15解析:选C ∵切线的斜率k =lim Δx →0 Δy Δx =lim Δx →0 (1+Δx )3+11-12Δx =lim Δx →0 1+3·Δx +3·(Δx )2+(Δx )3-1Δx =lim Δx →0[3+3(Δx )+(Δx )2]=3, ∴切线的方程为y -12=3(x -1). 令x =0得y =12-3=9.2.求曲线y =1x 在点⎝ ⎛⎭⎪⎫12,2的切线方程.解:因为y ′=lim Δx →0 Δy Δx =lim Δx →0 1x +Δx -1x Δx =lim Δx →0 -1x 2+x ·Δx =-1x 2, 所以曲线在点⎝ ⎛⎭⎪⎫12,2的切线斜率为k =y ′|x =12=-4.故所求切线方程为y -2=-4⎝ ⎛⎭⎪⎫x -12,即4x +y -4=0.对点练二 求切点坐标3.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1D .a =-1,b =-1解析:选A ∵点(0,b )在直线x -y +1=0上,∴b =1. 又y ′=lim Δx →0 (x +Δx )2+a (x +Δx )+1-x 2-ax -1Δx =2x +a , ∴过点(0,b )的切线的斜率为y ′|x =0=a =1.4.已知曲线y =2x 2+4x 在点P 处的切线斜率为16,则点P 坐标为________. 解析:设P (x 0,2x 20+4x 0),则f ′(x 0)=lim Δx →0 f (x 0+Δx )-f (x 0)Δx =lim Δx →0 2(Δx )2+4x 0Δx +4ΔxΔx=4x 0+4, 又∵f ′(x 0)=16,∴4x 0+4=16,∴x 0=3,∴P (3,30). 答案:(3,30)5.曲线y =f (x )=x 2的切线分别满足下列条件,求出切点的坐标. (1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)切线的倾斜角为135°.解:f ′(x )=lim Δx →0 f (x +Δx )-f (x )Δx =lim Δx →0(x +Δx )2-x2Δx=2x , 设P (x 0,y 0)是满足条件的点.(1)∵切线与直线y =4x -5平行,∴2x 0=4,∴x 0=2,y 0=4,即P (2,4),显然P (2,4)不在直线y =4x -5上,∴符合题意.(2)∵切线与直线2x -6y +5=0垂直,∴2x 0·13=-1,∴x 0=-32,y 0=94,即P ⎝ ⎛⎭⎪⎫-32,94.(3)∵切线的倾斜角为135°,∴其斜率为-1,即2x 0=-1,∴x 0=-12,y 0=14,即P ⎝ ⎛⎭⎪⎫-12,14. 对点练三 导数几何意义的应用 6.下面说法正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )点(x 0,f (x 0))处没有切线B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D .若曲线y =f (x )在点(x 0,f (x 0))处没有切线,则f ′(x 0)有可能存在解析:选C 根据导数的几何意义及切线的定义知曲线在(x 0,y 0)处有导数,则切线一定存在,但反之不一定成立,故A,B,D 错误.7.设曲线y =f (x )在某点处的导数值为0,则过曲线上该点的切线( ) A .垂直于x 轴B .垂直于y 轴C .既不垂直于x 轴也不垂直于y 轴D .方向不能确定解析:选B 由导数的几何意义知曲线f (x )在此点处的切线的斜率为0,故切线与y 轴垂直.8.如图所示,单位圆中弧AB 的长为x ,f (x )表示弧AB 与弦AB 所围成的弓形面积的2倍,则函数y =f (x )的图象是( )解析:选D 不妨设A 固定,B 从A 点出发绕圆周旋转一周,刚开始时x 很小,即弧AB 长度很小,这时给x 一个改变量Δx ,那么弦AB 与弧AB 所围成的弓形面积的改变量非常小,即弓形面积的变化较慢;当弦AB 接近于圆的直径时,同样给x 一个改变量Δx ,那么弧AB 与弦AB 所围成的弓形面积的改变量将较大,即弓形面积的变化较快;从直径的位置开始,随着B点的继续旋转,弓形面积的变化又由变化较快变为越来越慢.由上可知函数y =f (x )图象的上升趋势应该是首先比较平缓,然后变得比较陡峭,最后又变得比较平缓,对比各选项知D 正确.9.已知函数y =f (x )的图象如图所示, 则函数y =f ′(x )的图象可能是________(填序号).解析:由y =f (x )的图象及导数的几何意义可知,当x <0时f ′(x )>0,当x =0时,f ′(x )=0,当x >0时,f ′(x )<0,故②符合.答案:②二、综合过关训练1.函数f (x )的图象如图所示,则下列结论正确的是( ) A .0<f ′(a )<f ′(a +1)<f (a +1)-f (a ) B .0<f ′(a +1)<f (a +1)-f (a )<f ′(a ) C .0<f ′(a +1)<f ′(a )<f (a +1)-f (a ) D .0<f (a +1)-f (a )<f ′(a )<f ′(a +1)解析:选B f ′(a ),f ′(a +1)分别为曲线f (x )在x =a ,x =a +1处的切线的斜率,由题图可知f ′(a )>f ′(a +1)>0,而f (a +1)-f (a )=f (a +1)-f (a )(a +1)-a表示(a ,f (a ))与(a +1,f (a+1))两点连线的斜率,且在f ′(a )与f ′(a +1)之间.∴0<f ′(a +1)<f (a +1)-f (a )<f ′(a ).2.曲线y =1x -1在点P (2,1)处的切线的倾斜角为( ) A .π6 B .π4 C .π3 D .3π4解析:选D Δy =12+Δx -1-12-1=11+Δx -1=-Δx 1+Δx ,lim Δx →0 Δy Δx =lim Δx →0 -11+Δx =-1,斜率为-1,倾斜角为3π4.3.曲线y =x 3-2x +1在点(1,0)处的切线方程为( ) A .y =x -1 B .y =-x +1 C .y =2x -2D .y =-2x +2解析:选 A 由Δy =(1+Δx )3-2(1+Δx )+1-(1-2+1)=(Δx )3+3(Δx )2+Δx 得lim Δx →0 Δy Δx =lim Δx →0 (Δx )2+3Δx +1=1,所以在点(1,0)处的切线的斜率k =1,切线过点(1,0),根据直线的点斜式可得切线方程为y =x -1.4.设P 0为曲线f (x )=x 3+x -2上的点,且曲线在P 0处的切线平行于直线y =4x -1,则P 0点的坐标为( )A .(1,0)B .(2,8)C .(1,0)或(-1,-4)D .(2,8)或(-1,-4)解析:选C f ′(x )=lim Δx →0 (x +Δx )3+(x +Δx )-2-(x 3+x -2)Δx=lim Δx →0 (3x 2+1)Δx +3x (Δx )2+(Δx )3Δx =3x 2+1.由于曲线f (x )=x 3+x -2在P 0处的切线平行于直线y =4x -1,所以f (x )在P 0处的导数值等于4.设P 0(x 0,y 0),则有f ′(x 0)=3x 20+1=4,解得x 0=±1,P 0的坐标为(1,0)或(-1,-4).5.已知二次函数y =f (x )的图象如图所示,则y =f (x )在A 、B 两点处的导数f ′(a )与f ′(b )的大小关系为:f ′(a )________f ′(b )(填“<”或“>”).解析:f ′(a )与f ′(b )分别表示函数图象在点A 、B 处的切线斜率,故f ′(a )>f ′(b ).答案:>6.过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程为____________.解析:曲线y =3x 2-4x +2在点M (1,1)处的切线斜率k =y ′|x =1=lim Δx →03(1+Δx )2-4(1+Δx )+2-3+4-2Δx=lim Δx →0 (3Δx +2)=2.所以过点 P (-1,2)的直线的斜率为2.由点斜式得y-2=2(x+1),即2x-y+4=0.所以所求直线方程为2x-y+4=0.答案:2x-y+4=07.甲、乙二人跑步的路程与时间关系以及百米赛跑路程和时间关系分别如图①②,试问:(1)甲、乙二人哪一个跑得快?(2)甲、乙二人百米赛跑,问快到终点时,谁跑得较快?解:(1)图①中乙的切线斜率比甲的切线斜率大,故乙跑得快;(2)图②中在快到终点时乙的瞬时速度大,故快到终点时,乙跑得快.8.“菊花”烟花是最壮观的烟花之一,制造时通常期望它在达到最高时爆裂.如果烟花距地面的高度h(m)与时间t(s)之间的关系式为h(t)=-4.9t2+14.7t.其示意图如图所示.根据图象,结合导数的几何意义解释烟花升空后的运动状况.解:如图,结合导数的几何意义,我们可以看出:在t=1.5 s附近曲线比较平坦,也就是说此时烟花的瞬时速度几乎为0,达到最高点并爆裂;在0~1.5 s之间,曲线在任何点的切线斜率大于0且切线的倾斜程度越来越小,也就是说烟花在达到最高点前,以越来越小的速度升空;在1.5 s后,曲线在任何点的切线斜率小于0且切线的倾斜程度越来越大,即烟花达到最高点后,以越来越大的速度下降,直到落地.课时跟踪检测(三) 几个常用函数的导数、基本初等函数的导数公式及导数的运算法则一、题组对点训练对点练一 利用导数公式求函数的导数 1.给出下列结论:①(cos x )′=sin x ;②⎝ ⎛⎭⎪⎫sin π3′=cos π3;③若y =1x 2,则y ′=-1x ;④⎝ ⎛⎭⎪⎫-1x ′=12x x.其中正确的个数是( )A .0B .1C .2D .3解析:选B 因为(cos x )′=-sin x ,所以①错误.sin π3=32,而⎝ ⎛⎭⎪⎫32′=0,所以②错误.⎝ ⎛⎭⎪⎫1x 2′=0-(x 2)′x 4=-2x x 4=-2x 3,所以③错误.⎝ ⎛⎭⎪⎫-1x ′=-0-(x 12)′x =12x -12x =12x -32=12x x,所以④正确. 2.已知f (x )=x α(α∈Q *),若f ′(1)=14,则α等于( )A .13B .12C .18D .14 解析:选D ∵f (x )=x α,∴f ′(x )=αx α-1.∴f ′(1)=α=14.对点练二 利用导数的运算法则求导数 3.函数y =sin x ·cos x 的导数是( ) A .y ′=cos 2x +sin 2x B .y ′=cos 2x -sin 2x C .y ′=2cos x ·sin xD .y ′=cos x ·sin x解析:选B y ′=(sin x ·cos x )′=cos x ·cos x +sin x ·(-sin x )=cos 2x -sin 2x . 4.函数y =x 2x +3的导数为________.解析:y ′=⎝ ⎛⎭⎪⎫x 2x +3′=(x 2)′(x +3)-x 2(x +3)′(x +3)2=2x (x +3)-x 2(x +3)2=x 2+6x (x +3)2.答案:x 2+6x (x +3)25.已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.解析:f ′(x )=a ⎝ ⎛⎭⎪⎫ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3, 所以a =3.答案:36.求下列函数的导数.(1)y =sin x -2x 2;(2)y =cos x ·ln x ;(3)y =exsin x.解:(1)y ′=(sin x -2x 2)′=(sin x )′-(2x 2)′=cos x -4x .(2)y ′=(cos x ·ln x )′=(cos x )′·ln x +cos x ·(ln x )′=-sin x ·ln x +cos xx.(3)y ′=⎝ ⎛⎭⎪⎫e x sin x ′=(e x )′·sin x -e x ·(sin x )′sin 2x =e x ·sin x -e x ·cos x sin 2x =e x(sin x -cos x )sin 2x. 对点练三 利用导数公式研究曲线的切线问题7.(2019·全国卷Ⅰ)曲线y =3(x 2+x )e x在点(0,0)处的切线方程为________. 解析:∵y ′=3(2x +1)e x +3(x 2+x )e x =e x (3x 2+9x +3), ∴切线斜率k =e 0×3=3,∴切线方程为y =3x . 答案:y =3x8.若曲线f (x )=x ·sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a =________.解析:因为f ′(x )=sin x +x cos x ,所以f ′⎝ ⎛⎭⎪⎫π2=sin π2+π2cos π2=1.又直线ax +2y +1=0的斜率为-a2,所以根据题意得1×⎝ ⎛⎭⎪⎫-a 2=-1,解得a =2.答案:29.已知a ∈R,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.解析:因为f ′(x )=a -1x,所以f ′(1)=a -1,又f (1)=a ,所以切线l 的方程为y -a=(a -1)(x -1),令x =0,得y =1.答案:110.在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +13上,且在第一象限内,已知曲线C 在点P 处的切线的斜率为2,求点P 的坐标.解:设点P 的坐标为(x 0,y 0),因为y ′=3x 2-10,所以3x 20-10=2,解得x 0=±2.又点P 在第一象限内,所以x 0=2,又点P 在曲线C 上,所以y 0=23-10×2+13=1,所以点P 的坐标为(2,1).二、综合过关训练1.f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x ),n ∈N,则f 2 019(x )=( )A .sin xB .-sin xC .cos xD .-cos x解析:选D 因为f 1(x )=(sin x )′=cos x ,f 2(x )=(cos x )′=-sin x ,f 3(x )=(-sin x )′=-cos x ,f 4(x )=(-cos x )′=sin x ,f 5(x )=(sin x )′=cos x ,所以循环周期为4,因此f 2 019(x )=f 3(x )=-cos x .2.已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D .12解析:选A 因为y ′=x 2-3x ,所以根据导数的几何意义可知,x 2-3x =12,解得x =3(x =-2不合题意,舍去).3.曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为( )A .-12B .12C .-22D .22解析:选B y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=11+sin 2x ,把x =π4代入得导数值为12,即为所求切线的斜率.4.已知直线y =3x +1与曲线y =ax 3+3相切,则a 的值为( ) A .1 B .±1 C .-1D .-2解析:选A 设切点为(x 0,y 0),则y 0=3x 0+1,且y 0=ax 30+3,所以3x 0+1=ax 30+3…①.对y =ax 3+3求导得y ′=3ax 2,则3ax 20=3,ax 20=1…②,由①②可得x 0=1,所以a =1.5.设a 为实数,函数f (x )=x 3+ax 2+(a -3)x 的导函数为f ′(x ),且f ′(x )是偶函数,则曲线y =f (x )在点(2,f (2))处的切线方程为____________.解析:f ′(x )=3x 2+2ax +a -3, ∵f ′(x )是偶函数,∴a =0, ∴f (x )=x 3-3x ,f ′(x )=3x 2-3, ∴f (2)=8-6=2,f ′(2)=9,∴曲线y =f (x )在点(2,f (2))处的切线方程为y -2=9(x -2), 即9x -y -16=0. 答案:9x -y -16=06.设f (x )=x (x +1)(x +2)…(x +n ),则f ′(0)=________. 解析:令g (x )=(x +1)(x +2)…(x +n ),则f (x )=xg (x ), 求导得f ′(x )=x ′g (x )+xg ′(x )=g (x )+xg ′(x ), 所以f ′(0)=g (0)+0×g ′(0)=g (0)=1×2×3×…×n . 答案:1×2×3×…×n7.已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.解析:法一:∵y =x +ln x , ∴y ′=1+1x,y ′|x =1=2.∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1. ∵y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1,消去y ,得ax 2+ax +2=0.由Δ=a 2-8a =0,解得a =8. 法二:同法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1). ∵y ′=2ax +(a +2), ∴y ′|x =x 0=2ax 0+(a +2).由⎩⎪⎨⎪⎧2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎪⎨⎪⎧x 0=-12,a =8.答案:88.设f (x )=x 3+ax 2+bx +1的导数f ′(x )满足f ′(1)=2a ,f ′(2)=-b ,其中常数a ,b ∈R.求曲线y =f (x )在点(1,f (1))处的切线方程.解:因为f (x )=x 3+ax 2+bx +1,所以f ′(x )=3x 2+2ax +b . 令x =1,得f ′(1)=3+2a +b , 又f ′(1)=2a,3+2a +b =2a , 解得b =-3,令x =2得f ′(2)=12+4a +b , 又f ′(2)=-b , 所以12+4a +b =-b , 解得a =-32.则f (x )=x 3-32x 2-3x +1,从而f (1)=-52.又f ′(1)=2×⎝ ⎛⎭⎪⎫-32=-3, 所以曲线y =f (x )在点(1,f (1))处的切线方程为y -⎝ ⎛⎭⎪⎫-52=-3(x -1), 即6x +2y -1=0.9.已知两条直线y =sin x ,y =cos x ,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.解:不存在.由于y =sin x ,y =cos x ,设两条曲线的一个公共点为P (x 0,y 0),所以两条曲线在P (x 0,y 0)处的斜率分别为k 1=y ′|x =x 0=cos x 0,k 2=y ′|x =x 0=-sinx 0.若使两条切线互相垂直,必须使cos x 0·(-sin x 0)=-1,即sin x 0·cos x 0=1,也就是sin 2x 0=2,这是不可能的,所以两条曲线不存在公共点,使在这一点处的两条切线互相垂直.课时跟踪检测(四) 复合函数求导及应用一、题组对点训练对点练一 简单复合函数求导问题 1.y =cos 3x 的导数是( ) A .y ′=-3cos 2x sin x B .y ′=-3cos 2x C .y ′=-3sin 2xD .y ′=-3cos x sin 2x解析:选A 令t =cos x ,则y =t 3,y ′=y t ′·t x ′=3t 2·(-sin x )=-3cos 2x sin x . 2.求下列函数的导数. (1)y =ln(e x +x 2); (2)y =102x +3;(3)y =sin 4x +cos 4x .解:(1)令u =e x +x 2,则y =ln u .∴y ′x =y ′u ·u ′x =1u ·(e x +x 2)′=1e x +x 2·(e x+2x )=e x+2x e x +x2.(2)令u =2x +3,则y =10u,∴y ′x =y ′u ·u ′x =10u·ln 10·(2x +3)′=2×102x +3ln10.(3)y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2x ·cos 2x =1-12sin 22x =1-14(1-cos 4x )=34+14cos 4x . 所以y ′=⎝ ⎛⎭⎪⎫34+14cos 4x ′=-sin 4x . 对点练二 复合函数与导数运算法则的综合应用 3.函数y =x 2cos 2x 的导数为( ) A .y ′=2x cos 2x -x 2sin 2x B .y ′=2x cos 2x -2x 2sin 2x C .y ′=x 2cos 2x -2x sin 2xD .y ′=2x cos 2x +2x 2sin 2x解析:选B y ′=(x 2)′cos 2x +x 2(cos 2x )′=2x cos 2x +x 2(-sin 2x )·(2x )′=2x cos 2x -2x 2sin 2x .4.函数y =x ln(2x +5)的导数为( ) A .ln(2x +5)-x2x +5B .ln(2x +5)+2x2x +5C .2x ln(2x +5)D .x2x +5解析:选 B y ′=[x ln(2x +5)]′=x ′ln(2x +5)+x [ln(2x +5)]′=ln(2x +5)+x ·12x +5·(2x +5)′=ln(2x +5)+2x 2x +5. 5.函数y =sin 2x cos 3x 的导数是________. 解析:∵y =sin 2x cos 3x ,∴y ′=(sin 2x )′cos 3x +sin 2x (cos 3x )′=2cos 2x cos 3x -3sin 2x sin 3x . 答案:2cos 2x cos 3x -3sin 2x sin 3x6.已知f (x )=e πxsin πx ,求f ′(x )及f ′⎝ ⎛⎭⎪⎫12.解:∵f (x )=e πxsin πx ,∴f ′(x )=πe πxsin πx +πe πxcos πx =πe πx(sin πx +cos πx ). f ′⎝ ⎛⎭⎪⎫12=πe π2⎝ ⎛⎭⎪⎫sin π2+cos π2=πe 2π. 对点练三 复合函数导数的综合问题7.设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2D .3解析:选D 令y =ax -ln(x +1),则f ′(x )=a -1x +1.所以f (0)=0,且f ′(0)=2.联立解得a =3.8.曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是( ) A. 5 B .2 5 C .3 5D .0解析:选A 设曲线y =ln(2x -1)在点(x 0,y 0)处的切线与直线2x -y +3=0平行. ∵y ′=22x -1,∴y ′|x =x 0=22x 0-1=2,解得x 0=1,∴y 0=ln(2-1)=0,即切点坐标为(1,0).∴切点(1,0)到直线2x -y +3=0的距离为d =|2-0+3|4+1=5,即曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是 5.9.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:M (t )=M 02-t30,其中M 0为t =0时铯137的含量.已知t =30时,铯137含量的变化率是-10ln 2(太贝克/年),则M (60)=( )A .5太贝克B .75ln 2太贝克C .150ln 2 太贝克D .150太贝克解析:选D M ′(t )=-130ln 2×M 02-t30,由M ′(30)=-130ln 2×M 02-3030=-10 ln 2,解得M 0=600, 所以M (t )=600×2-t 30,所以t =60时,铯137的含量为M (60)=600×2-6030=600×14=150(太贝克).二、综合过关训练1.函数y =(2 019-8x )3的导数y ′=( ) A .3(2 019-8x )2B .-24xC .-24(2 019-8x )2D .24(2 019-8x 2)解析:选C y ′=3(2 019-8x )2×(2 019-8x )′=3(2 019-8x )2×(-8)=-24(2 019-8x )2.2.函数y =12(e x +e -x)的导数是( )A .12(e x -e -x) B .12(e x +e -x) C .e x-e -xD .e x+e -x解析:选A y ′=12(e x +e -x )′=12(e x -e -x).3.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1 B .2 C .-1D .-2解析:选B 设切点坐标是(x 0,x 0+1),依题意有⎩⎪⎨⎪⎧1x 0+a=1,x 0+1=ln (x 0+a ),由此得x 0+1=0,x 0=-1,a =2.4.函数y =ln ex1+ex 在x =0处的导数为________.解析:y =ln e x1+e x =ln e x -ln(1+e x )=x -ln(1+e x),则y ′=1-e x1+e x .当x =0时,y ′=1-11+1=12. 答案:125.设曲线y =e ax在点(0,1)处的切线与直线x +2y +1=0垂直,则a =________. 解析:令y =f (x ),则曲线y =e ax在点(0,1)处的切线的斜率为f ′(0),又切线与直线x +2y +1=0垂直,所以f ′(0)=2.因为f (x )=e ax ,所以f ′(x )=(e ax )′=e ax ·(ax )′=a e ax,所以f ′(0)=a e 0=a ,故a =2.答案:26.f (x )=ax 2-1且f ′(1)=2,则a 的值为________.解析:∵f (x )=(ax 2-1)12,∴f ′(x )=12(ax 2-1)-12·(ax 2-1)′=ax ax 2-1 .又f ′(1)=2,∴aa -1=2,∴a =2. 答案:27.求函数y =a sin x3+b cos 22x (a ,b 是实常数)的导数.解:∵⎝⎛⎭⎪⎫a sin x 3′=a cos x 3·⎝ ⎛⎭⎪⎫x 3′=a 3cos x3,又(cos 22x )′=⎝ ⎛⎭⎪⎫12+12cos 4x ′=12(-sin 4x )×4=-2sin 4x , ∴y =a sin x3+b cos 22x 的导数为y ′=⎝ ⎛⎭⎪⎫a sin x 3′+b (cos 22x )′=a 3cos x 3-2b sin 4x .8.曲线y =e 2xcos 3x 在(0,1)处的切线与l 的距离为5,求l 的方程. 解:由题意知y ′=(e 2x)′cos 3x +e 2x(cos 3x )′ =2e 2x cos 3x +3(-sin 3x )·e 2x=2e 2x cos 3x -3e 2xsin 3x ,所以曲线在(0,1)处的切线的斜率为k =y ′|x =0=2. 所以该切线方程为y -1=2x ,即y =2x +1. 设l 的方程为y =2x +m ,则d =|m -1|5= 5.解得m =-4或m =6.当m =-4时,l 的方程为y =2x -4;当m=6时,l的方程为y=2x+6.综上,可知l的方程为y=2x-4或y=2x+6.课时跟踪检测(五)函数的单调性与导数一、题组对点训练对点练一函数与导函数图象间的关系1.f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能是下列选项中的( )解析:选C 题目所给出的是导函数的图象,导函数的图象在x轴的上方,表示导函数大于零,原函数的图象呈上升趋势;导函数的图象在x轴的下方,表示导函数小于零,原函数的图象呈下降趋势.由x∈(-∞,0)时导函数图象在x轴的上方,表示在此区间上,原函数的图象呈上升趋势,可排除B、D两选项.由x∈(0,2)时导函数图象在x轴的下方,表示在此区间上,原函数的图象呈下降趋势,可排除A选项.故选C.2.若函数y=f′(x)在区间(x1,x2)内是单调递减函数,则函数y=f(x)在区间(x1,x2)内的图象可以是( )解析:选B 选项A中,f′(x)>0且为常数函数;选项C中,f′(x)>0且f′(x)在(x1,x2)内单调递增;选项D中,f′(x)>0且f′(x)在(x1,x2)内先增后减.故选B.3.如图所示的是函数y=f(x)的导函数y=f′(x)的图象,则在[-2,5]上函数f(x)的递增区间为________.解析:因为在(-1,2)和(4,5]上f′(x)>0,所以f(x)在[-2,5]上的单调递增区间为(-1,2)和(4,5].答案:(-1,2)和(4,5]对点练二判断(证明)函数的单调性、求函数的单调区间4.函数f(x)=(x-3)e x的单调递增区间是( )A.(-∞,2)B.(0,3)C.(1,4) D.(2,+∞)解析:选D f′(x)=(x-3)′e x+(x-3)(e x)′=e x(x-2).由f′(x)>0得x>2,∴f(x)的单调递增区间是(2,+∞).5.函数f (x )=2x 2-ln x 的递增区间是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫-12,0和⎝ ⎛⎭⎪⎫12,+∞C.⎝ ⎛⎭⎪⎫12,+∞ D.⎝⎛⎭⎪⎫-∞,-12和⎝ ⎛⎭⎪⎫0,12解析:选C 由题意得,函数的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x=(2x +1)(2x -1)x ,令f ′(x )=(2x +1)(2x -1)x >0,解得x >12,故函数f (x )=2x 2-ln x 的递增区间是⎝ ⎛⎭⎪⎫12,+∞.故选C. 6.已知f (x )=ax 3+bx 2+c 的图象经过点(0,1),且在x =1处的切线方程是y =x . (1)求y =f (x )的解析式; (2)求y =f (x )的单调递增区间.解:(1)∵f (x )=ax 3+bx 2+c 的图象经过点(0,1),∴c =1,f ′(x )=3ax 2+2bx ,f ′(1)=3a +2b =1,切点为(1,1),则f (x )=ax 3+bx 2+c 的图象经过点(1,1),得a +b +c =1,解得a =1,b =-1,即f (x )=x 3-x 2+1.(2)由f ′(x )=3x 2-2x >0得x <0或x >23,所以单调递增区间为(-∞,0)和⎝ ⎛⎭⎪⎫23,+∞.对点练三 与参数有关的函数单调性问题7.若函数f (x )=x -a x 在[1,4]上单调递减,则实数a 的最小值为( ) A .1 B .2 C .4D .5解析:选C 函数f (x )=x -a x 在[1,4]上单调递减,只需f ′(x )≤0在[1,4]上恒成立即可,令f ′(x )=1-12ax -12≤0,解得a ≥2x ,则a ≥4.∴a min =4.8.若函数f (x )=x 3+bx 2+cx +d 的单调递减区间为(-1,2),则b =________,c =________.解析:f ′(x )=3x 2+2bx +c ,由题意知-1<x <2是不等式f ′(x )<0的解,即-1,2是方程3x 2+2bx +c =0的两个根,把-1,2分别代入方程,解得b =-32,c =-6.答案:-32-69.已知函数f (x )=(x -2)e x+a (x -1)2.讨论f (x )的单调性. 解:f ′(x )=(x -1)e x+2a (x -1)=(x -1)·(e x+2a ).(1)设a ≥0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0.所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.(2)设a <0,由f ′(x )=0得x =1或x =ln(-2a ).①若a =-e 2,则f ′(x )=(x -1)(e x-e),所以f (x )在(-∞,+∞)上单调递增;②若-e2<a <0,则ln(-2a )<1,故当x ∈(-∞,ln(-2a ))∪(1,+∞)时,f ′(x )>0;当x∈(ln(-2a ),1)时,f ′(x )<0.所以f (x )在(-∞,ln(-2a ))∪(1,+∞)上单调递增,在(ln(-2a ),1)上单调递减;③若a <-e2,则ln(-2a )>1,故当x ∈(-∞,1)∪(ln(-2a ),+∞)时,f ′(x )>0;当x ∈(1,ln(-2a ))时,f ′(x )<0.所以f (x )在(-∞,1)∪(ln(-2a ),+∞)上单调递增,在(1,ln(-2a ))上单调递减.二、综合过关训练1.若函数e xf (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( )A .f (x )=2-xB .f (x )=x 2C .f (x )=3-xD .f (x )=cos x解析:选A 对于选项A,f (x )=2-x=⎝ ⎛⎭⎪⎫12x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫12x =⎝ ⎛⎭⎪⎫e 2x ,∵e 2>1,∴e x f (x )在R 上单调递增,∴f (x )=2-x具有M 性质.对于选项B,f (x )=x 2,e xf (x )=e x x 2,[e xf (x )]′=e x(x 2+2x ),令e x (x 2+2x )>0,得x >0或x <-2;令e x (x 2+2x )<0,得-2<x <0,∴函数e xf (x )在(-∞,-2)和(0,+∞)上单调递增,在(-2,0)上单调递减,∴f (x )=x 2不具有M 性质.对于选项C,f (x )=3-x=⎝ ⎛⎭⎪⎫13x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫13x =⎝ ⎛⎭⎪⎫e 3x ,∵e3<1, ∴y =⎝ ⎛⎭⎪⎫e 3x在R 上单调递减,∴f (x )=3-x不具有M 性质.对于选项D,f (x )=cos x ,e xf (x )=e xcos x ,则[e x f (x )]′=e x (cos x -sin x )≥0在R 上不恒成立,故e x f (x )=e xcos x 在R 上不是单调递增的,∴f (x )=cos x 不具有M 性质.故选A.2.若函数f (x )=x -eln x,0<a <e<b ,则下列说法一定正确的是( ) A .f (a )<f (b ) B .f (a )>f (b ) C .f (a )>f (e)D .f (e)>f (b )解析:选C f ′(x )=1-e x =x -ex,x >0,令f ′(x )=0,得x =e,f (x )在(0,e)上为减函数,在(e,+∞)上为增函数,所以f (a )>f (e),f (b )>f (e),f (a )与f (b )的大小不确定.3.设f ′(x )是函数f (x )的导函数,将y =f (x )和y =f ′(x )的图象画在同一直角坐标系中,不可能正确的是( )解析:选D 对于选项A,若曲线C 1为y =f (x )的图象,曲线C 2为y =f ′(x )的图象,则函数y =f (x )在(-∞,0)内是减函数,从而在(-∞,0)内有f ′(x )<0;y =f (x )在(0,+∞)内是增函数,从而在(0,+∞)内有f ′(x )>0.因此,选项A 可能正确.同理,选项B 、C 也可能正确.对于选项D,若曲线C 1为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为增函数,与C 2不相符;若曲线C 2为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为减函数,与C 1不相符.因此,选项D 不可能正确.4.设f (x ),g (x )是定义在R 上的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时有( )A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (a )解析:选C 因为⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2,又因为f ′(x )g (x )-f (x )g ′(x )<0,所以f (x )g (x )在R 上为减函数.又因为a <x <b ,所以f (a )g (a )>f (x )g (x )>f (b )g (b ),又因为f (x )>0,g (x )>0,所以f (x )g (b )>f (b )g (x ).5.(2019·北京高考)设函数f (x )=e x +a e -x(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是________.解析:∵f (x )=e x +a e -x(a 为常数)的定义域为R, ∴f (0)=e 0+a e -0=1+a =0,∴a =-1.∵f (x )=e x +a e -x ,∴f ′(x )=e x -a e -x =e x-ae x .∵f (x )是R 上的增函数,∴f ′(x )≥0在R 上恒成立, 即e x≥ae x 在R 上恒成立,∴a ≤e 2x在R 上恒成立.又e 2x>0,∴a ≤0,即a 的取值范围是(-∞,0]. 答案:-1 (-∞,0]6.如果函数f (x )=2x 2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.解析:函数f (x )的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x.由f ′(x )>0,得函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫12,+∞;由f ′(x )<0,得函数f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,12.由于函数在区间(k -1,k +1)上不是单调函数,所以⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0.解得:1≤k <32.答案:⎣⎢⎡⎭⎪⎫1,32 7.已知函数f (x )=x ln x .(1)求曲线f (x )在x =1处的切线方程;(2)讨论函数f (x )在区间(0,t ](t >0)上的单调性. 解:(1)f (x )的定义域为(0,+∞),f ′(x )=ln x +1. 曲线f (x )在x =1处的切线的斜率为k =f ′(1)=1.把x =1代入f (x )=x ln x 中得f (1)=0,即切点坐标为(1,0).所以曲线f (x )在x =1处的切线方程为y =x -1.(2)令f ′(x )=1+ln x =0,得x =1e.①当0<t <1e时,在区间(0,t ]上,f ′(x )<0,函数f (x )为减函数.②当t >1e 时,在区间⎝ ⎛⎭⎪⎫0,1e 上,f ′(x )<0,f (x )为减函数;在区间⎝ ⎛⎭⎪⎫1e ,t 上,f ′(x )>0,f (x )为增函数.8.已知函数f (x )=ln x ,g (x )=12ax 2+2x ,a ≠0.若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围.解:h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x -ax -2.因为h (x )在[1,4]上单调递减,所以x ∈[1,4]时,h ′(x )=1x-ax -2≤0恒成立,即a ≥1x 2-2x恒成立,令G (x )=1x 2-2x,则a ≥G (x )max .而G (x )=⎝ ⎛⎭⎪⎫1x-12-1.因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )max =-716(此时x =4),所以a ≥-716.当a =-716时,h ′(x )=1x +716x -2=16+7x 2-32x 16x =(7x -4)(x -4)16x .因为x ∈[1,4],所以h ′(x )=(7x -4)(x -4)16x ≤0,即h (x )在[1,4]上为减函数. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞.课时跟踪检测(六) 函数的极值与导数一、题组对点训练对点练一 求函数的极值1.函数y =x 3-3x 2-9x (-2<x <2)有( ) A .极大值5,极小值-27 B .极大值5,极小值-11 C .极大值5,无极小值D .极小值-27,无极大值解析:选C 由y ′=3x 2-6x -9=0, 得x =-1或x =3.当x <-1或x >3时,y ′>0; 当-1<x <3时,y ′<0.∴当x =-1时,函数有极大值5; 3∉(-2,2),故无极小值.2.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于(1,0)点,则f (x )的极大值、极小值分别为( )A .427,0 B .0,427C .-427,0D .0,-427解析:选A f ′(x )=3x 2-2px -q , 由f ′(1)=0,f (1)=0,得⎩⎪⎨⎪⎧3-2p -q =0,1-p -q =0,解得⎩⎪⎨⎪⎧p =2,q =-1,∴f (x )=x 3-2x 2+x .由f ′(x )=3x 2-4x +1=0得x =13或x =1,易得当x =13时f (x )取极大值427,当x =1时f (x )取极小值0.3.已知函数f (x )=ax 3+bx 2+cx ,其导函数y =f ′(x )的图象经过点(1,0),(2,0),如图所示,则下列说法中不正确的序号是________. ①当x =32时,函数取得极小值;②f (x )有两个极值点; ③当x =2时,函数取得极小值; ④当x =1时,函数取得极大值.解析:由题图知,当x ∈(-∞,1)时,f ′(x )>0;当x ∈(1,2)时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0,所以f (x )有两个极值点,分别为1和2,且当x =2时函数取得极小值,当x =1时函数取得极大值.只有①不正确.答案:①对点练二 已知函数的极值求参数4.函数f (x )=ax 3+bx 在x =1处有极值-2,则a ,b 的值分别为( )A .1,-3B .1,3C .-1,3D .-1,-3解析:选A f ′(x )=3ax 2+b , 由题意知f ′(1)=0,f (1)=-2,∴⎩⎪⎨⎪⎧3a +b =0,a +b =-2,∴a =1,b =-3.5.若函数f (x )=x 2-2bx +3a 在区间(0,1)内有极小值,则实数b 的取值范围是( ) A .b <1 B .b >1 C .0<b <1 D .b <12解析:选C f ′(x )=2x -2b =2(x -b ),令f ′(x )=0,解得x =b ,由于函数f (x )在区间(0,1)内有极小值,则有0<b <1.当0<x <b 时,f ′(x )<0;当b <x <1时,f ′(x )>0,符合题意.所以实数b 的取值范围是0<b <1.6.已知函数f (x )=x 3+3ax 2+3(a +2)x +1既有极大值又有极小值,则实数a 的取值范围是________.解析:f ′(x )=3x 2+6ax +3(a +2),∵函数f (x )既有极大值又有极小值,∴方程f ′(x )=0有两个不相等的实根,∴Δ=36a 2-36(a +2)>0.即a 2-a -2>0,解之得a >2或a <-1.答案:(-∞,-1)∪(2,+∞) 对点练三 函数极值的综合问题7.设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R. (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 解:(1)由f ′(x )=ln x -2ax +2a , 可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 则g ′(x )=1x -2a =1-2ax x.当a ≤0时,x ∈(0,+∞)时,g ′(x )>0,函数g (x )单调递增;当a >0时,x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,函数g (x )单调递减.所以当a ≤0时,g (x )的单调增区间为(0,+∞); 当a >0时,g (x )的单调增区间为⎝ ⎛⎭⎪⎫0,12a ,单调减区间为⎝ ⎛⎭⎪⎫12a ,+∞. (2)由(1)知,f ′(1)=0.。

第四章 第五节 课时跟踪训练

第四章  第五节  课时跟踪训练

[课时跟踪训练](满分50分时间25分钟)一、选择题(每小题4分,共28分)1.“猫叫综合征”是由于人的第5号染色体部分缺失引起的,这种遗传病的类型是() A.常染色体单基因遗传病B.性染色体多基因遗传病C.常染色体数目变异疾病D.常染色体结构变异疾病解析:第5号染色体部分片段缺失,必然使该染色体的结构发生变化,进而引起变异。

答案:D2.以下家系图中最可能属于常染色体隐性遗传病、伴Y染色体遗传、伴X染色体显性遗传病、伴X染色体隐性遗传病的依次是()A.③①②④B.②④①③C.①④②③D.①④③②解析:亲代正常,子代患病,为隐性遗传病;与性别无关的为常染色体遗传病,与性别有关的为伴性遗传病,仅仅男传男的为伴Y染色体遗传病。

答案:C3.下图为某遗传病的系谱图,基因用B、b表示。

Ⅱ1的基因型不可能是()A.bb B.X b YC.X B Y D.Bb解析:根据此图不能判断显隐性,也不能判断致病基因的位置。

如果Ⅱ1的基因型是X B Y,则Ⅰ2一定是患者,与系谱图不符,因此,Ⅱ1的基因型不可能是X B Y。

答案:C4.在右图所示的遗传系谱图中,遗传病的遗传方式最可能是()A.常染色体显性遗传B.常染色体隐性遗传C.伴X染色体显性遗传D.伴X染色体隐性遗传解析:①患者男女均有,则可排除伴Y染色体遗传;②此病的遗传在三代间有明显的连续性,则可粗略判定为显性遗传;③观察患者的前后代关系,图中患者1号、4号、6号、10号、11号间的关系:女患者明显多于男患者,则最可能是伴X染色体显性遗传。

或者从6号与10号、11号的关系符合“父病女必病”的特点也可以推知最可能的遗传方式是伴X染色体显性遗传。

答案:C5.通过对胎儿或新生儿的体细胞组织的切片或血涂片观察,难以发现的遗传病是() A.苯丙酮尿病携带者B.21三体综合征C.猫叫综合征D.镰刀型细胞贫血症解析:21三体综合征和猫叫综合征属于染色体变异引起的遗传病,可以利用显微镜观察;镰刀型细胞贫血症的红细胞形态异常,呈现镰刀状,也可以利用显微镜观察到;苯丙酮尿症携带者不表现出症状,且属于基因突变形成的单基因遗传病,所以利用组织切片难以发现。

高中语文必修二课时跟踪检测答案

高中语文必修二课时跟踪检测答案

高中语文必修二课时跟踪检测答案1、1“冠者五六人”一句中的冠者指成年男子。

古代男子20岁举行束发带帽的仪式叫行冠礼,表示已经成年。

[判断题] *对(正确答案)错2、下列词语中,加着重号字的注音不正确的一项是()[单选题] *A、爱而不见(xiàn)B、搔首踟蹰(zhī)(正确答案)C、静女其娈(luán)D、彤管有炜(wěi)3、下列有关《红楼梦》的说明,正确的一项是( ) [单选题] *A.《红楼梦》中长着“两弯似蹙非蹙罥烟眉,一双似喜非喜含情目”的是王熙凤,该人最擅弄权术,例如毒设相思局、弄权铁槛寺、逼死尤二姐、破坏宝黛婚姻,最后落了个“机关算尽太聪明,反误了卿卿性命”的悲剧下场。

B.《红楼梦》中贾府的“四春”分别是:孤独的贾元春、精明的贾迎春、懦弱的贾探春、孤僻的贾惜春,取“原应叹息”之意。

C.“花谢花飞飞满天,红消香断有谁怜?……一朝春尽红颜老,花落人亡两不知!”这首诗出自《红楼梦》中人物林黛玉之手。

(正确答案)D.《红楼梦》中表明贾府收入主要书回的情节在第二十五回“乌庄头交租”一事上,表明贾府“排场费用,又不肯讲究省俭”的主要情节是“可卿丧仪”和“元春省亲”两件事。

4、1李白,字太白,号青莲居士,被后人称为“诗圣”。

[判断题] *对(正确答案)错5、1鲁迅,原名周树人,字豫才,浙江绍兴人,我国著名文学家、思想家、民主战士。

[判断题] *对错(正确答案)6、下列说法中正确的一项是( ) [单选题] *A.贾氏宗族的长房是荣国府,次房是宁国府。

《红楼梦》主要写荣国府的事。

太虚幻境中有两句判词说:“漫言不肖皆荣出,造衅开端实在宁”,说明宁府的罪孽超过荣府。

B.《红楼梦》中的“金陵十二钗”指的是林黛玉、薛宝钗、元春、迎春、探春、惜春、史湘云、王熙凤、妙玉、秦可卿、香菱、李纨。

C.宝玉梦游太虚幻境时,警幻仙姑带他游历了太虚幻境,并品了千红一窟茶,饮了万艳同杯酒,看了“薄命司”的册子,听了12 支名叫《红楼梦》的曲子。

第五章 第1节 课时跟踪训练

第五章 第1节 课时跟踪训练

[课时跟踪训练] (时间30分钟,满分60分)一、选择题(本题共8小题,每小题5分,共40分。

每小题至少有一个选项正确,把正确选项前的字母填在题后的括号内)1.如图1所示为演示交变电流的装置图,关于这个实验,正确的说法是( )图1A .线圈每转动一周,指针左右摆动两次B .图示位置为中性面,线圈中无感应电流C .图示位置,ab 边的感应电流方向为由a →bD .线圈平面与磁场方向平行时,磁通量变化率为零解析:线圈在磁场中匀速转动时,在电路中产生周期性变化的交变电流,线圈经过中性面时电流改变方向,线圈每转动一周,有两次通过中性面,电流方向改变两次,指针左右摆动一次,故A 错;线圈平面垂直于磁感线的位置称为中性面,显然图示位置不是中性面,所以B 也不对;线圈处于图示位置时,ab 边向右运动,由右手定则,ab 边的感应电流方向为由a →b ;线圈平面与磁场方向平行时,ab 、cd 边垂直切割磁感线,线圈产生的电动势最大,也可以这样认为,线圈处于竖直位置时,磁通量为零,但磁通量的变化率最大。

答案:C2.如图2所示,单匝矩形线圈的一半放在有界匀强磁场中,中心轴线OO ′与磁场边界重合,线圈绕中心轴线按图示方向(从上向下看逆时针方向)匀速转动,t =0时刻线圈平面与磁场方向垂直,规定电流方向沿abcd 为正 方向,则图3中能表示线圈内感应电流随时间变化规律的是 ( )图2图3解析:线圈从初始时刻至转过π2时间内,ab 一侧的线框在磁场中绕OO ′转动产生正弦交流电,电流方向由楞次定律判断为dcba 且越来越大。

从转过π2至π时间内,ab 一侧线框在磁场外,而dc 一侧线框又进入磁场产生交流电,电流方向为dcba 且越来越小,以此类推,可知i -t 图像正确的为B 。

答案:B3.线圈在匀强磁场中转动产生电动势e=10sin (20πt) V,则下列说法正确的是() A.t=0时,线圈平面位于中性面B.t=0时,穿过线圈的磁通量最大C.t=0时,导线切割磁感线的有效速率最大D.t=0.4 s时,e有最大值10 2 V解析:由电动势的瞬时值表达式,计时从线圈位于中性面时开始,所以t=0时,线圈平面位于中性面,磁通量为最大,但此时导线速度方向与磁感线平行,切割磁感线的有效速率为零,A、B正确,C错误。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[解析] 如图所示,以 O 为原点,以 OD 所在 直线为 x 轴建立直角坐标系.设点 P(x,y), → → → ∵OP=αOC+βOD, 则(x,y)=α(0,1)+β(3,0) x =(3β,α),∴x=3β,y=α,α+β=y+3.由于点 P 在△BCD 内(包含 x 边界),目标函数为 α+β=y+3,当点 P 与点 B(1,1)重合时,α+β=y x 1 4 +3取得最大值,其最大值为 1+3=3.
-1+m=1+2n, 则 1+2m=-2+3n. m=-12, 得 n=-7.
此时 a=b=(-13,-23). [答案] {(-13,-23)} 13. 线段 AB 的端点为 A(x,5), B(-2, y), 直线 AB 上的点 C(1,1), → → 使|AC|=2|BC|,则 x+y=________. [解析] → → → 由已知得AC=(1-x,-4),2BC=2(3,1-y).由|AC|=
[答案] D 二、填空题 11.设向量 a,b 满足|a|=2 5,b=(2,1),且 a 与 b 的方向相反, 则 a 的坐标为________. [解析] ∵b=(2,1), 且 a 与 b 的方向相反, ∴设 a=(2λ, λ)(λ<0). ∵|a|=2 5, ∴4λ2+λ2=20,λ2=4,λ=-2. ∴a=(-4,-2). [答案] (-4,-2) 12.(2016· 九江模拟)P={a|a=(-1,1)+m(1,2),m∈R},Q={b|b =(1,-2)+n(2,3),n∈R}是两个向量集合,则 P∩Q 等于________. [解析] P 中, a=(-1+m,1+2m), Q 中, b=(1+2n, -2+3n).
→ → π [解析] 因为|OC|=2, ∠AOC=4, 所以 C( 2, 2), 又OC=λOA → +μOB,所以( 2, 2)=λ(1,0)+μ(0,1)=(λ,μ),所以 λ=μ= 2,λ +μ 是一组基底,向量 γ=xα+yβ(x,y∈R),则称(x, y)为向量 γ 在基底 α,β 下的坐标,现已知向量 a 在基底 p=(1,-1), q=(2,1)下的坐标为(-2,2),则向量 a 在另一组基底 m=(-1,1),n= (1,2)下的坐标为( A.(2,0) C.(-2,0) ) B.(0,-2) D.(0,2)
3 6 π 6 ∴λ+ 3μ= 2 (sinθ+cosθ)= 2 sinθ+4≤ 2 , π π π 仅当 θ+4=2,即 θ=4时取等号. [答案] B
10.如图所示,四边形 OABC 是边长为 1 的正 方形,OD=3,点 P 为△BCD 内(含边界)的动点, → → → 设OP=αOC+βOD(α,β∈R),则 α+β 的最大值等于( 1 A.4 1 C.3 B.1 4 D.3 )
课时跟踪训练(二十六)
一、选择题 1.在下列向量组中,可以把向量 a=(2,3)表示成 λe1+μe2(λ,μ ∈R)的是( )
A.e1=(0,0),e2=(2,1) B.e1=(3,4),e2=(6,8) C.e1=(-1,2),e2=(3,-2) D.e1=(1,-3),e2=(-1,3) [解析] 根据平面向量基本定理可知,e1,e2 不共线,验证各选 项,只有选项 C 中的两个向量不共线,故选 C. [答案] C 2.已知向量 a=(1,1),b=(2,x),若 a+b 与 4b-2a 平行,则 实数 x 的值是( A.-2 C.1 [解析] ) B.0 D.2 解法一:因为 a=(1,1),b=(2,x),所以 a+b=(3,x
[解析] ∵a 在基底 p,q 下的坐标为(-2,2),则 a=-2p+2q= (2,4),令 a=xm+yn,则 a=(-x+y,x+2y)=(2,4),
-x+y=2, ∴ 解得{x=0,y=2. ∴a 在基底 m,n 下的坐 x+2y=4,
标为(0,2). [答案] D → → 7.设向量OA=e1,OB=e2,若 e1 与 e2 不共线,且点 P 在线段 → → → AB 上,|AP|∶|PB|=2,如图所示,则OP=( )
1 2 A.3e1-3e2 1 2 C.3e1+3e2
2 1 B.3e1+3e2 2 1 D.3e1-3e2
→ → → → → → → → [解析] 由题意知AP=2PB,∴AB=AP+PB=3PB,OP=OB+ → → 1→ → 1 → → 1 2 BP=OB-3AB=OB-3(OB-OA)=3e1+3e2. [答案] C
-6m+n=5, ∴ -3m+8n=-5, m=-1, 解得 n=-1.
→ → → (3)设 O 为坐标原点,∵CM=OM-OC=3c, → → ∴OM=3c+OC=(3,24)+(-3,-4)=(0,20), ∴M(0,20). → → → 又∵CN=ON-OC=-2b, → → ∴ON=-2b+OC=(12,6)+(-3,-4)=(9,2),
[解析] 以点 A 为原点、AB 所在直线为 x 轴建立平面直角坐标 系,
则 B(1,0),D(0, 3), P
3 π 3 ,θ∈0, , cos θ , sin θ 2 2 2
→ → → 由AP=λAB+μAD,
23cosθ=λ, 得 3 2 sinθ= 3μ,
→ → → → (2)因为OA=(1,2),PB=OB-OP=(3-3t,3-3t), → → 若四边形 OABP 为平行四边形,则OA=PB.
3-3t=1, 由 得此方程组无解, 3-3t=2,
∴四边形 OABP 不可能为平行四边形.
3 1 C.2a-2b
3 1 D.-2a+2b
[解析] 设 c=λ1a+λ2b, 则(-1,2)=λ1(1,1)+λ2(1, -1)=(λ1+λ2, 1 λ1-λ2),∴λ1+λ2=-1,λ1-λ2=2,解得 λ1=2, 3 1 3 λ2=-2,所以 c=2a-2b. [答案] B 4.“x=3”是“向量 a=(x+1,1)与向量 b=(4,x-2)共线”的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 [解析] 由 a∥b⇒(x+1)(x-2)-4=0⇒x2-x-6=0⇒x=3 或 x =-2,故选 A. [答案] A 5.在平面直角坐标系 xOy 中,已知 A(1,0),B(0,1),C 为坐标平 → → → π 面内第一象限内一点且∠AOC=4,且|OC|=2,若OC=λOA+μOB, 则 λ+μ=( A.2 2 C.2 ) B. 2 D.4 2
8.已知向量 a=(m,1),b=(1-n,1)(其中 m,n 为正数), 若 a∥b, 1 2 则m+n的最小值是( A.2 2 C.3 2+2 ) B.3 2 D.2 2+3
[解析] a=(m,1),b=(1-n,1),(其中 m,n 为正数),若 a∥b, 则 m-(1-n)=0,即 m+n=1. 1 2 m+n 2m+2n n 2m ∴m+n= m + n =3+m+ n ≥3+2 n 2m m·n =3+2 2,
→ → ∴OA=(1,2),AB=(4-1,5-2)=(3,3). → (1)设 P(x,y),则OP=(x,y),若点 P 在第二象限,
x<0, 则 且(x,y)=(1,2)+t(3,3), y>0, x=1+3t, 1+3t<0, 2 1 ∴ ∴ ∴-3<t<-3. y=2+3t, 2+3t>0,
n 2m 1 2 当且仅当m= n 时取等号,故m+n的最小值是 3+2 2,故选 D. [答案] D 9.(2016· 福建质检)在矩形 ABCD 中,AB=1,AD= 3,P 为矩 → → 3 → 形内一点,且 AP= 2 .若AP=λAB+μAD(λ,μ∈R),则 λ+ 3μ 的最 大值为( 3 A.2 3+ 3 C. 4 ) 6 B. 2 D. 6+3 2 4
→ ∴N(9,2).∴MN=(9,-18). 15.已知 a=(1,0),b=(2,1), (1)当 k 为何值时,ka-b 与 a+2b 共线; → → (2)若AB=2a+3b,BC=a+mb 且 A、B、C 三点共线,求 m 的 值. [解] (1)k a-b=k(1,0)-(2,1)=(k-2, -1), a+2b=(1,0)+2(2,1) =(5,2). ∵k a-b 与 a+2b 共线,∴2(k-2)-(-1)×5=0, 1 即 2k-4+5=0,得 k=-2. → → (2)解法一:∵A、B、C 三点共线,∴AB=λBC,
1-x=6, → → → → → 2| BC | ,可得 AC = ± 2 BC ,则当 AC = 2 BC 时, 解得 -4=2-2y, x=-5, 1-x=-6, → → x+y=-2;当AC=-2BC时,有 解得 y=3, -4=-2+2y,
x=7, x+y=6. y=-1,
+1),4b-2a=(6,4x-2),由 a+b 与 4b-2a 平行,得 6(x+1)-3(4x -2)=0,解得 x=2. 解法二:因为 a+b 与 4b-2a 平行,所以存在常数 λ,使 a+b =λ(4b-2a),即(2λ+1)a=(4λ-1)b,根据向量共线的条件知,向量 a 与 b 共线,故 x=2. [答案] D 3.若向量 a=(1,1),b=(1,-1),c=(-1,2),则 c=( 1 3 A.-2a+2b 1 3 B.2a-2b )
综上可知 x+y=-2 或 6. [答案] -2 或 6 三、解答题 → → 14.已知 A(-2,4),B(3,-1),C(-3,-4).设AB=a,BC=b, → → → CA=c,且CM=3c,CN=-2b, (1)求 3a+b-3c; (2)求满足 a=mb+nc 的实数 m,n; → (3)求 M,N 的坐标及向量MN的坐标. [解] 由已知得 a=(5,-5),b=(-6,-3),c=(1,8). (1)3a+b-3c=3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42). (2)∵mb+nc=(-6m+n,-3m+8n),
相关文档
最新文档