圆与正多边形教案
《2.7正多边形与圆》教学设计

《2.7正多边形与圆》教学设计【教学目标】知识与技能:了解正多边形和圆的有关概念;理解并掌握正多边形半径和边长、边心距、中心角之间的关系;会应用多边形和圆的有关知识画多边形.过程与方法:经历画正多边形的过程,进一步培养学生的动手操作能力.情感态度:调动学生的积极性,组织学生自主探究,然后在相互交流学习中培养学生的钻研精神.【教学重难点】应用多边形和圆的有关知识计算及画多边形. 【教具准备】课件、圆规、三角尺【教学过程】一导入新课引入:通过插图展示不同的正多边形,引导学生讨论并总结正多边形的特点。
二合作探究探究1:正多边形的定义和性质教师问:什么叫做正多边形?学生答:各边相等,各角也相等的多边形叫做正多边形.D E教师问:矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?学生答:矩形不一定是正多边形,因为矩形各边不一定相等;菱形不是正多边形,因为菱形各角不一定相等;教师强调:正多边形:①各边相等;②各角相等,两个条件,缺一不可. 教师问:正三角形、正四边形、正五边形、正六边形都是轴对称图形吗?都是中心对称图形吗?学生动手操作,交流,感受正多边形的对称性.教师归纳:正n 边形都是轴对称图形,都有n 条对称轴,只有边数为偶数的正多边形既是轴对称图形又是中心对称图形.探究2 正多边形的相关概念出示例题:如图,把⊙O 分成5段相等的弧,即 ,依次连接各等分点,所得五边形ABCDE 是正五边形吗?为什么?解题分析:在同圆中,等弧所对的弦相等,所对的圆心角、圆周角都相等。
A B正多边形的证明:概念学习:将一个圆n(n≥3) 等分,依次连接各等分点所得到的多边形叫作这个圆的内接正多边形,这个圆是这个正多边形的外接圆。
正n 边形的各顶点n 等分其外接圆.圆与正多边形的关系:完成表格:所得多边形是正多边正多边形外接圆的圆心正多边形的中心外接圆的半径正多边形的半径正多边形每条边所对的圆心角正多边形的中心角中心到每一条边的距离正多边形的边心距A BOCD P发现规律:正多边形的中心角=外角= 练习巩固: 在一个半径为4 m 圆形空地上修建一个正六边形花坛,求花坛的面积。
3.8圆内接正多边形(教案)

(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与圆内接正多边形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过实际作图,演示圆内接正多边形的基本原理。
三、教学难点与重点
1.教学重点
-理解圆内接正多边形的定义及其性质,这是本节课的核心内容,教师应着重讲解并举例说明。
-学会作圆内接正多边形,掌握作图技巧,以便于在实际问题中应用。
-掌握圆内接正多边形的半径、边长、中心角之间的计算方法,能够解决相关问题。
举例:通过动态演示或实际操作,展示如何利用圆规和直尺作出圆内接正三角形、正四边形等,强调每个顶点在圆上,每条边是圆的切线。讲解圆内接正多边形中,半径与边长的关系,中心角与圆心角的关系,以及如何利用这些关系进行计算。
五、教学反思
在上完这节关于圆内接正多边形的课程后,我对自己教学过程中的优点和不足进行了反思。首先,我觉得在导入新课环节,通过提问激发学生的好奇心和兴趣这一点做得不错,大家对这个话题产生了浓厚的兴趣。但在新课讲授过程中,我发现有些学生对圆内接正多边形的性质和计算方法掌握不够扎实。
在讲授理论部分,我意识到可能需要更多的实际例子来帮助学生更好地理解圆内接正多边形的性质。同时,对于难点部分,我应该更加细致地进行讲解,通过更多的互动和提问,让学生积极参与进来,加深对知识点的理解。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解圆内接正多边形的基本概念。圆内接正多边形是指一个正多边形的每个顶点都在圆上,且多边形的每一条边都是圆的切线。它是几何学中的一个重要概念,广泛应用于艺术、建筑和工程设计等领域。
正多边形和圆教案教学设计

如图,点A、B、C、D、E把⨀O五等分,
∵ = = = = ,
∴AB=BC=CD=DE=EA, = ,
∴∠A=∠B,
同理:∠B=∠C=∠D=∠E,
∴五边形ABCDE是正五边形.
归纳总结:
一般地,只要用量角器把一个圆n(n≥3)等分,依次连接各等分点就能得到这个圆的内接正n边形,这个圆是这个正n边形的外接圆。
尝试画出圆内接正六边形?
作法:1)在⊙O中任意作一条直径AD.
2)分别以点A、D为圆心,⊙O的半径为半径作弧,与⊙O相交于点B、F和点C、E.
3)依次连接A、B、C、D、E、F各点.
正六边形ABCDEF就是所求作的圆内接正六边形.
对于一些特殊的正多边形,还可以用圆规和直尺来作图.
再如,用直尺和圆规作两条互相垂直的直径,就可以把圆四等分,从而作出正方形.
(2)如图,已知☉O,求作☉O的内接正八边形.
教学反思
这一节主要学习了正多边形与圆,正多边形和圆关系密切,主要正多边形的有关概念,正多边形的有关计算,以及正多边形的有关画法等。课前先让学生预习学案,对于课本上正五边形的证明结合图形,明确了证明思路,然后让学生明确,这个结论对于任意的正多边形都成立。再一个通过了解正多边形的有关概念,让学生会求一些量,比如给你一个正多边形,已知它的边长、周长、半径、边心距、面积中
因此,亭子地基的周长l=6×4=24(m).
作OP⊥BC,垂足为P. 在Rt△OPC中,OC=4 m,
PC= =2(m),利用勾股定理,可得边心距r=
亭子地基的面积S=
学生活动4:
学生在教师的指导下将实际问题中的正六边形地基抽象正六边形ABCDEF,从而将实际问题转化为数学问题
(完整)正多边形与圆优秀教案

(完整)正多边形与圆优秀教案本文为本人珍藏,有较高地使用、参考、借鉴价值!!第五章 中心对称图形(二)§5.7.正多边形与圆一、学习目标:1.了解正多边形概念、正多边形与圆地关系,会判断一个正多边形是轴对称图形还是中心对称图形。
2.会用量角器通过等分圆心角地方法等分圆周,画出所需地正多边形. 3。
会用直尺和圆规画一些特殊地正多边形.二、知识要点1.各边相等、各角也相等地多边形叫做正多边形.2.将一个圆n(n ≥3)等分,依次连接各等分点所得地多边形是这个圆地__________。
这个圆是这个正多边形地_________.正多边形地外接圆地圆心叫做这个正多边形地中心.3。
正多边形都是轴对称图形,一个正n 边形共有n 条对称轴,每条对称轴都通过正n 边形地中心。
一个正多边形,如果有___ __条边,那么它既是轴对称图形,又是中心对称图形.如果一个正多边形是中心对称图形,那么它地中心就是对称中心。
4。
边数相同地正多边形都相似 正n 边形绕着其中心旋转n360(中心角)后与原图形重合. 5.用尺规作圆内接正四边形、正八边形关键是作互相垂直地直径,将圆四等分;用直尺和圆规作圆内接正六边形、正三角形、正十二边形关键是利用a 6=R,将圆6等分 。
三、典型例题:例1. 完成课本第143页“操作与思考”例2.在已知⊙O 中,用量角器画一个正五边形,再画这个 正五边形地各条对角线,得一个五角星。
例3. 判断,并说明理由(1) 各角相等地圆内接多边形是正多边形(2) 各边相等地圆外切多边形是正多边形(3) 一个多边形既有外接圆,又有内切圆,那么这个多边形是正多边形。
例4每一个正多边形必定会有一个外接圆和一个内切圆,其外接圆半径就是这个正多边形地半径,其内切圆半径叫做这个正多边形地边心距。
b5E2RGbCAP 已知正六边形地边长为4,它地半径和面积分别是多少?O O O(完整)正多边形与圆优秀教案例5 ⊙O 为正三角形ABC 地内切圆;EFGH 是⊙O 地内接正方形,且EF=2,求正三角形地边长。
正多边形与圆教案

1. 让学生了解正多边形的定义及其性质。
2. 让学生掌握正多边形与圆的关系。
3. 培养学生运用几何知识解决实际问题的能力。
二、教学内容1. 正多边形的定义及性质。
2. 正多边形与圆的关系。
3. 正多边形的计算与应用。
三、教学重点与难点1. 教学重点:正多边形的定义、性质及正多边形与圆的关系。
2. 教学难点:正多边形的计算与应用。
四、教学方法1. 采用问题驱动法,引导学生探究正多边形的性质。
2. 利用几何画板软件,直观展示正多边形与圆的关系。
3. 结合实际例子,让学生运用正多边形的知识解决实际问题。
五、教学过程1. 引入:讲解正多边形的定义,引导学生思考正多边形的性质。
2. 探究:让学生通过观察、操作,发现正多边形与圆的关系。
3. 讲解:讲解正多边形的计算方法,并举例说明。
4. 应用:布置练习题,让学生运用正多边形的知识解决实际问题。
5. 总结:对本节课的内容进行总结,强调正多边形与圆的关系。
6. 作业布置:布置适量作业,巩固所学知识。
1. 通过课堂提问,了解学生对正多边形定义和性质的掌握情况。
2. 通过练习题,评估学生对正多边形与圆的关系的理解程度。
3. 观察学生在实际问题中的应用能力,评估其对正多边形计算方法的掌握。
七、教学资源1. 几何画板软件:用于直观展示正多边形与圆的关系。
2. PPT课件:用于讲解正多边形的性质和计算方法。
3. 练习题:用于巩固学生对正多边形的理解和应用能力。
八、教学进度安排1. 第1周:介绍正多边形的定义及性质。
2. 第2周:讲解正多边形与圆的关系。
3. 第3周:讲解正多边形的计算方法。
4. 第4周:实际问题中的应用练习。
九、教学反思1. 反思教学方法的有效性,根据学生反馈调整教学策略。
2. 考虑如何更好地引导学生发现正多边形与圆的内在联系。
3. 评估作业难度,确保作业能够有效巩固所学知识。
十、拓展与延伸1. 引导学生探究正多边形在现实生活中的应用。
2. 介绍正多边形的相关历史背景和文化意义。
24.3 正多边形和圆 教案1

24.3正多边形和圆【教学目标】1.了解正多边形的定义.2.理解并掌握正多边形半径和边长、边心距、中心角之间的关系,并能应用它们进行有关的计算.3.会应用正多边形和圆的关系画正多边形.4.学习借助圆来研究正多边形这一数学方法,通过转化,用解直角三角形来研究圆内接正多边形,培养学生探索、推理、归纳、迁移等能力.5.学生经历观察、发现、探究等数学活动,感受到数学来源于生活,又服务于生活,体现了事物之间的相互联系与相互作用.【教学重难点】教学重点探索正多边形和圆的关系,弄清正多边形半径、中心角、边心距和边长之间的关系.教学难点利用圆研究正多边形,化正多边形问题为解直角三角形问题.【教学过程】一、情境导入中华人民共和国国旗上的五角星及正六边形、正三角形等许多图形都可以利用圆的有关知识画出来.早在古代,就有人用直尺和圆规作出正三角形、正方形及正五边形了,可是利用尺规却无法作出正七边形或正十一边形,许多先人的尝试都以失败告终,这种局面持续了2000多年.1796年,年仅19岁的数学家高斯解决了这个问题,成为轰动数学界的伟大成就.目前,对于正多边形的研究,我们经常借助圆来讨论,那么它们之间有怎样的联系呢?二、合作探究探究点1正多边形的有关概念及性质典例1已知正六边形的半径为R,求正六边形的边长、边心距和面积.[解析]如图,边长为AB,半径OA=R,作OM⊥AB于点M,设边心距OM=r.在Rt△AOM中,∵正六边形的中心角为60°,∴∠AOM=30°,∴OA=2AM.而AB=2AM ,∴AB=OA=R ,r=√R 2-(12R )2=√32R , ∴S=6S △AOB =6×12×AB×OM=3√32R 2.半径为2的圆内接正三角形、正四边形、正六边形的边心距之比为 .[答案] 1∶√2∶√3探究点2 画正多边形典例2 (1)画一个半径为2 cm 的圆的内接正七边形;(2)画一个半径为3 cm 的圆的内接正十二边形.[解析] (1)作法:在半径为2 cm 的☉O 中,用量角器画α=360°7≈51°,这个角所对的弧就是圆的17,然后在圆上依次截取等弧来7等分圆,就得到圆的7等分点,顺次连接这7个等分点,就得到半径为2 cm 的圆的内接正七边形(如图1).图1 图2(2)作法:在半径为3 cm 的☉O 上,以半径的长在圆上依次截取弦长等于半径的弧,再作各弧的相应弦的垂直平分线,各平分线与圆相交,这些点和前面的6等分圆的点就把圆12等分,依次连接各等分点,就得到半径为3 cm 的圆内接正十二边形(如图2).如图,已知半径为R 的☉O ,用多种工具多种作法作出它的圆内接正三角形.[解析] 方法1:(1)用量角器画圆心角∠AOB=120°,∠BOC=120°;(2)连接AB ,BC ,CA ,则△ABC 为圆内接正三角形,如图1所示.图1 图2 图3方法2:(1)用量角器画圆心角∠BOC=120°;(2)在☉O 上用圆规截取RR⏜=RR ⏜; (3)连接AB ,BC ,CA ,则△ABC 为圆内接正三角形,如图2所示.方法3:(1)作直径AD ;(2)以点D 为圆心,以DO 为半径画弧,交☉O 于点B ,C ;(3)连接AB ,BC ,CA ,则△ABC 为圆内接正三角形,如图3所示.三、板书设计正多边形和圆 1.正多边形计算有关正多边形的计算,都要作出它的半径和边心距为辅助线,从而将问题转化为解直角三角形的问题.2.画正多边形方法:(1)用量角器——平分圆心角(可作任意正多边形);(2)尺规——作特殊的正多边形(正三、四、六、八、十二、二十四边形等).【教学反思】本节课一开始,通过观看图案,欣赏生活中的正多边形,让学生感受到数学来源于生活,并从中感受到数学美,同时提出本课所要研究的问题,激发了学生的好奇心和求知欲.。
九年级数学上册《正多边形和圆》教案、教学设计

a.提问:同学们,你们在生活中都见过哪些正多边形和圆形的物体呢?
b.学生回答后,教师总结:正多边形和圆在我们的生活中无处不在,它们具有很多独特的性质和美感。今天我们就来学习正多边形和圆的相关知识。
2.学生在解决实际问题时,可能难以将正多边形的性质与实际问题相结合,需要教师通过举例、引导,帮助学生建立知识间的联系。
3.部分学生对数学学习存在恐惧心理,需要教师关注学生的情感态度,激发学生的学习兴趣,增强他们的自信心。
4.学生在团队合作、交流表达方面有待提高,教师应创造更多机会让学生进行讨论交流,培养他们的沟通能力。
a.设计一道具有实际背景的问题,运用正多边形和圆的知识进行解决,要求学生将解题过程和答案以书面形式提交。
b.学生以小组为单位,共同探讨生活中的正多边形和圆的应用,完成一份小报告,内容包括:应用实例、性质分析、解题方法等。
3.拓展与思考:
a.阅读相关资料,了解正多边形和圆在历史、文化、艺术等领域的应用,撰写一篇心得体会。
b.探究正多边形与圆在建筑设计中的应用,结合实际案例进行分析,提出自己的看法。
4.口头作业:
a.与家人分享本节课所学知识,讲解正多边形和圆的性质,以及它们在生活中的应用。
b.与同学进行交流,讨论解决正多边形和圆相关问题时的策略和方法。
5.预习作业:
a.预习下一节课内容,提前了解与正多边形和圆相关的其他几何知识。
b.采用问题驱动法,设计具有启发性的问题,引导学生主动探究正多边形的性质及其与圆的关系。
c.以小组合作的形式,让学生共同解决正多边形与圆的实际问题,培养学生的团队合作意识和问题解决能力。
正多边形和圆教案设计

正多边形和圆教案设计教学设计示例1教学目标:(1)使学生理解正多边形概念,初步掌握正多边形与圆的关系的第一个定理;(2)通过正多边形定义教学,培养学生归纳能力;通过正多边形与圆关系定理的教学培养学生观察、猜想、推理、迁移能力;(3)进一步向学生渗透特殊一般再一般特殊的唯物辩证法思想.教学重点:正多边形的概念与的关系的第一个定理.教学难点:对定理的理解以及定理的证明方法.教学活动设计:(一)观察、分析、归纳:观察、分析:1.等边三角形的边、角各有什么性质?2.正方形的边、角各有什么性质?归纳:等边三角形与正方形的边、角性质的共同点.教师组织学生进行,并可以提问学生问题.(二)正多边形的概念:(1)概念:各边相等、各角也相等的多边形叫做正多边形.如果一个正多边形有n(n3)条边,就叫正n边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形.(2)概念理解:①请同学们举例,自己在日常生活中见过的正多边形.(正三角形、正方形、正六边形,.)②矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?矩形不是正多边形,因为边不一定相等.菱形不是正多边形,因为角不一定相等.(三)分析、发现:问题:正多边形与圆有什么关系呢?发现:正三角形与正方形都有内切圆和外接圆,并且为同心圆.分析:正三角形三个顶点把圆三等分;正方形的四个顶点把圆四等分.要将圆五等分,把等分点顺次连结,可得正五边形.要将圆六等分呢?(四)多边形和圆的关系的定理定理:把圆分成n(n3)等份:(1)依次连结各分点所得的多边形是这个圆的内接正n边形;(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.我们以n=5的情况进行证明.已知:⊙O中, ====,TP、PQ、QR、RS、ST分别是经过点A、B、C、D、E的⊙O 的切线.求证:(1)五边形ABCDE是⊙O的内接正五边形;(2)五边形PQRST是⊙O的外切正五边形.证明:(略)引导学生分析、归纳证明思路:弧相等说明:(1)要判定一个多边形是不是正多边形,除根据定义来判定外,还可以根据这个定理来判定,即:①依次连结圆的n(n3)等分点,所得的多边形是正多迫形;②经过圆的n(n3)等分点作圆的切线,相邻切线相交成的多边形是正多边形.(2)要注意定理中的依次、相邻等条件.(3)此定理被称为正多边形的判定定理,我们可以根据它判断一多边形为正多边形或根据它作正多边形.(五)初步应用P157练习1、(口答)矩形是正多边形吗?菱形是正多边形吗?为什么?2.求证:正五边形的对角线相等.3.如图,已知点A、B、C、D、E是⊙O的5等分点,画出⊙O的内接和外切正五边形.(六)小结:知识:(1)正多边形的概念.(2)n等分圆周(n3)可得圆的内接正n边形和圆的外切正n边形.能力和方法:正多边形的证明方法和思路,正多边形判断能力(七)作业教材P172习题A组2、3.教学设计示例2教学目标:(1)理解正多边形与圆的关系定理;(2)理解正多边形的对称性和边数相同的正多边形相似的性质;(3)理解正多边形的中心、半径、边心距、中心角等概念;(4)通过正多边形性质的教学培养学生的探索、推理、归纳、迁移等能力;教学重点:理解正多边形的中心、半径、边心距、中心角的概念和性质定理.教学难点:对正多边形都有一个外接圆和一个内切圆,并且这两个圆是同心圆的理解.教学活动设计:(一)提出问题:问题:上节课我们学习了正多边形的定义,并且知道只要n等分(n3)圆周就可以得到的圆的内接正n边形和圆的外切正n边形.反过来,是否每一个正多边形都有一个外接圆和内切圆呢?(二)实践与探究:组织学生自己完成以下活动.实践:1、作已知三角形的外接圆,圆心是已知三角形的什么线的交点?半径是什么?2、作已知三角形的内切圆,圆心是已知三角形的什么线的交点?半径是什么?探究1:当三角形为正三角形时,它的外接圆和内切圆有什么关系?探究2:(1)正方形有外接圆吗?若有外接圆的圆心在哪?(正方形对角线的交点.)(2)根据正方形的哪个性质证明对角线的交点是它的外接圆圆心?(3)正方形有内切圆吗?圆心在哪?半径是谁?(三)拓展、推理、归纳:(1)拓展、推理:过正五边形ABCDE的顶点A、B、C、作⊙O连结OA、OB、OC、OD.同理,点E在⊙O上.所以正五边形ABCDE有一个外接圆⊙O.因为正五边形ABCDE的各边是⊙O中相等的弦,所以弦心距相等.因此,以点O 为圆心,以弦心距(OH)为半径的圆与正五边形的各边都相切.可见正五边形ABCDE还有一个以O为圆心的内切圆.(2)归纳:正五边形的任意三个顶点都不在同一条直线上它的任意三个顶点确定一个圆,即确定了圆心和半径.其他两个顶点到圆心的距离都等于半径.正五边形的各顶点共圆.正五边形有外接圆.圆心到各边的距离相等.正五边形有内切圆,它的圆心是外接圆的圆心,半径是圆心到任意一边的距离.照此法证明,正六边形、正七边形、正n边形都有一个外接圆和内切圆.定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.正多边形的外接圆(或内切圆)的圆心叫做正多边形的中心,外接圆的半径叫做正多边形的半径,内切圆的半径叫做正多边形的边心距.正多边形各边所对的外接圆的圆心角都相等.正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角.正n边形的每个中心角都等于 .(3)巩固练习:1、正方形ABCD的外接圆圆心O叫做正方形ABCD的______.2、正方形ABCD的内切圆⊙O的半径OE叫做正方形ABCD的______.3、若正六边形的边长为1,那么正六边形的中心角是______度,半径是______,边心距是______,它的每一个内角是______.4、正n边形的一个外角度数与它的______角的度数相等.(四)正多边形的性质:1、各边都相等.2、各角都相等.观察正三角形、正方形、正五边形、正六边形是不是轴对称图形?如果是,它们又各应有几条对称轴?3、正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心.边数是偶数的正多边形还是中心对称图形,它的中心就是对称中心.4、边数相同的正多边形相似.它们周长的比,边心距的比,半径的比都等于相似比,面积的比等于相似比的平方.5、任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.以上性质,教师引导学生自主探究和归纳,可以以小组的形式研究,这样既培养学生的探究问题的能力、培养学生的研究意识,也培养学生的协作学习精神. (五)总结知识:(1)正多边形的中心、半径、边心距、中心角等概念;(2)正多边形与圆的关系定理、正多边形的性质.能力:探索、推理、归纳等能力.方法:证明点共圆的方法.(六)作业 P159中练习1、2、3.教学设计示例3教学目标:(1)巩固正多边形的有关概念、性质和定理;(2)通过证明和画图提高学生综合运用分析问题和解决问题的能力;(3)通过例题的研究,培养学生的探索精神和不断更新的创新意识及选优意识.教学重点:综合运用正多边形的有关概念和正多边形与圆关系的有关定理来解决问题,要理解通过对具体图形的证明所给出的一般的证明方法,还要注意与前面所学知识的联想和化归.教学难点:综合运用知识证题.教学活动设计:(一)知识回顾1.什么叫做正多边形?2.什么是正多边形的中心、半径、边心距、中心角?3.正多边形有哪些性质?(边、角、对称性、相似性、有两圆且同心)4.正n边形的每个中心角都等于 .5.正多边形的有关的定理.(二)例题研究:例1、求证:各角相等的圆外切五边形是正五边形.已知:如图,在五边形ABCDE中,B=D=E,边AB、BC、CD、DE、EA与⊙O分别相切于A、B、C、D、E.求证:五边形ABCDE是正五边形.分析:要证五边形ABCDE是正五边形,已知已具备了五个角相等,显然证五条边相等即可.教师引导学生分析,学生动手证明.证法1:连结OA、OB、OC,∵五边形ABCDE外切于⊙O.BAO=OAE,OCB=OCD,OBA=OBC,又∵BAE=ABC=BCD.BAO=OCB.又∵OB=OB△ABO≌△CBO,AB=BC,同理 BC=CD=DE=EA.五边形ABCDE是正五边形.证法2:作⊙O的半径OA、OB、OC,则OAAB,OBBC、OCCD.C 2 =.同理 ===,即切点A、B、C、D、E是⊙O的5等分点.所以五边形ABCDE是正五边形.反思:判定正多边形除了用定义外,还常常用正多边形与圆的关系定理1来判定,证明关键是证出各切点为圆的等分点.由同样的方法还可以证明各角相等的圆外切n边形是正边形.此外,用正多边形与圆的关系定理1中把圆n等分,依次连结各分点,所得的多边形是圆内接正多边形还可以证明各边相等的圆内接n边形是正n边形,证明关键是证出各接点是圆的等分点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习好资料 欢迎下载 正多边形与圆教案一 田小华 第一课时 一.学习目标: 1、了解正多边形的概念、正多边形和圆的关系; 2、会通过等分圆心角的方法等分圆周,画出所需的正多边形; 3、能够用直尺和圆规作图,作出一些特殊的正多边形; 二.教学重难点 学习重点:正多边形的概念及正多边形与圆的关系。 学习难点:利用直尺与圆规作特殊的正多边形。 三.自学提纲 了解正多边形的概念,掌握如何利用尺规做正多边形的画法,理解正多边形与圆的的定理。
四.教学过程: 1.情境创设: 我们国旗上的五角星怎么画的?能不能利用尺规作出正五边形 及所有边相等的正多边形 提问:1.等边三角形的边、角各有什么性质? 2.正方形的边、角各有什么性质? 拓展:如果圆内接正三角形,正方形有什么性质 二、探索活动:活动一 观察生活中的一些图形,归纳它们的共同特征,引入正多边形的概念 正多边形的概念:(学生读出,并及时理解)
(注:各边相等与各角相等必须同时成立) 提问:矩形是正多边形吗?为什么?菱形是正多边形吗?为什么? 如果一个正多边形有n(n≥3)条边,就叫正n边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形等.
定理:
此定理讲述了元与正多边形的关系,和包含了做圆内接正多边形的方法, 我们拿正五边形来做事例 分析书上的例题 P33 拓展1:已知:如图,五边形ABCDE内接于⊙O,弧AB=弧BC=弧CD=弧DE=弧EA. (图形师生共同作图) (1) 求证:五边形ABCDE是正五边形. 探讨:以圆心到弦AB的弦心距为半径,还以O为圆心画圆。这个圆与正五边形什么关系? 学习好资料 欢迎下载 活动二 用量角器作正多边形,探索正多边形与圆的内在联系 1、用量角器将一个圆n(n≥3)等分,依次连接各等分点所得的n边形是这个圆的内接正n边形;圆的内接正n边形将圆n等分; 2、正多边形的外接圆的圆心叫正多边形的中心。
活动四 利用直尺与圆规作特殊的正多边形 问题:用直尺和圆规作出正方形,正六多边形。
思考:如何作正八边形正三角形、正十二边形? 拓展2:各内角都相等的圆内接多边形是否为正多边形? 五、课堂练习课本P34练习1,2和P35习题3,4 六.小结:本节课主要讲的是圆与正多边形联系,及如何作正(四,五,六,八)多边形,及进一步探讨正多边形的对称性。
正多边性质正多边形与圆 田小华 第一课时 一.学习目标: 1、了解正多边形的概念、正多边形和圆的关系; 2、会通过等分圆心角的方法等分圆周,画出所需的正多边形; 3、能够用直尺和圆规作图,作出一些特殊的正多边形; 二.教学重难点 学习重点:正多边形的概念及正多边形与圆的关系。 学习难点:利用直尺与圆规作特殊的正多边形。 学习好资料 欢迎下载 三.自学提纲 了解正多边形的概念,掌握如何利用尺规做正多边形的画法,理解正多边形与圆的的定理。
四.教学过程: 1.情境创设: 我们国旗上的五角星怎么画的?能不能利用尺规作出正五边形 及所有边相等的正多边形 提问:1.等边三角形的边、角各有什么性质? 2.正方形的边、角各有什么性质? 拓展:如果圆内接正三角形,正方形有什么性质 二、探索活动:活动一 观察生活中的一些图形,归纳它们的共同特征,引入正多边形的概念 正多边形的概念:(学生读出,并及时理解)
(注:各边相等与各角相等必须同时成立) 提问:矩形是正多边形吗?为什么?菱形是正多边形吗?为什么? 如果一个正多边形有n(n≥3)条边,就叫正n边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形等.
定理:
此定理讲述了元与正多边形的关系,和包含了做圆内接正多边形的方法, 我们拿正五边形来做事例 分析书上的例题 P33 拓展1:已知:如图,五边形ABCDE内接于⊙O,弧AB=弧BC=弧CD=弧DE=弧EA. (图形师生共同作图) (2) 求证:五边形ABCDE是正五边形. 探讨:以圆心到弦AB的弦心距为半径,还以O为圆心画圆。这个圆与正五边形什么关系?
活动二 用量角器作正多边形,探索正多边形与圆的内在联系 1、用量角器将一个圆n(n≥3)等分,依次连接各等分点所得的n边形是这个圆的内接正n边形;圆的内接正n边形将圆n等分; 2、正多边形的外接圆的圆心叫正多边形的中心。 学习好资料 欢迎下载 活动四 利用直尺与圆规作特殊的正多边形 问题:用直尺和圆规作出正方形,正六多边形。
思考:如何作正八边形正三角形、正十二边形? 拓展2:各内角都相等的圆内接多边形是否为正多边形? 五、课堂练习课本P34练习1,2和P35习题3,4 六.小结:本节课主要讲的是圆与正多边形联系,及如何作正(四,五,六,八)多边形,及进一步探讨正多边形的对称性。
正多边形与圆 田小华 第一课时 一.学习目标: 1、了解正多边形的概念、正多边形和圆的关系; 2、会通过等分圆心角的方法等分圆周,画出所需的正多边形; 3、能够用直尺和圆规作图,作出一些特殊的正多边形; 二.教学重难点 学习重点:正多边形的概念及正多边形与圆的关系。 学习难点:利用直尺与圆规作特殊的正多边形。 三.自学提纲 了解正多边形的概念,掌握如何利用尺规做正多边形的画法,理解正多边形与圆的的定理。
四.教学过程: 1.情境创设: 我们国旗上的五角星怎么画的?能不能利用尺规作出正五边形 及所有边相等的正多边形 提问:1.等边三角形的边、角各有什么性质? 2.正方形的边、角各有什么性质? 拓展:如果圆内接正三角形,正方形有什么性质 学习好资料 欢迎下载 二、探索活动:活动一 观察生活中的一些图形,归纳它们的共同特征,引入正多边形的概念 正多边形的概念:(学生读出,并及时理解)
(注:各边相等与各角相等必须同时成立) 提问:矩形是正多边形吗?为什么?菱形是正多边形吗?为什么? 如果一个正多边形有n(n≥3)条边,就叫正n边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形等.
定理:
此定理讲述了元与正多边形的关系,和包含了做圆内接正多边形的方法, 我们拿正五边形来做事例 分析书上的例题 P33 拓展1:已知:如图,五边形ABCDE内接于⊙O,弧AB=弧BC=弧CD=弧DE=弧EA. (图形师生共同作图) (3) 求证:五边形ABCDE是正五边形. 探讨:以圆心到弦AB的弦心距为半径,还以O为圆心画圆。这个圆与正五边形什么关系?
活动二 用量角器作正多边形,探索正多边形与圆的内在联系 1、用量角器将一个圆n(n≥3)等分,依次连接各等分点所得的n边形是这个圆的内接正n边形;圆的内接正n边形将圆n等分; 2、正多边形的外接圆的圆心叫正多边形的中心。
活动四 利用直尺与圆规作特殊的正多边形 问题:用直尺和圆规作出正方形,正六多边形。 学习好资料 欢迎下载 思考:如何作正八边形正三角形、正十二边形?
拓展2:各内角都相等的圆内接多边形是否为正多边形? 五、课堂练习课本P34练习1,2和P35习题3,4 六.小结:本节课主要讲的是圆与正多边形联系,及如何作正(四,五,六,八)多边形,及进一步探讨正多边形的对称性。
圆与正多边形教案二 一. 学习目标 了解正多边的性质定理内容,通过推理证明定理。 掌握正多边形与圆的关系,圆心与正多边形中心,正多边形的内角与正多边形边作为圆的弦的圆心角的关系。 通过探究得到正多边形的面积计算方法特别是正三,正四,正六边形的面积公式
二. 重难点 重点:正多边形的性质定理 难点:性质定理的应用及相关计算。
三. 自学提纲 通过阅读课本正多边形与圆的关系问题及P34作正五边形画图,证明正多边形的性质定理,阅读课本上一些相关概念对正多边形性质有一定的理解,自己计算证明课本上例题加以巩固。
四.教学过程 创设情境 我们作一个正五边形的外接圆和内切圆,是不是所有正多边形都有一个外接圆和一个内切圆? 新授:过正五边形ABCDE的顶点A,B,C作圆O,这个圆就是正五边形的外接圆,接着师生共同证明存在内切圆并作出正五边形的内切圆。 猜想:是不是所有正多边形都有一个外接圆和一个内切圆? 给出定理: 定理:任何一个正多边形都有一个外接圆和一个内切圆,并且这两圆同心。
正多边形的中心,正多边形半径,正多边形边心距,正多边形的中心角等一些概念 正多边形的中心
正多边形半径 学习好资料 欢迎下载 正多边形边心距, 正多边形的中心角 正多边形的对称性 探索:正多边形的对称性 问题:正三角形、正方形、正五边形、正六边形、正八边形中,哪些是轴对称图形?哪些是中心对称图形?哪些既是轴对称图形,又是中心对称图形?如果是轴对称图形,画出它的对称轴;如果是中心对称图形,找出它的对称中心。 奇数边和偶数边正多边形有不同的对称性。
问题:正多边形与圆有什么关系呢?什么是正多边形的中心? 发现:正三角形与正方形都有内切圆和外接圆,并且为同心圆.圆心就是正多边形的中心。 分析:正三角形三个顶点把圆三等分;正方形的四个顶点把圆四等分.要将圆五等分,把等分点顺次连结,可得正五边形.要将圆六等分呢?你知道为什么吗? 思考:任何一个正多边形既是轴对称图形,又是中心对称图形吗?跟边数有何关系? 结论:正多边形都是轴对称图形,一个正n边形有 n 条对称轴,每条对称轴都通过正n边形的 中心 ;一个正多边形,如果有偶数条边,那么它既是轴对称图形,又是中心对称图形。 旋转对称 分析例题 P35例题
本例题是求正多边形的面积的方法,根据正多边形的边数,确定中心角的度数,半径设出,类比可求出其他正多边形的面积。
五, 作业 P35练习2,3和习题6,7,8