大学物理电通量 高斯定理

合集下载

大学物理-82电通量高斯定理

大学物理-82电通量高斯定理

E dS

E d E E dS EdS cos
S S S
S
讨论
dE E dS
正与负
E dS
如右上图可知 E ds >0 若如红箭头所示,则 E ds <0
取决于面元的法线 方向的选取
S
dS
(3)任意电场中通过闭合面的电通量
q 2 S E dS E 4r 0
q E 40 r 2
(1)rR时,高斯面无电荷
+ + + +
+
+ +
R
+
r
+ + + +
+ + + +
q
E 0
(2)rR时,高斯面包围电荷q
E
q 40 r
2
均匀带电球面的电场分布
E r关系曲线
+ + + +
该面元对点电荷所张的 立体角 d 点电荷在面元处的场强为 E
q
S
d
dS
E
点电荷在面元处的场强为
E
q 4 0 r 2
q
r
^ r
^ r
S
d
dS
E
dE E dS
E dS
S
qdscos q q ˆ dS d r 2 2 4 0 4 0 r 4 0 r
S S i
q
S内
0
推广到任意带电系统的电场: 用迭加原理
s
q1
q2
q3

电通量,高斯定理

电通量,高斯定理

电通量、高斯定理1、均匀电场的场强E与半径为R 的半球面的轴线平行,则通过半球面的电场强度通量φ = πR 2E ,若在半球面的球心处再放置点电荷q ,q不改变E分布,则通过半球面的电场强度通量 φ =πR 2E ±q/2ε0。

2、真空中的高斯定理的数学表达式为∑⎰=⋅0/εq s d E i s ,其物理意义是静电场是有源场。

3、一点电荷q 位于一位立方体中心,立方体边长为a ,则通过立方体每个表面的E的通量是q/6ε0;若把这电荷移到立方体的一个顶角上,这时通过电荷所在顶角的三个面E的通量是 0 ,通过立方体另外三个面的E的通量是 q/8ε0。

4、两个无限大均匀带正电的平行平面,电荷面密度分别为σ1和σ2,且σ1>σ2,则两平面间电场强度的大小是( C )(A)(B) (C)(D) 5、应用高斯定理求场强E时,要求E的分布具有对称性,对于没有对称性的电场分布,例如电偶极子产生的电场,高斯定理就不再成立,你认为这种说法:( B )(A)正确 (B)错误 (C)无法判断6、下述带电体系的场强分布可能用高斯定理来计算的是( D )(A)均匀带电圆板 (B)有限长均匀带电棒 (C)电偶极子 (D)带电介质球(电荷体密度是离球心距离r 的函数) 7、如果在静电场中所作的封闭曲面内没有净电荷,则( C )(A)封闭面上的电通量一定为零,场强也一定为零;()0212/εσσ+()021/εσσ+()0212/εσσ-()021/εσσ-(B)封闭面上的电通量不一定为零,场强则一定为零;(C)封闭面上的电通量一定为零;场强不一定为零;(D)封闭面上的电通量不一定为零;场强不一定为零。

8、无限长均匀带电圆柱体,电荷体密度为ρ,半径为R,求柱体内外的场强分布解:作一半径为r,高为h的同轴圆柱面为高斯面根据对称性分析,圆柱面侧面上任一点的场强大小相等,方向沿矢径方向⎰⎰⎰⎰⋅+⋅+⋅=⋅侧面下底上底s dEs dEs dEs dEs=⎰⋅侧面s dE=E⎰侧面ds=2rhEπ(1)r < R时, ∑=ρπhrqi2,2/2ερππhrrhE=,2ερrE=(2)r > R时, ∑=ρπhRqi2,2/2ερππhRrhE=,rRE22ερ=∴=E)(,2)(,22RrrRRrr><ερερ。

电通量高斯定理

电通量高斯定理
穿入曲面的电力线,电通量为负值; 与曲面相切或未穿过曲面的电力线,对通量无贡献。
5
三、高斯定理
1、真空中的高斯定理
穿过任一闭合曲面的电通量 等于该 曲面内所包围的所有电荷的代数和除以 ,而与闭合面外的电荷无关。
∑qi 是曲面S 内的电荷的代数和,这里的E是总电场(电 力线穿过曲面处的电场)、是S面内外所有电荷共同产生的 电场。
通过整个闭合球面S的电通量
e
d
s
e
qds
s 4 0r 2
q
4 0r 2
ds q
s
0
7
2)任意闭合曲面S/:
在该曲面外作一个以点电荷q 为中心的球面S
由于电力线的连续性、同前例
e
S
E
ds
q ε0
3)曲面S不包围q
n0
dS
S
从q发出的电力线
穿出任意闭合曲面
因为只有与S 相切的锥体内的电力线才通过S,但每一条 电力线一进一出闭合曲面、正负通量相互抵消,如下图。
10
3、正确理解高斯定理
1)高斯面上各点的场强E,例如P点的 EP 是所有在场的电荷
共同产生。高斯定理中的e只与高斯面内的电荷有关。

P
qB
qC
qD

q

q
q A
2)高斯面内的电量为零,只能说明通过高斯面的e为零,但
不能说明高斯面上各点的E一定为零。
11
四、高斯定理的应用:
对于某些具有特殊对称性的带电体,利用高斯定理可以方 便地求出电场分布。 1、均匀带电球面的电场:(设总电量为q、球面的半径为R)
为对称。
19
设P为柱面外之一点,过

大学物理 第七章 高斯定理

大学物理 第七章 高斯定理
的电场。圆柱半径为R,沿轴线方向单位长度带电量为
。 解:电荷及场分布:柱对称性,场方向沿径向。
高斯面:与带电圆柱同轴的圆柱形
R
闭 合面,高为l,半径为r
sE dS 侧面 E dS E 2 rl
qin
0
由高斯定理知 E qin
2 0lr
r
l
上页 下页 返回 退出
(1)当r<R 时,高斯面内电荷量为:
半径R,电荷量为q
高斯面
E
问题关键:高斯面的选取
+ +P+
+
+q
+
A:球壳内任意一点P的场强如何求?
+ +
+ +
e E dS
0
+
+
+++ +
S
径向
上页 下页 返回 退出
e EdS EdS
S
s
E dS E 4 r2 0 S
E 0 (r R)
高斯面
E
+ +P+
+
+q
+
+
+
+ +
qin
q
4 R3
4r3
3
q
r
3
R
3
e EdS EdS E dS
S
S
S
E 4 r2 qin
0
E
高斯面
P+
+ +r +
+
E
qr
4 0 R 3
(r R)
上页 下页 返回 退出

大学物理-电通量-高斯定理

大学物理-电通量-高斯定理
❖ 一、求场强的思路
高斯定理反映的是电通量与电荷的关系,而不是场强 与电荷的直接联系。要通过电通量计算场强,就需要 在高斯定理表达式中,将场强从积分号中提出来,这 就导致要求电场的分布具有某种特殊的对称性。
几类对称性:
❖ 电场分布轴对称 ❖ 电场分布球对称 ❖ 电场分布面对称
二、 高斯定理的解题步骤:
大学物理
上册
§7. 3 电通量 高斯定理
§7. 3 电通量 高斯定理
7-3-1 电场线及其性质
❖ 标量场: 在空间各点存在着一个标量,它的数值是 空间位置的函数,如温度场、气压场
❖ 矢量场:在空间各点存在着一个矢量,它的值是空 间位置的函数,如流速场、电场、磁场 ▪ 场线:就是一些有方向的曲线,其上每一点的切 线方向都和该点的场矢量方向一致,场线的疏密 反映矢量的大小。
解: 对称性分析 E具有球对称作高斯面——球面
1) rR
电通量
e E1 dS E1 dS E14r2
s1
电量 qi 0
用高斯定理求解
+
+ +
R
+
+
r
E
+ +q
+
+
+
+
+
+++ +
E14r2 0 E1 0
e E 22d )S E r2 d RS E 2 4 r2
++
+
E
+
s2
S
E d S E 1 d S E 2 d S E n d S
S
S
S
S
0q1 0 q0 2 qn 0

大学物理电通量高斯定理

大学物理电通量高斯定理

高斯定理的应用范围
在静电场中,高斯定理广泛应用 于电荷分布和电场关系的分析。
在恒定磁场中,高斯定理可以用 来分析磁通量与电流之间的关系

高斯定理是解决物理问题的重要 工具之一,尤其在计算电场分布 、求解电势、分析带电体的相互
作用等方面具有广泛应用。
02
电通量和高斯定理的关系来自 电通量的定义和性质总结词
大学物理电通量高斯定理
汇报人: 202X-01-04
contents
目录
• 高斯定理的概述 • 电通量和高斯定理的关系 • 高斯定理的证明 • 高斯定理的应用实例
01
高斯定理的概述
高斯定理的内容
总结了电荷分布与电场之间的关系, 指出在空间中任一封闭曲面内的电荷 量与该封闭曲面上的电场通量之间存 在正比关系。
利用电场线证明高斯定理
总结词:直观明了
详细描述:通过电场线的闭合曲线围成的面积的电通量与该闭合曲线所包围的电荷量的关系,证明高 斯定理。
利用高斯公式证明高斯定理
总结词:数学严谨
详细描述:利用高斯公式,将空间分成无数小的体积元,再通过求和得到整个空间的电场分布,从而证明高斯定理。
利用微积分证明高斯定理
详细描述
高斯定理是描述电通量与电荷分布关系的定理,它指出在任意闭合曲面内的电荷量等于该闭合曲面所包围的体积 内电场线的总条数。这个定理表明,电荷分布与电场线数之间存在一定的关系,即电荷分布影响电场线的分布。
电通量和高斯定理的推导过程
总结词
通过数学推导,我们可以证明高斯定理的正确性。首先,我们定义电场线密度为电场强 度与垂直于曲面的面积之比,然后利用微积分原理和格林公式,推导出高斯定理的表达
公式表达为:∮E·dS = 4πkQ,其中 ∮E·dS表示封闭曲面上的电场通量,Q 表示曲面内的电荷量。

大学物理 —— 第四章2 电通量 电场中的高斯定理

大学物理 —— 第四章2  电通量  电场中的高斯定理

E • ds
s
0 r
qi
当场源分布具有高度对称性时求场强分布
步骤:1.对称性分析,确定
E
的大小、方向分布特征
2.作高斯面,计算电通量及 qi
3.利用高斯定理求解
例1.均匀带电球面
已知R、 q>0 求均匀带电球面的场强分布
解: 对称性分析
E
具有球对称
❖ 作高斯面 过P点的球面
R
r
P
通量
rR
e
E1 • ds E1
ds E14 r 2
rR r
通量
e
E2 • ds E2
P
ds E24 r2
s
s1
电量
qi 0
s
电量
s2
qi q
用高斯定理求解
E1 4r 2 0
E2 4r 2
q
0
E1 0
E2
q
4 0r 2
课 球体

练 计算均匀带电球体内外的场强分布,已知q,R
电通量 电场中的高斯定理
一.电场线(电场的图示法)
方向 :切线
E 大小:E dN =电场线密度
Ea
Eb
b
dS Ec
c
E
a
dS
E
性质: 静电场中,
不闭合;不相交 起于正电荷、 止于负电荷。
E
点电荷的电场线
负电荷
正电荷
+
一对等量异号电荷的电场线 +
一对等量正点电荷的电场线
+
+
一对异号不等量点电荷的电场线
)
等于这个闭合
曲面所包围的电荷的代数和除以 0 ,与闭合曲面外 的电荷无关。

大学物理高斯定理

大学物理高斯定理

大学物理高斯定理简介大学物理中,高斯定理(也称为电通量定理)是电学领域中的一个重要定理,它描述了电场通过一个封闭曲面的总电通量与该曲面内的电荷量之间的关系。

高斯定理的数学表达式是一个面积分,通过对电场和曲面的特性进行积分计算,我们可以计算得到相应的电通量。

定理表述高斯定理可以用数学公式表述如下:其中, - 表示对封闭曲面 S 的面积分; - 表示电场的向量;- 表示面元矢量; - 是真空中的介电常数(气体中也可近似使用该值); - 表示电荷密度在封闭曲面内的体积分。

解读根据高斯定理,电通量与环绕其的电荷量成正比。

如果电场线密集,表示电通量会相应增大,而如果电场线稀疏,表示电通量相应减少。

因此,高斯定理为我们提供了一种计算电场分布和电荷分布之间关系的方法。

高斯定理的背后思想是通过找到一个适当的曲面,使得计算曲面上的电场更加容易,从而求得电场的总电通量。

这个曲面可以是球面、柱面、立方体等等,具体选择曲面要与问题的几何特征和对称性相匹配。

应用举例例子1:均匀带电球考虑一个均匀带电球体,电荷密度为,半径为。

我们想通过高斯定理计算球内外的电场。

在这种情况下,由于球具有球对称性,我们选择一个以球心为中心的球面作为高斯曲面。

根据球对称性,球的电场在球面上处处相等,并且与球面的法线垂直。

因此,和在点积后等于,其中是球面上的电场强度。

曲面的面积元等于球的表面积元。

因此,高斯定理可简化为:等式的右边是整个球的表面积,用!表示。

由于电场是球对称的,且垂直于球面,所以电场与面积元相乘的结果在整个球面上是相等的。

由于曲面上的电场都是相等的,整个球面的面积元乘以电场强度后等于电场强度乘以整个球面的面积,所以可以简化为:解得:其中,为球内的总电荷量。

例子2:无限长均匀带电线考虑一个无限长均匀带电线,线密度为。

我们想通过高斯定理计算线外的电场。

在这种情况下,由于线具有柱对称性,我们选择一个以线为轴的柱面作为高斯曲面。

我们将柱面的两个底面分别设为 A 和 B,其中 A 的面积为,B 的面积为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P +
+ R r+
++
Q+
方向: ?
E
电场分布曲线如右图所示。 O 电场分布曲线 r
21
例5 “无限大”均匀带电平面上电荷面密度为 。
求:电场强度分布。 解:电场强度分布具有面对称性。
选取一个圆柱形高斯面
根据高斯定理,有
22
例6 无限长均匀带电直线的电荷线密度为+ 。
求: 距直线 r 处一点P 的电场强度。 解:电场分布具有轴对称性。
16
利用高斯定理求解特殊电荷电场分布的思路: 分析电场对称性; 根据对称性同心球壳、同心球体与 球壳的组合。
轴对称: 长直导线、圆柱体、圆柱面、同轴圆 柱面和同轴圆柱体的组合。
面对称: 无限大带电平板、平行平板的组合。
17
四、高斯定理的应用 例3 已知球体半径为R,带电量为q(电荷体密
度为),求:均匀带电球体的电场强度分布。
解:根据对称性分析,选择如图所示高斯面
球外
r
++ R
+ q+
18
球内
r
++ R
++
E
r
O
R
电场分布曲线
19
例4 均匀带电球面,总电量为Q ,半径为R 。
求:电场强度分布。
解 对球面外一点P : 取过场点P 的同心球面为高斯面
P
+
+ R r+
++
Q+
20
故,球面外 对球面内一点:
电场线净穿入,
15
因此,电场线起于正,止于负,即静电场 为有源场,电荷即为其源。
(3) 高斯定理来源于库仑定理,但应用范围比 库仑定理更加广泛,适用一切电场。
(4) 利用高斯定理求静电场的分布。 当场源电荷分布具有某种对称性时,应用
高斯定理,选取适当的高斯面,使面积分
中的 能以标量形式提出来, 即可求出场强。
通量,等于该曲面所包围的所有电荷的代数和 除以 。闭合面称为高斯面。
请思考:1)高斯面上的 与那些电荷有关 ? 2)哪些电荷对闭合曲面 的 有贡献 ?
证明如下: 1. 点电荷 q q 在球心处,球面电通量为
qr
穿过球面的电场线条数为 q / 0。
12
q 在任意闭合面内,电通量为
穿过闭合面的电场线
2.在电荷不存在的空 间点上任何两条电场线不 相交。
3.静电场的电场线不 会形成闭合曲线。
3
注意: ①电场线是假想曲线,并不是真实存在的; ②电力线只是一种形象化的方法,不改变电场的连续分布; ③电场线并不一定代表电荷在电场中的运动轨迹。
二、电场强度通量
穿过任意曲面 的电场线条数称为 电通量。
4
1.均匀场中dS 面元的电通量
∴ 3. r > R2 由高斯定理,得

S2 S2
ll
25
过P点作高斯面
P
根据高斯定理得
23
例7两无限长同轴圆柱面,半径分别为R1, R2, 带有 等量异号电荷, 单位长度的电量为λ和-λ。
求: 1. r < R1 ;
2. R1< r <R2 ; 3. r > R2 各处的场强。
解: 1. r < R1
S1
由高斯定理,得
24
2. R1< r <R2 由高斯定理,得 方向:径向向外。
条数仍为 q /0。
e 与曲面的形状和 q 的位
置无关,只与闭合曲面包 + q 围的电荷电量 q 有关。
qr
q 在闭合面外
穿出、穿入的电场线条数相等。
13
2. 多个电荷 任意闭合面电通量为
q5 q3 q2
q4
q1
14
若源电荷是连续分布的
综上所述,得
说明 (1) 与所有电荷均有关,但 仅与闭合面内净电荷有关,与面外电荷无关。 (2) 由高斯定理可知, ,电场线净穿出,
矢量面元
2.非均匀场中曲面的电通量
5
3. 闭合曲面电通量 说明 (1) 方向的规定:
穿入为负 穿出为正
6
(2) 电通量是代数量。 (3) 通过闭合曲面的电通量:
净穿出 净穿入
7
例1 一个三棱柱放在均匀电场中E = 200iN/C。
求通过此三棱柱体的电场强度通量。
解: 三棱柱体的表面为
一闭合曲面,由S1, S2, S3,
大学物理电通量 高斯定 理
2020年4月22日星期三
一、电场线
电场线上各点的切线方 向表示电场中该点场强的方 向; 垂直于电场线的单位面 积上的电场线的条数表示该 点的场强的大小。
dN
正确的选择dN 可以使 电场线数密度等于场强。
2
电场线的特点 1.起始于正电荷(或无
穷远处),终止于负电荷(或 无穷远处)。
y
S4, S5 构成, 其电场强度 通量为:
S3 θ
S1
S5
S2 S4
x
z
通过闭合曲面的电场强度通量为零。
8
例2均匀电场中有一个半径为R 的半球面,求 通过此半球面的电通量。
解 方法1
通过dS 面元的电通量
d
900-
r
R
9
方法2 构成一闭合面,电通量
R
10
三 高斯定理 在真空中,通过任一闭合曲面的电场强度
相关文档
最新文档