哈工大深圳组合数学第六章习题答案

合集下载

组合数学作业答案

组合数学作业答案

第二章作业答案7. 证明,对任意给定的52个整数,存在两个整数,要么两者的和能被100整除,要么两者的差能被100整除。

证明 用100分别除这52个整数,得到的余数必为0, 1,…, 99这100个数之一。

将余数是0的数分为一组,余数是1和99的数分为一组,…,余数是49和51的数分为一组,将余数是50的数分为一组。

这样,将这52个整数分成了51组。

由鸽巢原理知道,存在两个整数分在了同一组,设它们是a 和b 。

若a 和b 被100除余数相同,则b a -能被100整除。

若a 和b 被100除余数之和是100,则b a +能被100整除。

11. 一个学生有37天用来准备考试。

根据过去的经验,她知道她需要不超过60小时的学习时间。

她还希望每天至少学习1小时。

证明,无论她如何安排她的学习时间(不过,每天都是整数个小时),都存在连续的若干天,在此期间她恰好学习了13小时。

证明 设从第一天到第i 天她共学习了i a 小时。

因为她每天至少学习1小时,所以3721,,,a a a 和13,,13,133721+++a a a 都是严格单调递增序列。

因为总的学习时间不超过60小时,所以6037≤a ,731337≤+a 。

3721,,,a a a ,13,,13,133721+++a a a 是1和73之间的74个整数,由鸽巢原理知道,它们中存在相同的整数,有i a 和13+j a 使得13+=j i a a ,13=-j i a a ,从第1+j 天到第i 天她恰好学习了13小时。

14. 一只袋子装了100个苹果、100个香蕉、100个桔子和100个梨。

如果我每分钟从袋子里取出一个水果,那么需要多少时间我就能肯定至少已拿出了1打相同种类的水果? 解 由加强形式的鸽巢原理知道,如果从袋子中取出451)112(4=+-⨯个水果,则能肯定至少已拿出12个相同种类的水果。

因此,需要45分钟。

17. 证明:在一群1>n 个人中,存在两个人,他们在这群人中有相同数目的熟人(假设没有人与他/她自己是熟人)。

哈工大电路习题答案第6章

哈工大电路习题答案第6章

答案6.1解:将i和i3改写为余弦函数的标准形式,即2i4cos(t190)A4cos(t190180)A4cos(t10)A2i5sin(t10)A5cos(t1090)A5cos(t80)A3电压、电流的有效值为1002U70.7V,I1.414A12245I2.828A,I3.54A2322初相位10,100,10,80uiii123相位差1ui1010090u与i1正交,u滞后于i1;12ui10100u与i2同相;23ui10(80)90u与i3正交,u超前于i33答案6.2au10cos(t10)V.-822bU610arctg10233.1V,u102cos(t233.1)V-622-20.8cI0.220.8arctg20.889.4A,i20.8cos(t89.4)Am0.2dI30180A,i302cos(t180)A答案6.3解:(a)利用正弦量的相量表示法的线性性质得:UI111n,UIn22(b)磁通相量通常用最大值表示,利用正弦量的相量表示法的微分性质得:UjNmm(c)利用正弦量的相量表示法的线性性质与微分性质得:URIjLI答案6.4解:由KCL得电流i的振幅相量IIIIm1m2m3m(2100410580)A(0.347j1.973.939j0.6950.868j4.924)A526.86A电流i的瞬时值为i5cos(t26.86)A答案6.5解:电压表和电流表读数为有效值,其比值为阻抗模,即2()2/RLUI将已知条件代入,得22R(2π50L) 100V 15A22R(2π100L)100V 10联立方程,解得L13.7mH,R5.08答案6.6解:(a)RC串联电路中电阻电压与电容电压相位正交,各电压有效值关系为2222UU2U15040V30V电流i的有效值为IIC UXC30V103A(b)UXICC302A60VI R UR60V500.3ARC并联电路中电阻电流与电容电流相位正交,总电流有效值为22221.222.33IIIAACR(c)UXI301A30VCCC由U30VCUUXII2ALCLLX15L并联电容、电感上电流相位相反,总电流为III1ALC电阻电压与电容电压相位正交,总电压为:2230240250UUUVVCR答案6.7解:感抗XL L3210rad/s0.1H200容抗X C 11C36210rad/s510F100图(a)电路的相量模型如图(b)所示。

哈工大深圳研究生院组合数学部分作业题答案习题课6,8

哈工大深圳研究生院组合数学部分作业题答案习题课6,8

Homework 613.Let A={A1,A2,A3,A4,A5,A6} whereA1={1,2} A2={2,3} A3={3,4} A4={4,5} A5={5,6} A6={6,1}Determine the number of different SDR’s that A has. Generalize to n sets.Solution: When we choose 1 in A 1, if we choose 3 in A 2, we can choose 4 only in A 3, we can choose 5 only in A 4, and we can choose 6 only in A 5, however, we can choose 1 only in A 6,it will contract with 1 in A 1Hence, we can choose only 2 in A .2 if we choose 1 in A 1,3 in A 3,4 in A 4,5 in A 5,6 in A When we choose 2 in A 6.1, we can only choose 3 in A 3, 4 in A 4, 5 in A 5, 1 in A 1That is SDR . Hence, there are only two SDRs in A . 1={1,2,3,4,5,6}and SDR 2Similarity, we can generalize to n sets. There are only two SDRs in n-sets the same.={2,3,4,5,6,1}That is SDR 1={1,2,…,n} and SDR 2={2,3,4,…,n,1}23. Use the deferred acceptance algorithm to obtain both the women-optimal and men-optimal stable complete marriage for the preferential ranking matrix.Conclude that for the given preferential ranking matrix there is onlyone stable complete marriage.a b c dAA BB CC DD�1,32,3 1,44,13,24,33,32,2 2,21,4 4,12,23,44,13,11,4�Solution:(1) women-optimalThe results of the algorithm are as follows:1)A choose a, B choose a, C choose b, D choose d; a rejects B2)B choose d; d rejects D.3)D choose b; b rejects C.4)C choose a; a rejects A.5)A choose c.In 5), there are no rejections, and(2) men-optimalThe results of the algorithm are as follows:1)a choose D, b choose B, c choose D, d choose C; D rejects a.2)a choose C, C rejects d.3)d choose B, B rejects b.4)b choose D, D reject c.5)c choose A.In 5), there are no rejections, anda C,b D,c A,d B.Conclude that, for given preferential ranking matrix, there is only one stable complete marriage.3. Consider an m-by-n chessboard where at least one of m and n is even. The board has an equal number of white and black squares. Show that if m and n are at least 2 and if exactly one white and exactly one black square are forbidden, the resulting board has a perfect cover with dominoes.Solution:Let n be even, there are even numbers of columns. From top row, if the top row has no squares forbidden, then that row can be covered by dominoes. So we can remove this row. Repeat this till the new top row has a forbidden square. Do the same thing from the bottom row. So we can assume that forbidden squares are on the top and bottom rows.Let’s consider the first two columns from the left. If there is nofirst two columns, they can be covered by forbidden square in thedominoes and we can remove them. Repeat this till there is a forbidden square in the first two columns. Do the same from the right side so we ca n also assume the forbidden squares lie in the first two columns and the last two columns. After the above have been done, we can assume that chessflip board is of one of the following three situations (with rotation or ofover the chess board if needed). In each of the case, there are even numbers of columns.(A) (B) (C)So the two forbidden squares have one black and the other white, there are even numbers of columns. We draw the figures, in the cases (A) and (B), there has to be odd number of rows while in the case (C), there are even number of rows. Then we divide the board into pieces as shown in the following such each piece is rectangular with at least one side being even, thus can be covered by dominoes respectively.So the entire board has a perfect cover by dominoes.(A) (B) (C)4. Determine the max-matching and the min-cover of the right graph by applying the matching algorithm. We choose the red edges and obtain a matching M1.Find a minimum edge cover for the right graph.Answer:Now we get the matching )},(),,{(44121y x y x M = and U 131,x x = {}. (i) The vertices 31,x x are labeled (*).x 1y 1x x y 2 y 3 y 4y 5(ii) Scan the vertices in U 154321,,,,y y y y y in turn, and label with (1x ), since all vertices incident to 3x .already have a label, no vertex of Y get label (3x ).(iii) Scan the vertices 5431,,,y y y y labeled in (ii), and label 2x with (1y ), label 4x with (4y ).(*)x 1y 1(1x )x(*)x 3x y 2 y 3(1x ) y 4(1x )y 5(1x )(*)x 1 y1x (*)x 3x y 2 y 3 y 4y 5(iv) We scan the vertices 2x and 4x labeled in (iii), and label 2y with (2x ).(v) Scan the vertices 2y labeled in (iv), and find that no new labels are possible.We have achieved breakthrough. We find the 1M -augmenting path11221x y x y r = using the labels as a guide. Then )},(),,(),,{(4411222y x y x y x M =(*)x 1y 1(1x )(1y )x 2(*)x 3(4y )x y 2(2x ) y 3(1x ) y 4(1x )y 5(1x )(*)x 1 y 1(1x )(1y )x 2(*)x 3(4y )x y 2 y 3(1x ) y 4(1x )y 5(1x )and }{32x U =.(vi) The vertices 3x are labeled (*).(vii) Scan the vertices in U 25y in turn, and label with (3x )x 1y 1x 2(*)x 3x 4y 2 y 3 y 4y 5x 1y 1x 2x 3x 4y 2 y 3 y 4y 5(Viii) Scan the vertex 5y labeled in (vii), and find that no new labels are possible.We have achieved breakthrough. We find the 2M -augmenting path352x y r = using the labels as a guide. Then)},(),,(),,(),,{(441122533y x y x y x y x M =is a matching of four edges.Now we can get thatx 1 y 1x 2x 3x 4y 2 y 3 y 4y 5x 1 y 1x 2(*)x 3x 4y 2 y 3 y 4y 5(3x )the max-matching )},(),,(),,(),,{(44112253y x y x y x y x M = and the min-cover= {54321,,,,y y y y y }.2) Find a minimum edge cover for the right graph.Follow the steps above; we can get a max-matching)},(),,(),,(),,{(44112253y x y x y x y x M =.And we can find that there are also some vertices uncovered by the max-matching. Obviously, the vertex 3y Now we can construct a subgraph composed of edges incident to the vertex is uncovered.3y , we find the max-matching of the subgraph, and add it to the max-matching of M, then we can get a minimum edge cover.Fig The subgraphThe max-matching of the subgraph is {(x 1,y 3)}. Now we can get a minimum edgecover={(x 1,y 3)}∪M ={(x 1,y 3)(x 3,y 5)(x 2,y 2)(x 1,y 1)(x 4,y 4)}x 1y 1x 2x 3x 4y 2 y 3y 4y 5x1y1x2 x3 x4y2 y3 y4y5Fig The minimum edge cover第八次作业16. Apply the algorithm for the GCD in Section 10.1 to 15 and 46, and then use the results to determine the multiplicative inverse of 15 in Z46Answer:.The result for Computing the GCD of 15 and 46 are displayed in the following:Now ,we write as a linear combination of 15 and 46:1=46-3*15From the above, 1 is the GCD of 15 and 46.Thus, we can get the multiplicative inverse of 15 in Z4615:-121. Determine the complementary design of the BIBD with parameters bb=vv=77,kk=rr=33,λλ=11in Section 10.2= – 3 = 43.•b: the number of blocks;•v: the number of varieties;•k: the number of varieties in each block;• r : the number of blocks containing each variety• λλ: the number of blocks containing each pair of varieties. Answer:Apply ()11−−=k v r λ to this case, now we have b =v =7,k =r =3,λ=1.Hence, we can get ()()311717111≠=−−×=−−=k v r λ. Thus, we can design such a complementary.We can get the complementary design of the BIBD withparametersb’ = b = 7, v’ = v = 7, k’ = v-k = 4, r’ = b-r = 4 ,213272'=+×−=+−=λλr b .28. Show that BB={00,11,33,99}is a difference set in Z13 Answer:, and use thisdifference set as a starter block to construct an SBIBD. Identify the parameters of the block design.We compute the subtraction table and obtain:We can find that non-zero integers in Z13}{9,3,1,0=B occur exactly once as adifference, hence is a difference set in Z1332. Use Theorem 10.3.2 to construct a Steiner triple system of index 1 having 21 varieties..•Hints:• 1. construct two Steiner triple systems B1 and B2• 2. construct B based on B with 3 and 7varieties, respectively.1and B2. Answer:1)Construct two Steiner triple systems B1 and B2 with 3 and 7 varieties, respectively.Let X={a0,a1,a2}and Y={b0,b1,b2,b3,b4,b5,b6}be two sets of varieties.Let B1={a0,a1,a2}and B2=�{b0,b1,b3},{b1,b2,b4}, {b2,b3,b5},{b3,b4,b6},{b4,b5,b0},{b5,b6,b1},{b6,b0,b2}�be the Steiner triple systems of X and Y, respectively.2)Construct B based on B1 and B2.We define a set B of triples of the elements of X. Let {c ir, c js, c kt} be a set of 3 elements of X. then {c ir, c js, c kt} is a triple of B iff one of the following holds:i) r = s = tIf r=s=t=1, we can get {0,3,9}, {3,6,12}, {6,9,15}, {9,12,18}, {12,15,0},{15,18,3}, {18,0,6};If r=s=t=2, we can get {1,4,10}, {4,7,13}, {7,10,16}, {10,13,19},{13,16,1}, {16,19,4}, {20,1,7};If r=s=t=3, we can get {2,5,11}, {5,8,14}, {8,11,17}, {11,14,20},{14,17,2}, {17,20,5}, {20,2,8};ii) i = j = k, We can get {0, 1, 2}, {3, 4, 5}, {6, 7, 8},{9, 10, 11}, {12, 13,14}, {15, 16, 17}, {18, 19, 20};(iii) i, j and k are all different and {a i, a j, a k} is a triple of B1, and r, s and t are all different and {b r, b s, b t} is a triple of B2. Put another way, c ir, c js, and c kt are in 3 different rows and 3 different columns of the array, and the rows in which they lie correspond to a triple of B1 and the columns inwhich they lie correspond to a triple of B2 If {a .i, a j, a k If {a }={0, 1, 3},we can get {0, 4, 11}, {0, 10, 5}, {3, 1, 11}, {3, 10, 2}, {9, 1, 5}, {9, 4, 2};i, a j, a k If {a }={1, 2, 4}, we can get {3, 7, 14}, {3, 13, 8}, {6, 4, 14}, {6, 13, 5}, {12, 4, 8}, {12, 7, 5};i, a j, a k If{a }={2, 3, 5},we can get {6, 10, 17}, {6, 16, 11}, {9, 7, 17}, {9, 16,8},{15,7,11},{15,10, 8};i, a j, a k If {a }={3,4,6}, we can get {9,13,20},{9,19,14},{12,10, 20},{12,19,11},{18,10,14},{18,13,11};i, a j, a k If {a }={4, 5, 0},we can get {12,16,2}, {12, 1,17}, {15,13,2},{15,1,14}, {0,13,17}, {0,16,14};i, a j, a k If {a }={5,6, 1},we can get {15, 19, 5},{15,4,20},{18, 16, 5},{18, 4, 17},{3,16,20},{3,19,17};i, a j, a k}={6,0, 2},we can get {18, 1, 8}, {18, 7, 2}, {0, 19, 8}, {0, 7,20}, {6, 19, 2}, {6, 1, 20};52. Construct a completion of the 3-by-6 Latin rectangleAnswer:According to theorem 10.4.11(390页), this 3-by-6 Latin rectangle has a completion. Let X={x 0, x 1, x 2, x 3, x 4, x 5} representing the 6 elements, and Y= {y 0, y 1, y 2, y 3, y 4, y 5} representing the columns. An edge (x i, yj ) in denotes element i doesn’t appear in column j. Then we construct a regular of degree 3 Bipartite graph of X and Y ,G=(X, Δ, Y) as follows.y 2x 0x 2x 3x 4y 1y 3x 1y 5y 4y0x 5(1)Computing the perfect matching using the matching algorithm (312页) and the results are as follows. The red lines represent the maximum matching. (找出一个完美匹配即可,不必写出寻找的步骤,建议通过观察得出完美匹配最好,匹配算法太麻烦了)0 1 2 3 4 5 4 3 1 5 2 0 54312y 2x 0x 2x 3x 4y 1y 3x 1y 5y 4y0x 5So a new row is{x 2, x 0, x 4, x 1, x 5, x 3Similarly, we can draw the graph for the above matrix as follows.} could be added to the original matrix as follows.�01243134552054324012153� y 2x 0x 2x 3x 4y 1y 3x 1y 5y 4y0x 5(2)Computing the perfect matching and the results are as follows. The red lines represent the maximum matching.y 2x 0x 2x 3x 4y 1y 3x 1y 5y 4y0x 5Hence a new row is{x 1, x 5, x 0, x 2, x 3, x 4Similarly, we can draw the graph for the above matrix as follows.} and the new Latin rectangle is⎣⎢⎢⎢⎡012431345520543204150012153234⎦⎥⎥⎥⎤ y 2x 0x 2x 3x 4y 1y 3x 1y 5y 4y0x 5From the graph, we can easily know that all the lines construct a perfect matching. So we the final answer as follows⎣⎢⎢⎢⎢⎡012431543335520012204150325153234401⎦⎥⎥⎥⎥⎤58. Construct a completion of the semi-Latin squareAnswer :思路:构造二分图,找完美匹配(匹配算法)。

高等数学第六章答案

高等数学第六章答案

第六章 定积分的应用第二节 定积分在几何上的应用 1. 求图中各阴影部分的面积: (1) 16. (2) 1(3)323. (4)323.2. 求由下列各曲线所围成的图形的面积: (1) 463π-. (2)3ln 22-. (3)12e e+-.(4)b a -3. 94.4. (1).1213(2).45. (1) πa 2. (2)238a π. (3)218a π.6. (1)423π⎛- ⎝ (2)54π(3)2cos 2ρθρθ==及162π-+7.求下列已知曲线所围成的图形, 按指定的轴旋转所产生的旋转体的体积: (1)2x x y y x =和轴、向所围图形,绕轴及轴。

(2)22y x y 8x,x y ==和绕及轴。

(3)()22x y 516,x +-=绕轴。

(4)xy=1和y=4x 、x=2、y=0,绕。

(5)摆线()()x=a t-sint ,1cos ,y 0x y a t =-=的一拱,绕轴。

2234824131,;(2),;(3)160;(4);(5)5a .52556πππππππ()8.由y =x 3, x =2, y =0所围成的图形, 分别绕x 轴及y 轴旋转, 计算所得两个旋转体的体积.1287x V π=. y V =645π9.把星形线3/23/23/2a y x =+所围成的图形, 绕x 轴旋转, 计算所得旋转体的体积.332105a π 10.(1)证明 由平面图形0≤a ≤x ≤b , 0≤y ≤f (x )绕y 轴旋转所成的旋转体的体积为 ⎰=badx x xf V )(2π. 证明略。

(2)利用题(1)结论, 计算曲线y =sin x (0≤x ≤π)和x 轴所围成的图形绕y 轴旋转所得旋转体的体积. 22π11.计算底面是半径为R 的圆, 而垂直于底面上一条固定直径的所有截面都是等边三角形的立体体积. 343R .12.计算曲线3223y x =上相应于38x ≤≤的一段弧的弧长。

组合数学 课后答案 PDF 版

组合数学 课后答案 PDF 版
4.1 证明所有的循环群是 ABEL 群 证明:
循环群也是群,所以群的定义不用再证,只需证明对于任意a, b G, G是循环群,有a * b b * a成立,因为循环群中的元素可写成a=xm 形式 所以等式左边xm × x n x m n , 等式右边x n xm=x m n, a b b a,即所有 的循环群都是ABEL群。
因为 H 是 G 的子群, 所以在 H 中的一个 (b m ) r 一定在 G 中对应一个 a m 使得
(b m ) r a m ,
所以有 b rm a m ,则 rm 一定是 m 的倍数,所以则 H 的阶必除尽 G 的阶。 4.9 G 是有限群,x 是 G 的元素,则 x 的阶必除尽 G 的阶。
N-1 N-2
N
1
2 3
……
……
图N! C N!
如图: N 个人围成一个圆桌的所有排列如上图所示。一共 N!个。
……

6
…………………………
… …
……
… …


旋转 360/i,i={n,n-1,n-2,……1}; 得到 n 种置换 当且仅当 i=1 的置换(即顺时针旋转 360/1 度:P1=(c1)(c2)……(cn!);) 时有 1 阶循环存在 (因为只要圆桌转动,所有圆排列中元素的绝对位置都发生了 变化,所以不可能有 1 阶循环存在) 。 不同的等价类个数就是不同的圆排列个数,根据 Burnside 引理,
4.18 若以给两个 r 色球,量个 b 色的球,用它装在正六面体的顶点,试问有多 少种不同的方案。 解:单位元素(1) (2) (3) (4) (5) (6) (7) (8) ,格式为(1)8. 绕中轴旋转 90。的置换非别为(1234) (5678) , (4321) (8765) 2 格式为(4) ,同格式的共轭类有 6 个。

组合数学课后习题答案

组合数学课后习题答案

第一章答案1.(a) 45 ( {1,6},{2,7},{3,8},…,{45,50} )(b) 45⨯5+(4+3+2+1) = 235( 1→2~6, 2→3~7, 3→4~8, …,45→46~50, 46→47~50, 47→48~50, 49→50 ) 2.(a) 5!8!(b) 7! P(8,5) (c) 2 P(5,3) 8! 3. (a) n!P(n+1, m) (b) n!(m+1)!(c) 2!((m+n-2)+1)! 4. 2 P(24,5) 20!5. 2⨯5⨯P(8,2)+3⨯4⨯P(8,2)6. (n+1)!-17. 用数学归纳法易证。

8. 41⨯319. 设 n=p 1n 1p 2n 2…p kn k , 则n 2的除数个数为 ( 2p 1+1) (2p 2+1) …(2p k+1).10.1)用数学归纳法可证n 能表示成题中表达式的形式;2)如果某n 可以表示成题中表达式的形式,则等式两端除以2取余数,可以确定a 1;再对等式两端的商除以3取余数,又可得a 2;对等式两端的商除以4取余数,又可得a 3;…;这说明表达式是唯一的。

11.易用C(m,n)=m!/(n!(m-n)!)验证等式成立。

组合意义:右:从n 个不同元素中任取r+1个出来,再从这r+1个中取一个的全体组合的个数;左:上述组合中,先从n 个不同元素中任取1个出来,每一个相同的组合要生复 C(n-1,r) 次。

12.考虑,)1(,)1(101-=-=+=+=∑∑n nk k k n nnk kknx n x kC x x C 求导数后有令x=1, 即知.210-==∑n nk kn n kC13. 设此n 个不同的数由小到大排列后为a 1, a 2, …, a n 。

当第二组最大数为a k 时,第二组共有2k-1种不同的可能,第一组有2n-k -1种不同的可能。

故符合要求的不同分组共有12)2()12(21111+-=-----=∑n k n k n k n 种。

计算机应用数学-(组合数学)-答案哈工大

计算机应用数学-(组合数学)-答案哈工大

1,证明,如果从集合{1,2,...,2n}中选择n+1整数,那么总存在两个整数,它们之间相差为1.2,用鸽巢原理证明,有理数m/n展开的十进制小数最终是要循环的。

例如,34 478/99 900=0.345 125 125 125 125 12...3,一间屋内有10个人,他们当中没有人超过60岁(年龄只能以整数给出)但又至少不低于1岁。

证明,总能够找出两组人(两组不含相同人),各组人的年龄和是相同的。

题中的数10能换成更小的数吗?4,一只袋子装了100个苹果、100个香蕉、100个橘子和100个梨。

如果我每分钟从袋子里了出1种水果,那么需要多少时间我就能肯定至少已拿出了1打相同种类的水果?5,i)证明,在边长为1的等边三角形内任意选择5个点,存在2个点,其间距离至多为1/2。

ii)证明,在边长为1的等边三角形内任意选择10个点,存在2个点,其间距离至多为1/3。

iii)确定一个整数m小n,使得如果在边长为1的等边三角形内任意选择的m小n个点,则存在2个点,其间距离至多为1/n.6,下列各数各有多少互异正因子?i)3的4次方X 5的2次方X 7的6次方X 11ii)620iii)10的10次方7,确定下列类型的一手牌(5张牌)的数目。

i)full houses (3张一样大小的牌及2张相同点数的另外大小的牌)。

ii)顺牌(5张点数相连的牌)。

iii)同花(5张一样花色的牌)。

iv)同花顺(5张点数相连的同样花色的牌)。

v)恰好两个对(一对同样大小,另一对另外点数同样大小,再有一张另外大小的5张牌)。

vi)恰好一个对(一对同样大小,另外三张另外大小且互异点数的牌)。

8,从拥有10名男会员和12名女会员的一个俱乐部选出一个5人委员会。

如果至少要包含2位女士,能够有多少种方法形成这个委员会?此外,如果俱乐部还有一位特定的男士和一们特定的女士拒绝进入该委员会一起工作,形成委员会的方式又有多少?9,学校有100名学生和3个宿舍A,B和C,它们分别容纳25,35和40人。

高等数学b2第六章教材答案

高等数学b2第六章教材答案

高等数学b2第六章教材答案高等数学B2 第六章教材答案第一节:函数极值和最值1. 函数的极值和最值是函数在定义域内的特殊点,它们在数学和实际问题中具有重要的应用价值。

下面是第六章教材中相关习题的答案:习题1:a) 求函数$f(x) = 3x^2 - 6x + 2$在区间[-1, 2]上的极大值和极小值。

解:首先求函数$f'(x) = 6x - 6$的零点,即$6x - 6 = 0$,得$x = 1$。

将$x = -1, x = 1, x = 2$代入$f(x)$中,分别得到$f(-1) = 13, f(1) = -1, f(2)= 10$。

所以$f(x)$在$x = 1$处取得极小值-1,在$x = -1$处取得极大值13。

b) 求函数$g(x) = x^3 - \frac{9}{2}x^2 + 3$在整个定义域上的最大值和最小值。

解:首先求函数$g'(x) = 3x^2 - 9x$的零点,即$3x^2 - 9x = 0$,得$x = 0, x = 3$。

将$x = 0, x = 3$代入$g(x)$中,分别得到$g(0) = 3, g(3) =\frac{27}{2}$。

所以$g(x)$在$x = 3$处取得最大值$\frac{27}{2}$,在$x = 0$处取得最小值3。

2. 函数的极值和最值在实际问题中有很多应用,比如优化问题、经济学中的最大效益等。

通过求解函数的极值和最值,可以找到使函数取得最优结果的变量取值。

习题2:一块长方形的地面上,以其一条边为底,作一个等腰直角梯形,使得梯形的上底与下底分别与已知两块木板的宽度相等。

问该等腰直角梯形的底边长度为多少,才能使梯形的面积最大。

解:设等腰直角梯形的底边长度为$x$,则梯形的上底和下底长度也都为$x$。

设梯形的高为$h$,根据勾股定理得到$h = \sqrt{2}x$。

梯形的面积$S(x) = \frac{1}{2}(x + x)(\sqrt{2}x)$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Solution: Let A1 be the number that a appear consecutively Let A2 be the number that b appear consecutively Let A3 be the number that c appear consecutively Let A4 be the number that d appear consecutively
1 1 1 1 Dn n!(1 ... (1) n ) , this will be the case that n = 4, 1! 2! 3! n! 1 1 1 1 4 So the result D4 C8 * 4!(1 ) = 630 1! 2! 3! 4!
y1 y2 y3 y4 13 0 y1 5 , 0 y4 4 . Let
0 y2 7 ,
0 y3 4 ,
S
be combination of positive solution for this
equation, let A1 be the combination that y1 >= 6, A2 be the combination that y2 >= 8, A3 be the combination that y3 >= 5, A4 be the combination that y4 >= 5.
4. Count the permutations i1i2i3i4i5i6 of {1, 2, 3,
4,
5, 6},
where i1 1,2,3 ; i2 1 ; i3 1 ; i5 5,6 ; and i6 5,6 .
Solution: Let Xi be what can be occur in position i, then X1={1,2,3}, X2={1}, X3={1}, X5={5,6}, X6={5,6}. Then we calculate the chessboard polynomial, the chessboard is like this:
7 A1 = C7 41 = 120 8 A3 = C8 41 = 165 5 A2 = C5 41 = 56 8 A4 = C8 41 = 165
A1 A2 = 0 let
u1 y1 6 ,
u2 y2 , u3 y3 5 , u4 y4
so u1 u2 u3 u4 2
R(
) = xR ( ) + R(
) = x 2 3x 1
R(
) = 2x2 4x 1
(*)
R(S) = 8x 4 26 x3 26 x 2 9 x 1 R6(C) = 6!-9*5!+26*4!-26*3!+8*2!-0*1! = 124
5. How many circular permutations are there of the multiset {2· a, 3· b, 4· c,5· d},where, for each type of letter, all letters of that type do not appear consecutively?
A1 = 2500
A1 A2 A3 A4
A2 = 1666
.
A4 = 1000
A3 = 1428
A1 A2
= 833 238
A1 A3
A4 A2
= 119 = 47
= 357 = 333
A1 A4
A3 A4
= 166 = 71
= 500 =142
A3 A2 =
A1 A2 A3 A2 A3 A4
HW3
1. Find the number of integers between 1 and 10,000 inclusive that are not divisible by 4, 6, 7, or 10.
Solution: Let P1 be the property that an integer is divisible by 4, P2 be the property that an integer is divisible by 6, so we also get P 3, P4 which are related to 7 and 10.Let S be the set consisting of the first 10000 positive integers. For i = 1,2,3,4 let Ai be the set consisting of those integers in S with property Pi. We wish to find the number of integers in
2 then A1 A3 = C5 =10
the same goes for other calculation.
2 =10 A3 A2 = 1 A1 A4 = C5
A4 A2 = 1 A1 A2 A3 = 0 A2 A3 A4 = 0
3 =20 A3 A4 = C6
X X X
X
X
X X
X X
we call it S R(S) =
x R(
) *R (
)
R(
) = X*R() + R(
)
R(
) = R(
)* R(
) = (2x+1) 2
R(
) = x (2 x 1) 2 = 4 x 2 5x 1
(*)
R(
) = xR (
) + R(
)Leabharlann R() = x 1
A1 A2 A3 A4
Ai A j Ak
+
=
S
-
Ai
+
Ai Ai
-
A1 A2 A3 A4
The calculation mode is similar to the problem 1, forgive me not showing it here, it is tiring...
A1 A2 A4 = 0 A1 A4 A3 = 0
A1 A2 A3 A4 = 0
S
13 = C13 41 = 560
Solution will be
A1 A2 A3 A4
=
S
-
Ai
+
Ai Ai
-
Ai A j Ak + A1 A2 A3 A4 = 96
x1 x2 x3 x4 20
that satisfy
1 x1 6
,
0 x2 7
,
4 x3 8
,
2 x4 6
Solution: We add another three variable y1, y2, y3,y4, which
y1 x1 1 , y2 x2 , y3 x3 4 , y4 x4 2 . Then we get
3. Determine the number of permutations of {1, 2, ... ,8} in which exactly four integers are in their natural positions.
Solution: First, we choose four integers that are in their natural positions, then left integers ABCD which is not in their natural position. According to the formula
S
= 10000
A1 A2 A4 A1 A4 A3
= 23
A1 A2 A3 A4
A1 A2 A3 A4
Ai A j Ak
+
=
S
-
Ai
+
Ai Ai
-
A1 A2 A3 A4
= 5429
2. Determine the number of integral solutions of the equation
A1 A2 A3 A4
(
=
13! 12! 11! 10! 9! ( ) 2!3!4!5! 3!4!5! 2!3!5! 2!3!5! 2!3!4
+
10! 9! 8! 8! 7! 6! - 7! 6! 5! 4! +3! ) ( ) 4!5! 3!5! 3!4! 2!5! 2!4! 2!3! 5! 4! 3! 2!
相关文档
最新文档