详细介绍抗体的分离纯化共49页文档

合集下载

抗体的检测和纯化课件

抗体的检测和纯化课件

文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系网站或本人删除。
• Protein A
• A 蛋白是金黄色葡萄球菌的表面蛋白,分 子量为42 KD ,有6 个不同的IgG结合位点。其 中有5 个位点对IgG的Fc 片段显示很强的特异 性亲和力,不同的位点独立地与抗体结合。但 IgA , IgM , IgE 也可能结合在配体上,当达到饱 和时,一个A 蛋白分子至少可以结合两个IgG分 子。A 蛋白对IgG有高亲和力和特异性,这一特 点使之非常适合用于纯化腹水或细胞培养上 清中的单克隆抗体

Protein A--Sepharose CL24B 亲和层析法
的原理是,A 蛋白可与IgG上的Fc 段特异性地
结合,与小鼠IgG的各亚类表现为不同的结合
力,结合的强弱程度依次是: IgG2a > IgG2b >
IgG3 > IgG1 。A 蛋白的这种结合也是具有p
H 依赖性的,即可利用改变p H 及离子强度,纯
化与其结合较弱的IgG1。
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系网站或本人删除。
方法
1 腹水的处理 取腹水,在4 ℃,12 000g 条件下 离心15min ,以除去较大的凝块。
2 装柱 将1. 5g Protein A-Sep harose CL-4B 干 粉用6~7ml 三蒸水溶解,再用0. 02M ,p H 7. 4 的磷酸盐缓冲液(上样缓冲液) 浸泡15min ,然 后装入层析柱中。
一 饱和硫酸铵沉淀法

饱和硫酸氨沉淀是从溶液中分离蛋
白质的常用方法。这是一种比较原始,非
特异性分离技术。

饱和硫酸氨沉淀法难以得到高纯度

抗体纯化工艺

抗体纯化工艺

抗体纯化工艺一、概述抗体纯化工艺是制备高纯度、高活性抗体的关键步骤之一。

该工艺包括多个步骤,如细胞培养、抗体捕获、杂质去除和抗体纯化等,旨在获得纯度高、活性好的抗体产品。

本文将详细介绍抗体纯化工艺的各个步骤及相关技术方法。

二、细胞培养1.细胞株选择–选择适合抗体生产的细胞株,如CHO细胞、HEK293细胞等。

–考虑细胞株的稳定性、表达水平和生长特性等因素。

2.培养基配方优化–根据细胞株要求,优化培养基的成分,如碳源、氮源、生长因子等。

–添加适量的抗生素保持培养的无菌状态。

3.培养条件控制–控制培养室的温度、湿度和二氧化碳浓度等参数。

–定期检测培养液的pH值和溶氧含量,并进行适当调整。

三、抗体捕获1.细胞收获–选择最佳的细胞收获时间点,通常在细胞进入衰老期前进行。

–使用适当的方法(如离心、超滤等)将培养液中的细胞分离出来。

2.细胞破碎–使用机械方法或化学方法将细胞破碎,释放抗体和细胞内组分。

–注意选择合适的破碎条件,以保持抗体的完整性和活性。

四、杂质去除1.固体杂质的去除–使用离心、滤膜等方法去除细胞碎片、沉淀和残留的细胞碎片等固体杂质。

–选择合适的离心速度和滤膜孔径,以避免抗体的损失。

2.溶液杂质的去除–使用离子交换、凝胶过滤、亲和层析等方法去除溶液中的蛋白质、DNA、RNA等杂质。

–根据目标抗体的特性选择合适的去除方法。

五、抗体纯化1.亲和层析–使用亲和介质(如蛋白A、蛋白G、蛋白L等)将目标抗体从其他成分中分离出来。

–根据目标抗体的种类选择合适的亲和介质。

2.离子交换层析–利用抗体与离子交换介质之间的电荷相互作用进行分离。

–通过调整pH值、盐浓度等参数来实现对抗体的选择性吸附和洗脱。

3.凝胶过滤层析–利用凝胶过滤介质的孔径大小选择性地分离抗体。

–根据抗体的分子量和亲和性选择合适的凝胶过滤介质。

4.逆流色谱–利用逆流色谱技术实现对抗体的纯化和富集。

–通过改变流动相和温度等条件来调节抗体与逆流色谱介质之间的相互作用。

抗体纯化的基本流程

抗体纯化的基本流程

抗体纯化的基本流程一、引言抗体是一种特殊的蛋白质,可以识别并结合到特定的抗原上。

在生物医学研究中,抗体被广泛应用于诊断、治疗和基础研究等领域。

抗体纯化是制备高纯度抗体的重要步骤之一,本文将介绍抗体纯化的基本流程。

二、前期准备1.选择适当的来源:根据需要选择合适的来源,如小鼠、兔子等。

2.免疫原制备:根据需要制备相应的免疫原。

3.动物免疫:将免疫原注射到动物体内进行免疫。

三、收集血清1.采集血液:在动物免疫后,采集相应量的血液。

2.离心分离血清:将采集到的血液离心分离出血清。

四、初步纯化1.蛋白A亲和层析:将血清通过蛋白A亲和层析柱进行初步纯化。

蛋白A是与IgG亚类结合较紧密的亲和素。

2.洗脱:通过改变pH值或盐浓度等条件,将与蛋白A柱结合的IgG 洗脱下来。

五、中期纯化1.离子交换层析:将初步纯化后的IgG通过离子交换层析柱进行中期纯化。

选择适当的离子交换树脂,使得IgG可以被结合并随后洗脱。

2.洗脱:通过改变盐浓度或pH值等条件,将与离子交换树脂结合的IgG洗脱下来。

六、后期纯化1.凝胶过滤层析:将中期纯化后的IgG通过凝胶过滤层析柱进行后期纯化。

选择适当的凝胶过滤树脂,使得IgG可以在某一分子量范围内被分离出来。

2.洗脱:将分离出来的IgG进行洗脱,并进行最终检测。

七、总结抗体纯化是制备高质量抗体的重要步骤之一。

本文介绍了抗体纯化的基本流程,包括前期准备、收集血清、初步纯化、中期纯化和后期纯化等步骤。

在实际操作中,应根据具体情况选择适当的方法和条件,以获得高纯度的抗体。

抗体的提取与纯化

抗体的提取与纯化

(关键词:抗体;抗体的提取与纯化;盐析法;冷酒精沉淀法;DEAE-SephadexA-50柱层析纯化免疫球蛋白;SPA-SepharoseCL-4B 亲合层析纯化IgG;离子交换层析)精制免疫球蛋白的方法很多。

一般采用综合技术,避免蛋白变性。

如分离IgG时,多结合使用盐析法与离子交换法,以求纯化。

提取IgM的方法也很多,如应用凝胶过滤与制备电泳法,或离子交换与凝胶过滤等。

一、盐析法取x ml血清加x ml生理盐水,于搅拌下逐滴加入2xml饱和硫酸铵,硫酸铵的终饱和度为50%。

↓4℃,3h以上,使其充分沉淀离心(3000rpm),20min,充上清,以xml生理盐水溶解沉淀,再逐滴加饱和硫酸铵x/2ml。

↓置4℃3h以上,[此时,(NH4)2SO4的饱和度为33%]重复上述第二步过程1~2次。

末次离心后所得沉淀物为γ-球蛋白,以0.02%mol/L pH7.4PBS溶解至xml装入透析袋。

↓对PBS充分透析、换液3次,至萘氏试剂测透析外液无黄色,即无NH4+为止。

取透析袋内样品少许作适当倍数稀释后,以751型紫外分光光度计测定蛋白含量。

影响盐析的因素很多,如蛋白质的浓度,盐的浓度,饱和度和pH,温度等都可影响盐析的结果,操作时要充分注意(参阅本章第二节)。

二、冷酒精沉淀法分离过程如下。

血清加3倍体积的蒸馏水,调节pH至7.7(±)冷却到0℃。

在激烈搅拌的条件下,加预冷的酒精(-20℃)到最终浓度为20%,保持在-5℃。

产生的沉淀(A),含有大多数种类的免疫球蛋白。

沉淀A悬浮于25倍体积的0.15~20mol/L NaCl溶液(冷)中,加有0.05mol/L醋酸调节pH到5.1,产生的沉淀(B),包括大部分的IgA 和IgM,IgG留在上清液内。

调节上清液的pH到7.4,加冷酒精(-20℃~-30℃)到最终浓度为25%,维持在-5℃。

所得到的沉淀(C)含有90%~98%IgG。

不同动物,IgG分离的条件和产量略有不同。

抗体分离纯化技术

抗体分离纯化技术

SDS-PAGE图 1.marker 2. 腹水上样 3.腹水blue柱穿透 4. 腹水blue柱洗脱 5.腹水PrA柱穿透 6. 腹水PrA柱洗脱
2.亲和纯化血浆中的抗体
重组蛋白A琼脂糖凝胶FF 柱纯化的SDS-PAGE图 1.marker 2. 血浆上样 3.和5.穿透 4.和.6 洗脱
蓝色琼脂糖凝胶FF纯化SDS-PAGE图 1.marker 2. 血浆上样 3.blue柱穿透 4. blue柱洗脱
填料:吡啶琼脂糖凝胶 FF 20ml Buffer A: 20mM PBS,0.8M Na2SO4,pH7.5 Buffer B: 20mM PBS, pH7.5 Buffer C: 20mM PBS, pH7.5,30%异丙醇
吡啶琼脂糖纯化SDS-PAGE图
1.marker 2. 粗提物 3.吡啶柱穿透 4.和 5 .吡啶柱洗脱
缺点
有失活可能,价格高,不适合所 有抗体。时间长,载量小。
最好配合沉淀的方法。 价格还是比较贵 时间长,纯度低,回收率低 效果一般,麻烦,纯度不高
亲和适合IgG纯化,效果不错,疏水和去杂质的方 法成本低,价格便宜,效率高,载量大是很适合的 纯化抗体的方法,而操作简单,具体使用什么方法 完全取决于对抗体的种类,纯度要求,自己已有条 件等因素。
3.疏水色谱纯化细胞培养样品中的抗体
1800 1500
A280(mAu)
1200 900 600 300 0 0 50 100 150 200 250 300
volume(ml)
苯基琼脂糖凝胶FF纯化抗体
填料: Phenyl sepharose FF 5ml Buffer A:50mM PBS,0.6M 硫酸铵,pH7.0 Buffer B: 50mM PBS,pH7.0 结果:洗脱蛋白量4.5mg/ml×20ml=90mg

抗体纯化大全之欧阳音创编

抗体纯化大全之欧阳音创编

抗体的纯化第一节硫酸铵沉淀法基本原理硫酸铵沉淀法可用于从大量粗制剂中浓缩和部分纯化蛋白质。

用此方法可以将主要的免疫球蛋白从样品中分离,是免疫球蛋白分离的常用方法。

高浓度的盐离子在蛋白质溶液中可与蛋白质竞争水分子,从而破坏蛋白质表面的水化膜,降低其溶解度,使之从溶液中沉淀出来。

各种蛋白质的溶解度不同,因而可利用不同浓度的盐溶液来沉淀不同的蛋白质。

这种方法称之为盐析。

盐浓度通常用饱和度来表示。

硫酸铵因其溶解度大,温度系数小和不易使蛋白质变性而应用最广。

试剂及仪器· 组织培养上清液、血清样品或腹水等· 硫酸铵(NH4)SO4 · 饱和硫酸铵溶液(SAS)· 蒸馏水· PBS(含0.2g/L叠氮钠) (见附录一)· 透析袋· 超速离心机· pH计· 磁力搅拌器实验步骤以腹水或组织培养上清液为例来介绍抗体的硫酸铵沉淀。

各种不同的免疫球蛋白盐析所需硫酸铵的饱和度也不完全相同。

通常用来分离抗体的硫酸铵饱和度为33%—50%。

一、配制饱和硫酸铵溶液(SAS)将767g(NH4)2SO4 边搅拌边慢慢加到1升蒸馏水中。

用氨水或硫酸调到pH7.0。

此即饱和度为100%的硫酸铵溶液( 4.1 mol/L, 25°C);其它不同饱和度硫酸铵溶液的配制见表1;二、沉淀1、样品(如腹水)20 000´g 离心30 min,除去细胞碎片;2、保留上清液并测量体积;3、边搅拌边慢慢加入等体积的SAS到上清液中,终浓度为1:1(v/v);4、将溶液放在磁力搅拌器上搅拌6小时或搅拌过夜(4°C),使蛋白质充分沉淀。

三、透析1、蛋白质溶液10 000´g 离心30 min(4°C)。

弃上清保留沉淀;2、将沉淀溶于少量(10-20ml)PBS-0.2g/L 叠氮钠中。

沉淀溶解后放入透析袋对PBS-0.2g/L 叠氮钠透析24-48小时(4°C),每隔3-6 小时换透析缓冲液一次,以彻底除去硫酸氨;3、透析液离心,测定上清液中蛋白质含量。

抗体纯化


Hale Waihona Puke 质的选择理想的基质应满足下面的要求: 1.极低的非特异性吸附性 2.高度的亲水性。亲和吸附剂要易与水溶液 中的生命大分子物资接近; 3. 较好的理化稳定性。当配体固化和各种 因素(如PH、离子强度、温度和变性剂等) 变化时,基质很少甚至不受影响;
4.大量的化学基团能被有效地活化,而且容 易和配体结合; 5.适当的多孔性。具体要求须根据分离物的 性质而定。 一般的亲和吸附剂采用的基质有纤维素、 聚丙烯酰胺凝胶、交联葡聚糖、琼脂糖、 胶联琼脂糖以及多孔玻璃珠。目前用的最 多的是琼脂糖珠。
3.2.3.7 将浓度高的收集液集中,于4℃暂时保存
3.2.3.8 加入0.01M Tris (PH7.5)15ml 3.2.3.9 加入15ml PBS冲洗
3.2.3.10 加入2ml含0.02%叠氮钠的PBS储存beads, 4℃
3.3 抗体长期保存条件: 50% 甘油+0.1%叠氮钠
3.2.2连接 3.2.2.1 准备好 1mMol/L HCl,并放入4℃预冷 3.2.2.2 计算所需的CNBr-activated Sepharose4B的量 (1 克冻干的粉末可以活化成3.5ml的beads,1mlbeads吸附510mg蛋白); 3.2.2.3 将称量好的beads放入预冷的HCl中活化,在4℃放 置15min 3.2.2.4 剪好滤纸,装好抽滤装置,先用预冷的HCl冲洗抽滤 装置 3.2.2.5 将beads加入抽滤装置中,1mlbeads用200ml HCl 抽滤
3.2.2.6 将抽滤后beads放在一干净的PE 手套上,与透析好 的抗原一起转移到15ml离心管中,封口膜封口,孵育, 室温2小时或4℃过夜 3.2.2.7 将结合了抗原的beads转移到纯化管中,加入 couping Buffer15ml冲洗 3.2.2.8 加入封闭液3ml,孵育,室温2小时或4℃过夜 3.2.2.9 PBS冲洗3次

抗体的提取与纯化

(关键词:抗体;抗体的提取与纯化;盐析法;冷酒精沉淀法;DEAE-SephadexA-50柱层析纯化免疫球蛋白;SPA-SepharoseCL-4B 亲合层析纯化IgG;离子交换层析)精制免疫球蛋白的方法很多。

一般采用综合技术,避免蛋白变性。

如分离IgG时,多结合使用盐析法与离子交换法,以求纯化。

提取IgM的方法也很多,如应用凝胶过滤与制备电泳法,或离子交换与凝胶过滤等。

一、盐析法取x ml血清加x ml生理盐水,于搅拌下逐滴加入2xml饱和硫酸铵,硫酸铵的终饱和度为50%。

↓4℃,3h以上,使其充分沉淀离心(3000rpm),20min,充上清,以xml生理盐水溶解沉淀,再逐滴加饱和硫酸铵x/2ml。

↓置4℃3h以上,[此时,(NH4)2SO4的饱和度为33%]重复上述第二步过程1~2次。

末次离心后所得沉淀物为γ-球蛋白,以0.02%mol/L pH7.4PBS溶解至xml装入透析袋。

↓对PBS充分透析、换液3次,至萘氏试剂测透析外液无黄色,即无NH4+为止。

取透析袋内样品少许作适当倍数稀释后,以751型紫外分光光度计测定蛋白含量。

影响盐析的因素很多,如蛋白质的浓度,盐的浓度,饱和度和pH,温度等都可影响盐析的结果,操作时要充分注意(参阅本章第二节)。

二、冷酒精沉淀法分离过程如下。

血清加3倍体积的蒸馏水,调节pH至7.7(±)冷却到0℃。

在激烈搅拌的条件下,加预冷的酒精(-20℃)到最终浓度为20%,保持在-5℃。

产生的沉淀(A),含有大多数种类的免疫球蛋白。

沉淀A悬浮于25倍体积的0.15~20mol/L NaCl溶液(冷)中,加有0.05mol/L醋酸调节pH到5.1,产生的沉淀(B),包括大部分的IgA 和IgM,IgG留在上清液内。

调节上清液的pH到7.4,加冷酒精(-20℃~-30℃)到最终浓度为25%,维持在-5℃。

所得到的沉淀(C)含有90%~98%IgG。

不同动物,IgG分离的条件和产量略有不同。

抗体纯化的原理和步骤

抗体纯化的原理和步骤抗体纯化,听起来是不是像一门高深的学问?其实,它就是把那些超级英雄般的抗体从一堆“杂质”中找出来的过程。

咱们的免疫系统就像一支警察队,抗体就是那些最勇敢、最聪明的警察,它们专门对付入侵的坏家伙——病毒、细菌等等。

不过,想把这些抗体从复杂的生物样品中提取出来,得有一套“秘籍”!今天,就来跟大家聊聊抗体纯化的原理和步骤,保证让你听得津津有味。

1. 抗体的基本知识1.1 抗体是什么首先,咱们得知道抗体是什么。

这玩意儿其实是由B细胞生产的蛋白质,负责识别和中和外来的侵略者。

可以想象成是专门为打击“罪犯”而生的特工,它们不仅能认得出坏家伙,还能给它们上“刑”。

每种抗体对特定的“罪犯”都有极强的专一性,这让它们在免疫反应中发挥着至关重要的作用。

1.2 抗体的种类抗体可分为多种类型,比如IgG、IgA、IgM等等。

每种都有它独特的功能,就像每位英雄都有自己的超能力。

IgG是最常见的,负责大多数的免疫防御,IgA则主要在黏膜表面发挥作用,像是个“门卫”。

要纯化抗体,了解这些小伙伴的特性可真是必不可少。

2. 抗体纯化的原理2.1 为什么需要纯化好吧,明白抗体是什么后,咱们接下来得搞清楚,为什么要纯化抗体。

想象一下,假如你去参加聚会,周围全是陌生人,你得找到自己的朋友才能安心聊天。

抗体纯化就是这样的过程——把那些“杂质”都清理掉,只留下那些“志同道合”的抗体。

纯化后的抗体才能够更有效地用于科研、治疗等各种用途。

2.2 纯化的方法抗体纯化的方法有不少,比如亲和层析、盐析、透析等等。

亲和层析可以说是个“万里挑一”的高手,它利用抗体和抗原之间的特异性结合,像钓鱼一样,把目标抗体捞出来。

盐析则是利用盐的溶解度差异,让抗体聚集在一起,轻松搞定一部分杂质。

而透析就像是洗衣机,把不需要的“小毛病”洗掉,留下干净的抗体。

3. 抗体纯化的步骤3.1 实验步骤详解接下来,咱们就聊聊具体的步骤吧。

首先,得准备好样品,通常是血清或细胞培养液。

抗体的纯化原理

抗体的纯化原理抗体的纯化是指从混合溶液中将目标抗体分离出来,并获得高纯度和高活性的过程。

纯化抗体的目的是为了获得足够纯度的抗体以进行进一步的研究和应用。

抗体的纯化过程通常包括以下几个步骤:1. 前处理:在样品中去除杂质物质,例如细胞碎片、核酸、亲和素等。

常用的方法包括离心、过滤和沉淀等。

2. 离子交换层析:采用离子交换树脂分离抗体。

离子交换树脂上带有正电荷或负电荷,可以与抗体的电荷相互作用,使抗体与其他组分分离。

常见的离子交换树脂有DEAE(二乙氨基乙基)和CM(羧甲基)等。

3. 亲和层析:利用特定配体与抗体之间的高亲和力进行分离。

常见的亲和层析方法包括免疫亲和层析和亲和素层析。

免疫亲和层析是将抗体与特定配对抗原或抗原类似物结合,再通过洗脱实现抗体的分离纯化。

亲和素层析则是通过特异性结合分离靶抗体,例如蛋白A层析可以专一地结合某些抗体的Fc区。

4. 凝胶层析:根据抗体的分子量和电荷进行分离。

常用的凝胶层析方法包括凝胶过滤层析、凝胶电泳等。

凝胶层析可通过分子筛效应实现抗体的分离纯化。

5. 毒物素标记抗体净化:通过毒物素结合蛋白(例如A链)与抗体上Fc区的亲和作用,实现抗体的纯化。

6. 逆流层析:通过逆向液流使混合物在固相材料中逆流,根据成分的亲和力进行分离。

逆流层析可与其他纯化方法结合使用,提高纯化效果。

7. 高效液相色谱(HPLC):利用高速流动液相通过固定相分离抗体。

常见的HPLC 方法包括离子交换HPLC、亲和HPLC、尺寸排除(分子筛)HPLC和亲和逆相(含酸)HPLC等。

8. 超滤和浓缩:通过膜过滤器来去除小分子物质,实现抗体的纯化。

在进行抗体纯化过程中,可以根据特定的抗体特性和目标纯化效果的要求选择合适的方法,也可以结合多种方法进行联合纯化,提高纯化效果和纯化收率。

总而言之,抗体的纯化过程是通过利用抗体与其他成分之间的相互作用进行分离,包括物理性质(如电荷、分子量)、结构特异性(如亲和力)和化学亲和力(如特定配体结合)等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档