超声波探伤物理基础知识讲解
超声波探伤的物理基础

第一章超声波探伤的物理基础By adan超声波探伤是目前应用最广泛的无损探伤方法之一。
超声波是一种机械波,机械振动与波动是超声波探伤的物理基础。
超声波探伤中,主要涉及到几何声学和物理声学中的一些基本定律和概念。
如几何声学中的反射、折射定律及波型转换,物理声学中波的叠加、干涉、绕射及惠更斯原理等。
深入理解几何声学和物理声学中的有关概念,掌握其中的基本定律,对于灵活运用超声波理论去解决实际探伤中的各种问题无疑是十分有益的。
第一节振动与波宇宙间的一切物质,大至宏观天体,小至微观粒子都处于一定的运动状态,振动和波动是物质运动的基本形式一、振动1.振动的一般概念物体沿着直线或曲线在某一平衡位置附近作往复周期性的运动,称为机械振动。
日常生活中到处可以见到振动现象,如弹簧振子的运动、钟摆的运动和汽缸中活塞运动等都是可以直接觉察到的振动现象。
另外,如固体分子的热运动,一切发声物体的运动以及超声波波源的运动等则是人们难以觉察到的振动现象。
物体(或质点)受到一定力的作用,将离开平衡位置,产生一个位移,该力消失后,它将回到其平衡位置;并且还要越过平衡位置移到相反方向的最大位移位置,然后返回平衡位置。
这样一个完整运动过程称为一个“循环”或叫一次“全振动”。
振动是,往复、周期性的运动,振动的快慢常用振动周期和振动频率两个物理量来描述。
周期T——振动物体完成一次全振动所需要的时间,称为振动周期,用T表示。
常用单位为秒(s)。
频率f——振动物体在单位时间内完成全振动的次数,称为振动频率,用f表示。
常用单位为赫兹(H s),1赫兹表示1秒钟内完成全振动,即1H s=1次/秒。
此外还有千赫(KH z),兆赫(MH z)。
1kH z=103H z,1MH z由周期和频率的定义可知,二者互为倒数(1.1)如某人说话的频率f=1000H z,表示其声带振动为1000次/秒,声带振动周期T=1/f=1/1000=0.001秒。
2.谐振动最简单最基本的直线强动称为谐振动。
超声波探伤基础知

超声波的产生
• 人们把声源震动在介质 (如空气等)中的传播过 程,称为波动,简称波。
12
波是物质的一种运动形式,可分为电磁波和 机械波两类。
电磁波
电磁波是交变电磁场在空间的传播过程,如无 线电波、红外线灯。
波 的 分 类
机械波
机械波是指机械振动在弹性介子中的传播过程, 如水波、超声波等。
13
31
4
反射法探伤方法
T
T
B
T
B
F
F
a、无缺陷
b、有小缺陷
c、有大缺陷
5
反射法的优缺点
优点:适应范围广,探伤灵敏度高,缺陷定 位准确,操作方便。
缺点:反射波受缺陷取向的影响,超声波在 传播过程中衰减大,对近表面缺陷的探测 能力差。
6
穿透法探伤原理
• 一个探头发射的超声波透过整个工件被另 一个探头接收,根据超声波在工件中的能 量变化来判断缺陷或工件质量。
超声波探伤的优点
1.穿透能力强,可测厚度大。 2.检测灵敏度高。 3.可适用多种波型,各种探头作不同方向的
探测,能探出工件内部和表面各种取向的 缺陷。 4.指向性好,能方便准确地对缺陷定位。 5.检测速度快,费用低。
10
超声波探伤的缺点
1.探测的结果受人的因素影响。 2.探测表面要求加工。 3.受工件形状晶粒和组织部均匀性的限制。 4.定位精度差。
产生机械波的条件
产生机 械波必 要的两 个条件
要有作机械振动的振源 要有能传递机械振动的弹性介质
14
超声波的特性
• 在超声波探伤中运用最广泛的是利用某些 压电材料(如石英等)的压电效应,来实 现超声波的发射和接收。
15
无损检测超声探伤UT基础讲义

培训教材之理论基础第一章无损检测概述无损检测包括射线检测(RT)、超声检测(UT)、磁粉检测(MT)、渗透检测(PT)和涡流检测(ET)等五种检测方法。
主要应用于金属材料制造的机械、器件等的原材料、零部件和焊缝,也可用于玻璃等其它制品。
射线检测适用于碳素钢、低合金钢、铝及铝合金、钛及钛合金材料制机械、器件等的焊缝及钢管对接环缝。
射线对人体不利,应尽量避免射线的直接照射和散射线的影响。
超声检测系指用A型脉冲反射超声波探伤仪检测缺陷,适用于金属制品原材料、零部件和焊缝的超声检测以及超声测厚。
磁粉检测适用于铁磁性材料制品及其零部件表面、近表面缺陷的检测,包括干磁粉、湿磁粉、荧光和非荧光磁粉检测方法。
渗透检测适用于金属制品及其零部件表面开口缺陷的检测,包括荧光和着色渗透检测。
涡流检测适用于管材检测,如圆形无缝钢管及焊接钢管、铝及铝合金拉薄壁管等。
磁粉、渗透和涡流统称为表面检测。
第二章超声波探伤的物理基础第一节基本知识超声波是一种机械波,机械振动与波动是超声波探伤的物理基础。
物体沿着直线或曲线在某一平衡位置附近作往复周期性的运动,称为机械振动。
振动的传播过程,称为波动。
波动分为机械波和电磁波两大类。
机械波是机械振动在弹性介质中的传播过程。
超声波就是一种机械波。
机械波主要参数有波长、频率和波速。
波长λ:同一波线上相邻两振动相位相同的质点间的距离称为波长,波源或介质中任意一质点完成一次全振动,波正好前进一个波长的距离,常用单位为米(m);频率f:波动过程中,任一给定点在1秒钟内所通过的完整波的个数称为频率,常用单位为赫兹(Hz);波速C:波动中,波在单位时间内所传播的距离称为波速,常用单位为米/秒(m/s)。
由上述定义可得:C=λ f ,即波长与波速成正比,与频率成反比;当频率一定时,波速愈大,波长就愈长;当波速一定时,频率愈低,波长就愈长。
次声波、声波和超声波都是在弹性介质中传播的机械波,在同一介质中的传播速度相同。
超声波探伤(课堂PPT)

.
25
表面波:当介质表面受到交变应力作用时,产生沿介质
表面传播的波。用R表示,表面波是瑞利在1887年首次 提出的,因此,表面波又称瑞利波。
.
26
表面波在介质表面传播时,质点作椭圆
运动,椭圆长轴垂直于波的传播方向,短
轴平行于波的传播方向。椭圆运动可以视
为纵向振动与横向振动的合成,即纵波和
横波的合成。所以,表面波和横波一样,
超声检测
董金华
IBCC 160816
.
1
第一章 概论
• 1.1 无损检测的定义 无损检测技术(Non-Destructive Testing,简称NDT) 是第 二次世界大战后迅速发展起来的一门新兴的、多学科综合 应用的工程科学。
• 此项技术是在不改变及损伤被检对象的各种性能(其中包 括物理性能、化学性能、几何形状、 表面状态 等)的前提 下,采用多种适用的方法对被检对象进行检测,以确定其 质量,即确定该被检对象的实际使用性能是否能满足事先 设计的需要,以及确定其某些特性,如几何尺寸、所使用 的材料、表面状况、均匀性、密度等。
.
13
• 受迫振动
– 由于振动系统内部的阻尼作用,能量逐渐消耗, 因初始激发引起的自由振动,将因为能量逐渐 损耗,振动逐渐减弱,以至运动停止。要维持 振动必须由另一系统不断给以激发,即不断地 补充能量,这种由外加作用维持的振动,称为 强迫振动。 (不符合机械能守恒)
y=Acos(Pt+φ)
其中:A:振幅,最大水平位移
• 波动是振动状态的传播,如果介质是连续的,那 么介质,中任何质点的振动都将引起邻近质点的 振动,邻近质点的振动又会引起较远质点的振动, 因此波动中任何质点都可以看作是新的波源。据 此惠更斯于1690年提出了著名的惠更斯原理: 介质中波动传播到的各点都可以看作是发射子波 的波源,在其后任意时刻这些子波的包迹就决定 新的波阵面。
超声波探伤理论基础知识

超声波探伤理论基础知识培训教材之理论基础第一章无损检测概述无损检测包括射线检测(RT)、超声检测(UT)、磁粉检测(MT)、渗透检测(PT)和涡流检测(ET)等五种检测方法。
主要应用于金属材料制造的机械、器件等的原材料、零部件和焊缝,也可用于玻璃等其它制品。
射线检测适用于碳素钢、低合金钢、铝及铝合金、钛及钛合金材料制机械、器件等的焊缝及钢管对接环缝。
射线对人体不利,应尽量避免射线的直接照射和散射线的影响。
超声检测系指用A型脉冲反射超声波探伤仪检测缺陷,适用于金属制品原材料、零部件和焊缝的超声检测以及超声测厚。
磁粉检测适用于铁磁性材料制品及其零部件表面、近表面缺陷的检测,包括干磁粉、湿磁粉、荧光和非荧光磁粉检测方法。
渗透检测适用于金属制品及其零部件表面开口缺陷的检测,包括荧光和着色渗透检测。
涡流检测适用于管材检测,如圆形无缝钢管及焊接钢管、铝及铝合金拉薄壁管等。
磁粉、渗透和涡流统称为表面检测。
第二章超声波探伤的物理基础第一节基本知识超声波是一种机械波,机械振动与波动是超声波探伤的物理基础。
物体沿着直线或曲线在某一平衡位置附近作往复周期性的运动,称为机械振动。
振动的传播过程,称为波动。
波动分为机械波和电磁波两大类。
机械波是机械振动在弹性介质中的传播过程。
超声波就是一种机械波。
机械波主要参数有波长、频率和波速。
波长λ:同一波线上相邻两振动相位相同的质点间的距离称为波长,波源或介质中任意一质点完成一次全振动,波正好前进一个波长的距离,常用单位为米(m);频率f:波动过程中,任一给定点在1秒钟内所通过的完整波的个数称为频率,常用单位为赫兹(Hz);波速C:波动中,波在单位时间内所传播的距离称为波速,常用单位为米/秒(m/s)。
由上述定义可得:C=λ f ,即波长与波速成正比,与频率成反比;当频率一定时,波速愈大,波长就愈长;当波速一定时,频率愈低,波长就愈长。
次声波、声波和超声波都是在弹性介质中传播的机械波,在同一介质中的传播速度相同。
超声波探伤理论知识

• 超声波探伤仪的种类繁多,但在实际的探伤过程,脉冲反射式超声波探伤仪应用的最为广泛。 一般在均匀的材料中,缺陷的存在将造成材料的不连续,这种不连续往往又造成声阻抗的不 一致,由反射定理我们知道,超声波在两种不同声阻抗的介质的交界面上将会发生反射,反 射回来的能量的大小与交界面两边介质声阻抗的差异和交界面的取向、大小有关。脉冲反射 式超声波探伤仪就是根据这个原理设计的。
传播能量大,声能损失小,穿透能力强。 • 超声波的分类: • 1、按声波的连续性分为:连续波(简谐波)和脉冲波(冲击波); • 2、按波动型式(波型)分为:纵波、横波、表面波(瑞利波)、板波(蓝姆波); • 3、按波传播的形状、波振面的形状(波形)分为:平面波、球面波、柱面波、活塞波。
• 下面分别讲述:
• y=Acos(ωt+φ)
• 式中y表示在任意瞬间t时振动的幅度;A是振幅,是y的最大值;(ωt+φ)是相位角,其中ω为角 频率(角速度),φ为初始位相角(t=0时的相位角)。
• (2)由于声源在介质中振动方向与波在介质中传播方向可以相同也可以不同,这就可产生不同 类型的声波。
• 波的传播方向与质点的运动方向一致,这种波称为纵波。纵波在介质中传播时会产生质点的稠密 部分和稀疏部分,故又称为疏密波。
• (3)声波在无限大且各向同性的介质中传播时(为研究方便,我们假设的理想状态),其形状 (亦称为波形)是根据波阵面的形状来区分的。
• 波阵面是指同一时刻介质中振动相位相同的所有质点所联成的面;
• 波前是指某一时刻振动所传到的距离声源最远的各点所联成的面。 • 波线是表示波传播方向的线。 • 在各向同性介质中波线恒垂直于波阵面; • 在任意时刻波前的位置总是确定的,且只能有一个,而波阵面的数目可以是任意多。 • 波阵面为平面的波称为平面波。 • 如不考虑介质吸收波的能量,则声压不随传播距离而变化,即声压为恒量。 • 波源为作谐振动的无限大平面,在各向同性的弹性介质中传播。理想的平面波是不存在的。当声
超声探伤基础

T2 ------ 由探头晶片至圆弧面二次波传输时间;
波的若干概念 波的迭加与干涉 波的迭加原理 当几列波在同一介质中传播时,如果在空间某处相遇,则相遇处质点的振动是各列 波引起振动的合成,在任意时刻该质点的位移是各列波引起的位移的矢量和。几列波 相遇后仍保持自己原有的频率、波长、振动方向等特性并按原来的传播方向继续前进, 好象在各自的途中没有遇到其他波一样,这就是波的迭加原理,又称波的独立性原理。 波的迭加现象可以从许多事实观察到,如两石子落水,可以看到两个石子入水处为 中心的圆形水波的迭加情况和相遇后的传播情况。又如乐队合奏或几个人谈话,人们 可以分辨出各种乐器或各人的声音,这些都可以说明波传播的独立性。 波的干涉 两列频率相同,振动方向相同,位相相同或位相差恒定的波相遇时,介质中某些地 方的振动互相加强,而另一些地方的振动互相减弱或完全抵消的现象叫做波的干涉现 象。 波的迭加原理是波的干涉现象的基础,波的干涉是波动的重要特征。在超声波探伤 中,由于波的干涉,使超声波源附近出现声压极大极小值。
一 惠更斯原理和波的衍射 1.惠更斯原理 如前所述,波动是振动状态的传播,如果介质是连续的,那么介质中任何质点的振
T1 ------ 由探头晶片至工件底一次波传输时间;
T2 ------ 由探头晶片至工件底二次波传输时间;
穿透法测纵波声速
声速按下式计算:
声速 C=d/(T1-t); t = 2T1 – T2
式中
d ------ 工件厚度;
t ------ 由探头晶片至工件表面传输时间;
T1 ------ 由探头晶片至工件底一次波传输时间;
磁粉、渗透和涡流统称为表面检测。
超声波探伤的物理基础 第一节 基本知识
超声波是一种机械波,机械振动与波动是超声波探伤的物理基础。 机械波主要参数有波长、频率和波速。波长:同一波线上相邻两振动相位相同的质点间 的距离称为波长,波源或介质中任意一质点完成一次全振动,波正好前进一个波长的距 离,常用单位为米(m);频率f:波动过程中,任一给定点在1秒钟内所通过的完整波的个 数称为频率 ,常用单位为赫兹(Hz);波速C:波动中,波在单位时间内所传播的距离称 为波速,常用单位为米/秒(m/s)。 由上述定义可得:C= f ,即波长与波速成正比,与频率成反比;当频率一定时,波速 愈大,波长就愈长;当波速一定时,频率愈低,波长就愈长。 频率在20~20000Hz之间的能引起人们听觉的机械波称为声波,频率低于20Hz的机械 波称为次声波,频率高于20000Hz的机械波称为超声波。次声波、超声波不可闻。 超声探伤所用的频率一般在0.5~10MHz之间,对钢等金属材料的检验,常用的频率为 1~5MHz。超声波波长很短,由此决定了超声波具有一些重要特性,使其能广泛用于无 损探伤。
超声波探伤基础知识.ppt

2.磁粉探伤法 MT
磁粉探伤是一种比较古老的无损 检测方法.它被广泛的运用于探测铁 磁性材料的表面和近表面缺陷如:裂 纹、折叠等。当铁磁性材料被磁场 强烈磁化以后,在材料表面或近表 面存在与磁化方向垂直的缺陷(如 裂纹)就会造成部分磁力线外溢, 形成漏磁场。若在漏磁场上施加磁 粉或磁悬液,漏磁场对磁粉产生吸 附从而显示缺陷的痕迹
因此,用射线来照射待探伤的零部件时,若 其内部有气孔、夹渣等缺陷,射线穿过有缺陷的 路径比没有缺陷的路径所透过的物质密度要小得 多,其强度就减弱得少些,即透过的强度就大些, 若用底片接收,则感光量就大些,就可以从底片 上反映出缺陷垂直于射线方向的平面投影;若用 其它接收器也同样可以用仪表来反映缺陷垂直于 射线方向的平面投影和射线的透过量。由此可见, 一般情况下,射线探伤是不易发现裂纹的,或者 说,射线探伤对裂纹是不敏感的。因此,射线探 伤对气孔、夹渣、未焊透等体积型缺陷最敏感。 即射线探伤适宜用于体积型缺陷探伤,而不适宜
3. 渗透探伤法 PT
渗透探伤是一种最古老的探伤技术,它的最早技 术是以油——白色粉末为基础的探伤技术,广泛的 应用于钢铁零件的质量检测,特别在铁道系统运用 更为广泛.渗透探伤技术发展到今天已经开始使用 红色或荧光颜料,使渗透探伤的操作更简便,在 渗透探伤技术中形成了着色渗透探伤。
渗透探伤是利用毛细现象来进行探伤的方法。 对于表面光滑而清洁的零部件,用一种带色(常 为红色或带有荧光的、渗透性很强的液体,涂覆 于待探零部件的表面。若表面有肉眼不能直接察 知的微裂纹,由于该液体的渗透性很强,它将沿 着裂纹渗透到其根部。
ቤተ መጻሕፍቲ ባይዱ
4.涡流探伤法 ET
涡流探伤是广泛应用于导电材料的一种常规 探伤方法,它从原理上来讲与超声波、磁粉、渗 透、射线等方法都不相同,例如:超声波检测的 根源是“声”,磁粉检测的根源是“磁”,…… 而涡流检测的根源是”电”,所以它具有与超声 波检测、磁粉检测都不相同的特点,由于它具有 与其它检测方法不同的特点,因此它才能与其它 检测方法互相补充,成为五大常规无损检测方法 之一。