一阶电路的全响应

合集下载

电路原理课件-一阶电路的全响应

电路原理课件-一阶电路的全响应
稳态分量
t 0
t
暂态分量

i R (t ) i Rf [i R (0 ) i Rf ]e

t 0
电容中的电流响应为
U0 iC ( t ) I s i R ( t ) e R
U0 iC ( 0 ) I s R iCf 0
t RC
I se
2 10 0 V 4V 5
2. 求稳态值
uC1 f uC 2 f 0
3. 求时间常数
RC RC1 C2 25 s
4. 写出响应表达式
uC 1 (t ) 4e

t 25 V
uC1(0-)=10
uC(t)/V
t 0
4 uC2(0-)=0 0 τ 电容电压曲线
3) 求τ
Req 14 2 1 s 14 7
4) 写出i (t)
iL (t ) 4 (1 4)e
7 t
4 5e
7 t
A
t 0
例4 在图示电路中,电感电流iL(0)=0。t=0时,开关S1闭合后,经 过0.1s,再闭合开关S2。试求电感电流iL(t)。 解: 1、0+≤ t ≤0.1-s时
U0 Is R iC(0-)=0 0
零状态分量
i R( t ) iC (t) t
零输入分量
t
U0 - Is R
-U0/R
一阶电路对阶跃激励的全响应的一般表达式
r (t ) rf (t ) r (0 ) rf (0 ) eFra bibliotek
t

t 0
全响应的初始值、稳态解和电路的时间常数,称为 一阶线性电路全响应的三要素。这种方法就叫做三要素 法。

一阶电路的全响应

一阶电路的全响应
i(∞) 10 / 5A 2A
+ 10V
-
3
i(t) (2 2e5t ) A
S2(t=0.2s)
返回 上页 下页
t > 0.2s
i(0.2 ) (2 2e50.2 )A 1.26A
i(0.2 ) 1.26A
2 L / R 1/2s 0.5s
i(∞) 10/2A 5A
i(t) (5 3.74e2(t0.2) ) A
+ 10V
uC (∞) (10 1)V 11V –
+ uC

1A +
u

返回 上页 下页
RC (11) 1s 2s
全响应: uC (t) (11 Ae0.5t )V
1
1 1
uC (t) (11 10e0.5t )V
iC
(t
)
duC dt
5e0.5t A
+ 10V –
+ -uC
1A +
返回 上页 下页
或求出稳态分量 全响应
代入初值有
iL (∞) 24 /12A 2A
iL (t) (2 Ae20t )A
6=2+A
A=4
例4-2 t=0时 ,开关S闭合,求t >0后的iC、uC及电流 源两端的电压(uC(0-)=1V,C=1F)。
解 这是RC电路全响
应问题,有
1
1 1
稳态分量:
iL (t) [6 (2 6)e5t ]A (6 4e5t )A t 0
i1(t) [2 (0 2)e5t ]A (2 2e5t )A
i2 (t) [4 (2 4)e5t ]A (4 2e5t )A
返回 上页 下页

(电路分析)一阶电路的全响应

(电路分析)一阶电路的全响应

一阶电路的全响应一阶电路的全响应一、全响应全响应一阶电路在外加激励和动态元件的初始状态共同作用时产生的响应,称为一阶电路的全响应(complete response)。

图5.5-1(a)所示的一阶RC电路,直流电压源Us是外加激励,时开关S处于断开状态,电容的初始电压。

时开关闭合,现讨论时电路响应的变化规律。

时,响应的初始值为时,响应的稳态值为用叠加定理计算全响应:开关闭合后,电容电压的全响应,等于初始状态U0单独作用时产生的零输入响应和电压源Us单独作用时产生的零状态响应的代数和,如图5.5-1(b)、(c)所示。

图5.5-1(b)中,零输入响应为图5.5-1(c)中,零状态响应为根据叠加定理,图5.5-1(a)电路的全响应为用表示全响应,表示响应的初始值,表示稳态值。

全响应的变化规律1、当时,即初始值大于稳态值,则全响应由初始值开始按指数规律逐渐衰减到稳态值,这是动态元件C或L对电路放电。

2、当时,即初始值小于稳态值,则全响应由初始值开始按指数规律逐渐增加到稳态值,这是电路对动态元件C或L充电。

3、当时,即初始值等于稳态值,则全响应。

电路换路后无过渡过程,直接进入稳态,动态元件C或L既不对电路放电,也不充电。

二、全响应的三要素计算方法全响应的三要素初始值稳态值时间常数例5.5-1 图5.5-2(a)所示电路,已知C=5uF,t<0时开关S处于断开状态,电路处于稳态,t=0时开关S闭合,求时的电容电流。

解:欲求电容电流,只要求出电容电压即可。

1、确定初始状态。

作时刻的电路,如图5.5-2(b)所示,这时电路已处于稳态,电容相当于开路,则。

由换路定则得初始状态2、确定电容电压的稳态值。

作t→∞时的电路,如图5.5-2(c)所示,这时电路也处于稳态,电容也相当于开路,则3KΩ电阻两端的电压则电容电压的稳态值为3、求时间常数τ。

求从电容C两端看进去的戴维南等效电阻R的电路如图5.5-2(d)所示,这时将15V和5V电压源都视为短路,等效电阻为6KΩ和3KΩ电阻的并联,即R=6K∥3K=2KΩ所以,时间常数为4、求全响应。

一阶电路的全响应——三要素公式【PPT课件】

一阶电路的全响应——三要素公式【PPT课件】

6A
2
Is
US 3H
(a)
u
大 学 电 路 与 系 统
(2)求解零状态响应iLf(t)和uf(t) 。
零状态响应是初始状态为零,仅由独立源所引起的 R2
响应;故 iLf(0+)=0,电感相当于开路。画出其0+等效 12V
电路,如图 (b)所示,所以
R3 US
iLf(0+) uf(0+) R4
RLiL
L1uS
(a)
(b)
制 作
若用y(t)表示响应,用f (t)表示外加激励,上述方程统一表示为
ddy(tt)1y(t)bf(t)
τ为时常数,对RC电路, τ= RC; 对RL电路, τ= L/R。
第 5-2 页
前一页
下一页 返回本章目录
y(t) = yh(t) + yp(t)
特征根 s = - 1/τ, yh(t) = Ke- t/τ ,
学 电 路 与
1316uL(0)13863
系 统
得uL(0+) = 6V, i(0+) = uL(0+) /6=1A
(a) 3Ω
i(0+) 3A
18V uL(0+)

6A
(b) 0+图

多 媒
(3)画∞等效电路,如图(c)。
i(∞) 3A
体 室
显然有 uL(∞) = 0, i(∞) = 0,
18V uL(∞) iL(∞) 6Ω
路 与
iL(0+) =iL(0-)=12/(2+1)=12/3=4(A)
系 统
uC (0+)= uC(0-)=1×iL(0-)=4(V)

(电路分析)一阶电路的全响应

(电路分析)一阶电路的全响应

一阶电路的全响应一阶电路的全响应一、全响应全响应一阶电路在外加激励和动态元件的初始状态共同作用时产生的响应,称为一阶电路的全响应(complete response)。

图5.5-1(a)所示的一阶RC电路,直流电压源Us是外加激励,时开关S处于断开状态,电容的初始电压。

时开关闭合,现讨论时电路响应的变化规律。

时,响应的初始值为时,响应的稳态值为用叠加定理计算全响应:开关闭合后,电容电压的全响应,等于初始状态U0单独作用时产生的零输入响应和电压源Us单独作用时产生的零状态响应的代数和,如图5.5-1(b)、(c)所示。

图5.5-1(b)中,零输入响应为图5.5-1(c)中,零状态响应为根据叠加定理,图5.5-1(a)电路的全响应为用表示全响应,表示响应的初始值,表示稳态值。

全响应的变化规律1、当时,即初始值大于稳态值,则全响应由初始值开始按指数规律逐渐衰减到稳态值,这是动态元件C或L对电路放电。

2、当时,即初始值小于稳态值,则全响应由初始值开始按指数规律逐渐增加到稳态值,这是电路对动态元件C或L充电。

3、当时,即初始值等于稳态值,则全响应。

电路换路后无过渡过程,直接进入稳态,动态元件C或L既不对电路放电,也不充电。

二、全响应的三要素计算方法全响应的三要素初始值稳态值时间常数例5.5-1 图5.5-2(a)所示电路,已知C=5uF,t<0时开关S处于断开状态,电路处于稳态, t=0时开关S闭合,求时的电容电流。

解:欲求电容电流,只要求出电容电压即可。

1、确定初始状态。

作时刻的电路,如图5.5-2(b)所示,这时电路已处于稳态,电容相当于开路,则。

由换路定则得初始状态2、确定电容电压的稳态值。

作t→∞时的电路,如图5.5-2(c)所示,这时电路也处于稳态,电容也相当于开路,则3KΩ电阻两端的电压则电容电压的稳态值为3、求时间常数τ。

求从电容C两端看进去的戴维南等效电阻R的电路如图5.5-2(d)所示,这时将15V和5V电压源都视为短路,等效电阻为6KΩ和3KΩ电阻的并联,即R=6K∥3K=2KΩ所以,时间常数为4、求全响应。

一阶电路的全响应

一阶电路的全响应
3.所谓“陷阱”。
例如:电路原已稳定,求开关动作后的电
流i。
解: t 0 , iL (0 ) 2 A
1H 5
5 + 由换路定则:
iL
t=0 i
10V
-
t 0 , iL(0 ) 2 A
如果认为 R0 0
得 R0 0
用三要素公式,得 iL () 0
R0 t
iL (t) 2e L A
电流源的电流is。其通解为
t
r(t ) rh (t ) rp (t ) Ae rp (t )
t=0+代入,得: A r(0 ) rp (0 )
因而得到
r(t)
rp (t )
[r(0
)
rp (0
)]e
t
,
t
0
一阶电路任意激励下uC(t)和iL(t)响
应的公式
推广应用于任意激励下任一响应
开关闭合前,电路已稳定,电容相当于 开路,电流源电流全部流入4电阻中,
uC (0 ) 4 2 8V
由于开关转换时,电容电流有界,电容
电压不能跃变,故
uC (0 ) uC (0 ) 8V
画0+图如右2A
4
2 i(0+)
+
+
8V 4
-
10V
-
i(0 ) 10 uC (0 ) 10 8 1A
例19 开关在a时电路已稳定。t=0倒向
b,t=R1C倒向c,求t0的iC(t)并画波形
解 : t<0 时 , c
R1
uC(0-)=0 。 第 一次换路后由 换路定则得:
R2
+
Us
-
b

一阶电路的全响应

一阶电路的全响应

vCh
图11.24 RC串联零输入电路图 图11.25 t > 0时的等效电路图 图11.26 电容电压vC波形图0
t(s)
2006-1-1

2
1.1 全响应的解(1)
当t = 0时,开关S由1掷向2处。此时直流电压源VS2作用于电路,其等效 电路如图11.25所示。根据换路定理可知:vC(0+) = vC(0−) = VS1。又根据基 尔霍夫电压定律列写电压方程有vC + Ri = VS2 (t > 0)。由于电流i与电容电压 vC关联,因此存在以下关系
+ + +
RS S t = 0
+
vC − C
R1 i1 iC
i2
+
vC − C
RS
R1 i1 iC
Req
i2
VS
R2
VS
R2
VOC



图11.28 例11.3图 图11.29 t > 0时的等效电路 图11.30 化简为戴维南等效电路
+
iC vC C −
2006-1-1

7
1.3 三要素法
解 当t < 0时,由于电路已经处于稳定状态,因此可知电容电压vC(0−) = 0。 当t = 0时,开关S闭合。根据换路定理可知,vC(0+) = vC(0−) = 0。为方
当t = 0时,开关S由1掷向2处。根据换路定理可知,iL(0+) = iL(0−) = −0.5(A)。为方便,画出其等效电路图如图11.33所示。 将电感以外的电路化简为戴维南等效电路,如图11.34所示,那么其 开路电压VOC = −2.5(V),等效电阻Req = 1.5(Ω)。则电感电流终了 值iL(∞) = VOC/Req = −1.667(V),时间常数

一阶电路的全响应

一阶电路的全响应

一阶电路的全响应一阶电路的全响应一.全响应全响应一阶电路在外加激励和动态元件的初始状态共同作用时产生的响应,称为一阶电路的全响应(complete response)。

图5. 5-1 (a)所示的一阶RC电路,直流电压源Us是外加激励•时开关S处于断开状态.电容的初始电压叫2°时开关闭合.现讨论f上°时电路响应的变化规律。

2 °4时,响应的初始值为叫(―)二%时,响应的稳态值为叫(8)=°$1(8)= 0川亞丿川宦理计算全响应:开关闭合后,电容电压叫⑦的全响应•等于初始状态U0取独作用时产生的零输入响应叫购和电I W ' I'JU'r Hj时产生的零状态响应叫11⑦的代如II,如图5・5・1 (b) . (c)所示。

图5. 5-1 (b)中,零输入响应为= = (ao)图5. 5-1 (c)中.零状态响应为du''(f)dt(CO)1、、厂(°+)1(8)时川初始值大于稳态值.2、屮®J'%00)时川初始值小于稳态值. 则全响应由初始值开始按抬数规律逐渐増加到稳态值,这是电路对动8、当® Jr (8)时.电路换路后无过渡过程,直接进入稳态.动态根据叠加定理•图5. 5-1 (a)电路的全响应为◎(f) = Q(f) + 冬"(f)=弘五4■兀Q 一<码t i=,十(九一匚)「冠=十血Oh) - (C 0皿=1/(0 +y® =-譽尸+牛二=1(8)+哄4)-「(8护用‘①表示全响应,农示响应的初始值,心校示稳态值。

—阶电路全响应非零初始状态的一阶动态电路,包括RC电路和RL电路,在外加激励的作用下,电路中任何一条支路上的全响应为啲=r(0 十)E T+ F(CD)(1 - g『)全响应的变化规律则全响应由初始值开始按抬数规律逐渐衰减到稳态值,这是动态元件C或L对电路放电。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档