基于卡尔曼滤波器的雷达目标跟踪(完整资料).doc
基于卡尔曼滤波的雷达航迹跟踪算法的综述

基于卡尔曼滤波的雷达航迹跟踪算法的综述雷达航迹跟踪算法是指通过对窄带雷达前端数据进行处理,提取目标运动参数,及时更新目标航迹状态并预测其运动趋势。
而卡尔曼滤波是一种广泛应用于目标跟踪中的预测算法,它基于线性系统理论,采用贝叶斯估计方法对系统状态进行估计和修正,大大提高了目标跟踪的准确性和效率。
卡尔曼滤波结构包括预测和修正两个步骤,其中预测步骤利用历史状态信息和运动模型预测目标在下一时刻的位置和速度;修正步骤采用测量数据进行状态更新,同时根据卡尔曼增益的大小决定历史状态和测量数据的权重,从而实现目标状态的估计和修正。
在雷达航迹跟踪应用中,卡尔曼滤波算法主要分为单目标跟踪和多目标跟踪两种类型。
单目标跟踪主要关注单个目标的运动状态估计,最常用的滤波方法是一维、二维或三维卡尔曼滤波;而多目标跟踪则需要同时估计多个目标的运动状态,常用的算法包括多维卡尔曼滤波和粒子滤波等。
对于雷达航迹跟踪算法而言,卡尔曼滤波的优点在于:首先,具有高效的滤波性能,可以通过在线实时计算实现目标状态的估计和预测;其次,支持多个传感器、多个目标和多个测量的输入,可以满足多种实际应用需求;最后,具有一定的容错性,能够自适应地处理噪声、模型误差以及目标突然出现、消失等情况。
然而,卡尔曼滤波算法在雷达航迹跟踪应用中也存在一些问题,如目标的失配、多传感器测量的一致性问题、目标运动模型的不确定性等。
因此,为实现更准确、稳健和高效的雷达航迹跟踪,需要深入研究卡尔曼滤波算法的各种变形和优化,创新性地设计新算法,以及运用机器学习、深度学习等技术,提升雷达航迹跟踪算法的性能和鲁棒性。
总之,基于卡尔曼滤波的雷达航迹跟踪算法是目前领先的目标跟踪方法之一,具有广泛应用前景。
未来的研究重点应该是在加强对目标状态的估计、提高对多目标、多传感器的处理能力,以及结合其他技术来提高雷达航迹跟踪的性能和实用性。
基于卡尔曼滤波的雷达航迹跟踪算法的综述

基于卡尔曼滤波的雷达航迹跟踪算法的综述雷达航迹跟踪(Radar Track Tracking)是指通过雷达系统对移动目标进行测量得到的多个目标位置信息,通过统计学方法对目标位置进行分析和处理,从而对目标进行跟踪的过程。
而卡尔曼滤波(Kalman Filter)是一种最常见的用于处理估计和控制问题的数学算法,因其卓越的性能和简单的实现被广泛应用于目标跟踪领域。
本文将综述基于卡尔曼滤波的雷达航迹跟踪算法的原理、应用及优缺点等方面。
1.基本原理卡尔曼滤波是一种基于贝叶斯定理的递归估计方法,其本质是通过利用目标运动的状态和观测数据的误差信息动态更新目标的状态估计值和协方差矩阵,从而实现对目标运动状态的估计和预测等功能。
具体地,卡尔曼滤波的基本原理可以简述如下:(1)状态方程:考虑一般的线性离散系统,其状态方程可以表示为:x(t)=Ax(t-1)+Bu(t)+w(t)其中x(t)为t时刻目标的状态量,A为状态转移矩阵,B为输入矩阵,u(t)为外部输入信号,w(t)为过程噪声。
(2)观测方程:目标运动状态往往不能直接被观测到,但可以通过测量得到其状态的某些关联变量组成的观测量,即目标的观测量z(t)可以表示为:其中,H是观测矩阵,v(t)为观测噪声。
(3)卡尔曼滤波步骤:①预测步骤:通过状态转移方程预测目标状态量x(k)及其协方差矩阵P(k)的估计值: x^(k|k-1)=Ax(k-1|k-1)+Bu(k) P(k|k-1)=AP(k-1|k-1)A'+Q其中,x^(k|k-1)为k时刻前已知的状态,P(k|k-1)为k-1时刻状态的协方差矩阵,Q 为过程噪声的协方差矩阵。
②更新步骤:利用观测量进行状态更新:其中,K(k)为卡尔曼增益,S(k)为观测噪声的协方差矩阵。
2.应用领域卡尔曼滤波在目标跟踪领域广泛应用,主要包括雷达航迹跟踪、机器人自主导航、无人机航迹规划、车辆行驶状态的估计和控制等领域。
其中,雷达航迹跟踪是卡尔曼滤波最主要和最典型的应用领域之一。
基于卡尔曼滤波的目标跟踪研究

基于卡尔曼滤波的目标跟踪研究目标跟踪是计算机视觉中的重要研究领域之一,它的目标是根据视频序列中目标的运动轨迹来实现物体追踪和位置估计。
随着计算机视觉技术的不断发展,目标跟踪应用越来越广泛,涉及到了自动驾驶、监控系统、智能机器人等众多领域。
其中,基于卡尔曼滤波的目标跟踪是一种经典且有效的方法,本文将对其进行探讨。
卡尔曼滤波是一种用于通过噪声干扰的测量值来估计系统状态的数学方法。
它基于状态空间模型,通过对系统的状态进行预测和更新来实现估计。
在目标跟踪中,卡尔曼滤波算法可以用于估计目标的位置和速度等状态量,从而实现目标的运动轨迹预测和位置更新。
卡尔曼滤波的基本原理是通过对系统状态的线性组合来估计未来状态,同时通过将测量值与状态的估计值进行比较来更新状态估计。
它假设系统的状态和测量值都是线性的,并且系统的噪声满足高斯分布。
在目标跟踪中,系统状态可以表示为目标的位置、速度、加速度等变量,测量值可以表示为目标在图像中的位置或其他特征。
通过对这些变量进行预测和更新,可以实现目标的跟踪和定位。
在基于卡尔曼滤波的目标跟踪中,首先需要建立目标运动模型和观测模型。
目标运动模型描述了目标在连续时间上的运动规律,通常假设目标的运动是匀速直线运动或匀加速直线运动。
观测模型描述了目标在离散时间上的观测结果,通常假设观测结果是目标的位置或其他特征。
接下来,通过卡尔曼滤波算法对目标状态进行预测和更新。
预测步骤通过系统的状态转移矩阵和控制输入来估计目标的下一个状态。
更新步骤通过测量矩阵和测量值来修正目标状态的估计。
通过不断地进行预测和更新,可以实现对目标状态的连续估计,从而实现目标的跟踪和定位。
在实际应用中,基于卡尔曼滤波的目标跟踪还可以与其他技术相结合,例如特征提取和关联算法。
特征提取可以从图像中提取目标的特征,例如颜色、纹理或形状等,以便更好地进行目标跟踪。
关联算法可以将目标的当前状态与之前的状态进行关联,从而提高跟踪的准确性和鲁棒性。
基于卡尔曼滤波的目标跟踪研究

基于卡尔曼滤波的目标跟踪研究摘要:随着计算机视觉和机器学习技术的发展,目标跟踪技术在许多领域中得到广泛应用。
卡尔曼滤波是一种经典的估计算法,可以用于目标跟踪,具有良好的估计性能和实时性。
本文主要介绍了卡尔曼滤波在目标跟踪领域的研究进展,包括基本原理、模型建立、算法优化等方面。
1.引言目标跟踪是计算机视觉和机器学习领域的一个重要研究方向。
在许多应用中,如视频监控、自动驾驶等,目标跟踪技术都扮演着重要的角色。
目标跟踪技术主要目的是在一段时间内通过图像或视频序列确定目标的位置、形状、尺寸等信息。
2.卡尔曼滤波的基本原理卡尔曼滤波是一种递归算法,用于估计线性系统的状态。
它基于贝叶斯滤波理论,将观测数据和系统动力学方程结合起来,通过迭代更新的方式获得对系统状态的估计。
卡尔曼滤波有两个主要的步骤:预测和更新。
预测步骤根据系统的动力学方程和上一时刻的状态估计,预测出当前时刻的状态。
更新步骤则根据观测数据和预测的状态,通过计算卡尔曼增益来更新状态估计。
3.卡尔曼滤波在目标跟踪中的应用目标跟踪问题可以看作是一个卡尔曼滤波问题,即通过观测数据预测目标的状态。
在目标跟踪中,系统动力学方程可以根据目标的运动模型来建立。
观测数据可以是目标在每一帧图像中的位置信息。
通过将这些信息输入到卡尔曼滤波器中,可以得到对目标状态的估计。
4.卡尔曼滤波在目标跟踪中的改进与优化尽管卡尔曼滤波在目标跟踪中取得了一定的成功,但还存在一些问题,如对目标运动模型的建模不准确、对观测数据的噪声假设过于理想等。
因此,研究者提出了许多改进和优化方法。
其中一种方法是引入非线性扩展的卡尔曼滤波,如扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)。
另一种方法是使用深度学习技术来提取更准确的特征表示,进一步改善目标跟踪性能。
5.实验与结果分析本节主要介绍了一些使用卡尔曼滤波进行目标跟踪的实验研究,并对其结果进行了分析。
实验结果表明,卡尔曼滤波在目标跟踪中具有较好的稳定性和精度。
基于卡尔曼滤波的动目标运动参数跟踪测量

基于卡尔曼滤波的动目标运动参数跟踪测量雷达/卡尔曼滤波/动目标/参数跟踪1 引言为实现雷达的精确制导功能,需要精确的跟踪和测量动目标的各项运动参数,而在跟踪测量过程中,需要在大量的噪声中提取出需要的测量数据,信噪比是影响跟踪测量精度的最重要因素,在同样的信噪比下,为了进一步提高跟踪测量精度,需要根据目标运动特性采取有效的滤波算法。
本文探讨了卡尔曼滤波的原理和特点,在动目标参数跟踪测量中的应用和参数选择,并通过仿真验证了卡尔曼滤波对跟踪测量精度的改善性能[1]。
2 卡尔曼滤波原理在众多强大的能够从带噪声的测量数值中进行数学随机估计工具中,卡尔曼滤波器可以说是最为人们所熟知并且最为常用的一个。
卡尔曼滤波器是采用Rudolph E.Kalman的名字命名的。
在1960年,卡尔曼发表了著名的用递归方法解决离散数据线性滤波问题的论文。
这篇论文发表之后,既得益于数字计算机的快速发展,又因其自身的简单性和鲁棒性,卡尔曼滤波器得到了研究人员的广泛关注,并很快在各个领域中得到应用,尤其是在自主或协助导航领域。
卡尔曼滤波器是一个对动态系统的状态序列进行线性最小方差估计的算法,卡尔曼预测过程是在系统的前一个状态的基础上估计系统下一个时刻的状态,即每次只需保存系统的上一时刻的状态,因此,只需要很小的存储空间来保存系统状态,这也使得卡尔曼滤波器的计算量小且实时性好。
卡尔曼滤波器由一组基本的数学公式描述,实现了一个预测——更新模式的估计器,它在一些预设的条件下,能够使估计误差协方差最小化,从这个意义上讲,卡尔曼滤波器是一个最优的估计器[2]。
卡尔曼滤波模型中的系统状态模型的转换模型和观测模型都是线性的关系,系统状态噪声w和观测噪声v相互独立且服从某个已知的高斯分布。
所以,卡尔曼滤波器只需要两个参数:均值和方差。
状态模型的转换模型和观测模型也变为以下的线性形式:其中,是系统状态向量,是状态转移矩阵,B是输入矩阵(一般没有此项),是观测向量,是观测矩阵。
基于卡尔曼滤波的雷达航迹跟踪算法的综述

基于卡尔曼滤波的雷达航迹跟踪算法的综述雷达航迹跟踪是一种重要的目标跟踪技术,在军事、航空、航天等领域应用广泛。
卡尔曼滤波是其中一种经典的航迹跟踪算法,被广泛应用于目标航迹跟踪以及机器人、自动驾驶等领域。
卡尔曼滤波是一种基于状态观测、迭代计算、动态调整的线性滤波算法,它可以对系统状态进行精确估计和预测。
在此基础上,卡尔曼滤波结合了控制理论、信号检测、参数估计等多个领域的方法,成为一种基本而强大的目标跟踪算法。
卡尔曼滤波的基本思想是通过模型来描述系统的动态行为,通过观测来获取系统当前的状态信息,然后利用这些信息预测未来状态,并根据实际观测值修正预测值,以得到更加准确的状态估计。
卡尔曼滤波的核心是状态转移矩阵和观测矩阵,通过不断地更新这些矩阵的值,可以不断优化状态预测和修正过程。
雷达航迹跟踪中的卡尔曼滤波通常分为预测和更新两个阶段。
预测阶段使用系统模型和先前的状态估计值来预测目标的状态。
更新阶段则利用观测值来修正预测值,从而得到更加准确的目标状态信息。
将卡尔曼滤波应用于雷达航迹跟踪中,需要首先通过实验测量和数据建模等方式获取目标系统的状态转移和观测矩阵等参数,然后根据这些参数调整卡尔曼滤波算法,以实现更加准确的航迹预测和更新。
当然,卡尔曼滤波的应用也面临一些挑战和局限性。
例如,当系统存在非线性时,线性卡尔曼滤波可能无法精确地描述系统的行为。
此时,非线性卡尔曼滤波、扩展卡尔曼滤波等算法就成为了更适合的选择。
另外,在雷达航迹跟踪中,存在多目标跟踪等复杂情况,如何处理部分观测不准确或被遮挡的目标信息也是一个需要解决的难题。
综上所述,卡尔曼滤波是一种重要而有效的雷达航迹跟踪算法,它将估计和预测的过程结合起来,能够准确地跟踪目标的航迹,是实际应用中不可或缺的一种技术。
随着人工智能、机器学习等技术的发展,相信卡尔曼滤波等算法也会不断进化和壮大,为航迹跟踪等领域带来更加准确和可靠的解决方案。
基于卡尔曼滤波的雷达航迹跟踪算法的综述

基于卡尔曼滤波的雷达航迹跟踪算法的综述卡尔曼滤波是一种经典的估计算法,用于从不完全、不准确的观测数据中估计动态系统的状态。
在雷达航迹跟踪领域,卡尔曼滤波被广泛应用于目标位置和速度的估计,以实现对目标航迹的跟踪和预测。
雷达航迹跟踪是指根据接收到的雷达测量数据,估计目标在时间上的位置、速度和加速度等动态信息。
常见的雷达测量数据包括距离、角度和径向速度等。
由于传感器误差、噪声干扰和外部干扰等因素的存在,测量数据往往是不完全和不准确的。
基于卡尔曼滤波的雷达航迹跟踪算法通过不断地根据测量数据进行状态估计和更新,可以在一定程度上消除测量误差,并提供更精确的航迹估计结果。
具体而言,该算法首先建立一个动态模型来描述目标的运动规律,然后根据雷达测量数据和模型预测的状态进行状态估计。
通过不断迭代更新和优化状态估计,得到最佳的目标航迹跟踪结果。
卡尔曼滤波算法的核心是通过合理的权衡预测值和测量值的权重,来减小估计误差。
卡尔曼滤波算法根据测量误差和动态模型的精确程度,自适应地调整权重,从而实现对目标航迹的准确跟踪。
卡尔曼滤波算法有两个基本的步骤:预测和更新。
在预测步骤中,通过运动模型和先前状态的信息,预测下一个时刻的目标状态。
在更新步骤中,将测量值与预测值进行比较,根据卡尔曼增益修正预测值,得到最终的状态估计结果。
值得注意的是,卡尔曼滤波算法假设系统遵循线性模型和高斯分布的噪声,因此在实际应用中,如果目标的运动模型非线性或者测量误差分布非高斯,需要采用扩展卡尔曼滤波(EKF)或者无迹卡尔曼滤波(UKF)等算法进行改进。
基于卡尔曼滤波的雷达航迹跟踪算法是一种常用且有效的方法,能够准确估计目标的航迹信息。
在实际应用中,可以根据具体的场景和需求选择合适的卡尔曼滤波算法,并结合其他辅助信息进行目标跟踪,从而提高跟踪的准确性和稳定性。
基于卡尔曼滤波的雷达航迹跟踪算法的综述

基于卡尔曼滤波的雷达航迹跟踪算法的综述雷达航迹跟踪是指通过雷达检测的目标信息,对其进行预测和推断,使得跟踪目标在长时间内得到稳定跟踪。
随着深度学习技术的快速发展,基于深度学习的目标跟踪技术越来越成熟,但在实际应用中,基于卡尔曼滤波的传统雷达航迹跟踪算法仍然被广泛采用。
基于卡尔曼滤波的雷达航迹跟踪算法具有稳定、可靠、实时性高等优点,是传统雷达目标跟踪的核心技术之一。
卡尔曼滤波是一种利用先验和后验信息的递归估计算法,它从测量值和预测值中得出最优的状态估计值。
基于卡尔曼滤波的雷达航迹跟踪算法的基本思路是,根据雷达返回的目标信息预测目标状态,并将预测结果与实测值进行比较,确定目标状态的最优估计值;同时,利用历史信息的统计特征进一步优化状态估计值,以提高算法的稳定性和鲁棒性。
基于卡尔曼滤波的雷达航迹跟踪算法主要分为两种类型:一种是基于线性卡尔曼滤波的算法,另一种是基于非线性卡尔曼滤波的算法。
线性卡尔曼滤波算法常用于处理线性系统,依赖于系统的高斯噪声假设,并且需要对目标的运动模型进行精确描述;而非线性卡尔曼滤波算法则可以处理更为复杂的非线性系统,并利用粒子滤波技术对目标状态进行优化估计。
在实际应用中,基于卡尔曼滤波的雷达航迹跟踪算法需要结合多种传感器和数据源,例如雷达、光学相机、GPS等,并进行多传感器融合处理。
同时,为了提高算法的实时性和准确性,可以采用多目标跟踪技术,对目标进行分步式跟踪,进一步优化算法的精度和效率。
基于卡尔曼滤波的雷达航迹跟踪算法在航空、交通、安防等领域得到广泛应用,具有广泛的发展前景和应用价值。
未来随着计算机视觉和智能化技术的不断进步,基于卡尔曼滤波的雷达航迹跟踪算法将会更加完善和优化,为实际应用提供更为可靠和高效的技术支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
此文档下载后即可编辑随机数字信号处理期末大作业(报告)基于卡尔曼滤波器的雷达目标跟踪Radar target tracking based on Kalman filter学院(系):创新实验学院专业:信息与通信工程学生姓名:李润顺学号:21424011任课教师:殷福亮完成日期:2015年7月14日大连理工大学Dalian University of Technology摘要雷达目标跟踪环节的性能直接决定雷达系统的安全效能。
由于卡尔曼滤波器在状态估计与预测方面具有强大的性能,因此在目标跟踪领域有广泛应用,同时也是是现阶段雷达中最常用的跟踪算法。
本文先介绍了雷达目标跟踪的应用背景以及研究现状,然后在介绍卡尔曼滤波算法和分析卡尔曼滤波器性能的基础上,将其应用于雷达目标跟踪,雷达在搜索到目标并记录目标的位置数据,对测量到的目标位置数据(称为点迹)进行处理,自动形成航迹,并对目标在下一时刻的位置进行预测。
最后对在一个假设的情境给出基于卡尔曼滤波的雷达目标跟踪算法对单个目标航迹进行预测的MATLAB仿真,对实验的效果进行评估,分析预测误差。
关键词:卡尔曼滤波器;雷达目标跟踪;航迹预测;预测误差;MATLAB 仿真- 1 -1 引言1.1 研究背景及意义雷达目标跟踪是整个雷达系统中一个非常关键的环节。
跟踪的任务是通过相关和滤波处理建立目标的运动轨迹。
雷达系统根据在建立目标轨迹过程中对目标运动状态所作的估计和预测,评估船舶航行的安全态势和机动试操船的安全效果。
因此,雷达跟踪环节工作性能的优劣直接影响到雷达系统的安全效能[1]。
鉴于目标跟踪在增进雷达效能中的重要作用,各国在军用和民用等领域中一直非常重视发展这一雷达技术。
机动目标跟踪理论有了很大的发展,尤其是在跟踪算法的研究上,理论更是日趋成熟。
在跟踪算法中,主要有线性自回归滤波、两点外推滤波、维纳滤波、加权最小二乘滤波、βα-滤波和卡尔曼滤波,其中卡尔曼滤波算法在目标跟踪理论中占据了主导地位。
雷达跟踪需要处理的信息种类多种多样。
除了目标的位置信息外,一般还要对目标运动速度进行估计,个别领域中的雷达还要对目标运动姿态进行跟踪。
雷达跟踪的收敛速度、滤波精度和跟踪稳定度等是评估雷达跟踪性能的重要参数。
因此提高雷达跟踪的精度、收敛速度和稳定度也就一直是改善雷达跟踪性能的重点。
随着科技的发展,各类目标的运动性能和材质特征有了大幅度的改善和改变,这就要求雷达跟踪能力要适应目标特性的这种变化。
在不断提高雷达跟踪性能的前提下,降低雷达跟踪系统的成本也是现代雷达必须考虑的问题。
特别是在民用领域中由于雷达造价不能过高,对目标跟踪进行快收敛性、高精度和高稳定性的改良在硬件上是受到一些制约的,因此雷达跟踪算法的研究就越来越引起学者们的关注。
通过跟踪算法的改进来提高雷达的跟踪性能还有相当大的挖掘潜力。
考虑到雷达设备的造价,民用雷达的跟踪系统首要的方法就是对于雷达的跟踪算法进行开发。
1.2 雷达目标跟踪滤波算法研究现状当运动目标模型建立之后,就要对目标跟踪算法进行设计,这也是雷达跟踪系统中核心的部分。
对目标的跟踪最主要的还是对目标的距离信息,方位角信息,高度角信息,以及速度信息进行跟踪,估计和预测目标的运动参数以及运动状态,这样有利于我们针对特定目标拿出特定应对方案。
基本的跟踪滤波与预测方法是跟踪系统最基本的要素,也是形成自适应跟踪滤波的前提和基础。
这些方法包括线性自回归滤波、两点外推滤波、维纳滤波、加权最小二乘滤波、βα-滤波和卡尔曼滤波。
其中线性自回归滤波、两点外推滤波、维纳滤波由于限制性强而在现阶段的雷达中很少应用,但是维纳滤波在滤波算法上有着里程碑的标志。
现阶段最常用的就是加权最小二乘滤波、βα-滤波和卡尔曼滤波[1]。
1.2.1 加权最小二乘滤波采用何种滤波方法,主要取决于事先能掌握多少先验信息。
当先验统计特性一无所知时,一般采用最小二乘滤波。
如果仅仅掌握测量误差的统计特性,可以采马尔可夫估计,即加权阵为)(1kR-的最小二乘滤波,其中)(1kR-是测量噪声的协方差矩阵。
忽略状态噪声的影响,测量噪声)(kV是均值为0,协方差矩阵为)(k R 的高斯白噪声向量序列;)(k R为对角阵,则加权最小二乘滤波公式为[])1kHZXkkkkkX(1)k=kkXk))(((/(ˆ))1/-+(ˆ-/(ˆ)-)1/1(ˆ)1/()1/(ˆ---=-k k X k k k k X φ (2))()()1/()(1k R k H k k P k K T --= (3))1/()()()1/()/(---=k k P k H k k k k P k k P(4) 其中)(k K 、)/(k k P 和)1/(-k k P 分别为滤波增益矩阵、协方差矩阵和预测协方差矩阵。
1.2.2 βα-滤波当目标作等速直线运动时,描述目标运动状态X 是两维向量,即T x x X ]',[=,这里的x 和x '分别是位置和速度的分量。
设目标状态方程为)1()1()(-+-=k Gw k X k X φ (5)其中⎥⎦⎤⎢⎣⎡=101T φ,⎥⎦⎤⎢⎣⎡=T T G 2/2,式中状态噪声w 为均值为0的高斯白噪声序列。
测量方程为)()()()(k v k X k H k Z += (6)其中]0,1[=H ,式中)(k v 是0均值的高斯白噪声。
βα-滤波方程为[])1/(ˆ)()()1/(ˆ)/(ˆ--+-=k k X k H k Z k k k X k k X(7) )1/1(ˆ)1/(ˆ--=-k k X k k X φ (8)⎥⎦⎤⎢⎣⎡=T k /βα (9)近几十年来,基于以上滤波算法的变形算法发展非常迅速,尤其是自适应的卡尔曼算法更是占据了现代雷达中跟踪算法的主导地位。
对于卡尔曼滤波算法将在下一节中详细叙述。
1.3 目标跟踪技术的困境1.3.1 卡尔曼滤波的稳定性和准确性数据偏差是普遍存在的,这就是导致了滤波稳定性的问题。
卡尔曼滤波的稳定性问题是滤波器能否应用的一个关键问题。
由于卡尔曼滤波不但存在对系统模型的强依赖性与鲁棒性差的缺陷,而且在系统达到平稳状态时将丧失对突变状态的跟踪能力,因此该方法对机动目标的跟踪能力有限。
而丧失对突变状态的跟踪能力,就是一种很严重的算法丢跟踪状态。
如果实际滤波过程中,在某一过程或者某种条件下测量值出现奇值,那么滤波结果会受到很大干扰。
有时直接导致以后的滤波值不收敛,以至目标跟踪丢失。
因此,如何解决好目标跟踪的稳定性(即滤波过程的稳定性)也是我们所面临的问题。
1.3.2 收敛速度的问题卡尔曼滤波算法中都很注意滤波的收敛速度问题,滤波收敛快慢直接影响到目标跟踪的稳定度和对目标的锁定速度,因此,滤波的收敛速度是评价一个滤波器性能的重要指标。
1.3.3 滤波过程中系统偏差的问题在相同的测量条件下做一系列观测,若误差的大小及符号表现出系统性,或者按照一定的规律变化,这类误差为系统偏差。
系统偏差对测量结果影响很大,且一般具有积累性,应该尽可能消除或者限制到最小程度,我们一般解决这个问题的方法都是用离线或者称为后处理的方法,所以不能在线处理误差。
非线性滤波问题往往用状态变量方程来描述,从而可采用卡尔曼滤波的方法,并由此带来了一系列的方便。
若该系统偏差事先已经知道,只要观测值减去该偏差然后再进行滤波即可。
但如果该偏差存在而且未知,就需要在线处理这些系统偏差。
2 卡尔曼滤波理论2.1 卡尔曼滤波的基本算法卡尔曼滤波在近20年来取得了长足的发展。
把目标的位置,速度和加速度作为目标状态矢量,通过目标的动力学方程来描述目标状态的变化,利用递推的计算方法,目标的状态可以方便的估计出来,这样目标的航迹就可以建立起来[2-3]。
建立在非线性运动模型上的卡尔曼滤波称为扩展的卡尔曼滤波。
在雷达跟踪系统中,我们所用到的是离散型卡尔曼滤波。
离散卡尔曼滤波的状态方程、测量方程以及推广方程如下[4-5]:状态方程:)1()1/()1()1/()(--Γ+--=k w k k k X k k k X φ (10)测量方程:)()()()(k v k X k H k Z += (11)上两式中,)(k X 为k 时刻系统状态,)1/(-k k φ和)1/(-Γk k 为状态转移矩阵,)(k w 为协方差矩阵为Q 的状态噪声,)(k Z 为k 时刻的测量状态,)(k H 为测量转移矩阵,)(k v 为协方差矩阵为R 的测量噪声。
状态预测方程:)1/1(ˆ)1/()1/(ˆ---=-k k X k k k k X φ (12)其中)1/(ˆ-k k X 是上一状态的预测结果,)1/1(ˆ--k k X是上一状态的最优结果。
预测估计值协方差矩阵:)1/()1()1/()1/()1/1()1/()1/(-Γ--Γ+----=-k k k Q k k k k k k P k k k k P T T φφ(13) 卡尔曼增益矩阵:[]1)()()1/()()()1/()(-+--=k R k H k k P k H k H k k P k k T T (14)滤波估计值:[])1/(ˆ)()()()1/(ˆ)/(ˆ--+-=k k X k H k Z k k k k X k k X (15)滤波估计值协方差矩阵:)1/()()()1/()/(---=k k P k H k k k k P k k P (16)在卡尔曼滤波过程中,只有确定了状态估计初始值)0(ˆX和滤波估计值协方差矩阵的初始值)0(P,整个滤波过程才能启动。
一般情况下,我们将初始估计值的值定为整个系统的第一次观测值)0(Z,将滤波估计值的协方差矩阵)0(P的初始值可以拟订为一个对角阵,虽然大多数实际情况并非如此,但是这样做也是符合理论要求的,并且对于我们的运算也有简化作用。
整个滤波循环过程如下图:图1 卡尔曼滤波循环过程2.2 卡尔曼滤波器的性质由卡尔曼滤波器的推导过程可知,卡尔曼滤波器具有以下性质:(1)被估计值系统的第k +1时刻的状态值)1(+k X 的卡尔曼滤波值)1/1(ˆ++k k X,就是)1(+k X 的无偏的最小方差估计。
而且,滤波误差方差阵)1(+k P 是基于)1(+k X 的所有线性估计中的最小均方误差阵。
(2)对于一维的情况,测量噪声协方差矩阵增大时,增益矩阵k 变小。
这就表明,如果测量噪声越大,该增益取的越小,以减弱测量噪声对估计值的影响,而使预测值所占最后的结果比重加大。
(3)从这5个推导公式中可以看出,当矩阵)1/(-k k P ,Q ,R ,同乘以一个常数时,增益矩阵K 的值不变。
(4)由推导过程我们还可以看出,当)1/1(--k k P 或者Q 矩阵变小,或者同时变小的时候,)1/(-k k P 也变小,K 矩阵也减小。