一次函数图像的性质

合集下载

一次函数的图象及性质

一次函数的图象及性质
极小值点
在某个点处,函数的导数为0,并且在该点左侧导数小 于0,右侧导数大于0,那么这个点就是极小值点。
一次函数的凹凸性
凹函数
如果在某个区间内,函数的二阶导数大于 0,那么这个函数在这个区间内是凹函数 。
VS
凸函数
如果在某个区间内,函数的二阶导数小于 0,那么这个函数在这个区间内是凸函数 。
04
一次函数与数列的关系
数列是一次函数图象上多个点的集合,表示在多个自变 量下函数的值的变化规律。通过对数列的研究,我们可 以找到一次函数图象上对应的多个点。
一次函数与数列的关系还表现在解决实际问题中,如等 差数列和等比数列的问题,通过建立一次函数模型可以 解决实际问题的最优解。
06
一次函数的扩展知识
一次函数与方程的关系还表现在求解未知数 的运算过程中,通过对方程的求解可以得到
一次函数的解析式。
一次函数与不等式的关系
不等式可以看作一次函数图象上某一段的横坐标,表 示在这一段上函数的值大于或小于零。通过对不等式 的求解,我们可以找到一次函数图象上对应的区间。
一次函数与不等式的关系还表现在解决实际问题中, 如时间、速度、价格等问题,通过建立一次函数不等 式模型可以解决实际问题的最优解。
为截距。
当自变量取值为`x`时,函数值 计算公式为`y = kx + b`。
绘制点
根据计算出的函数值和自变量的取值,绘制散点图。
对于每个自变量值,计算其对应的函数值,并在坐标系中绘制一个点。
连接点
使用线段或曲线连接散点图中的点。
对于一次函数,通常使用直线连接点,因为一次函数的图像是一条直线。
03
一次函数的应用
一次函数在代数中的应用
求解方程

一次函数图像的性质

一次函数图像的性质

一次函数图像的性质
一次函数图像的性质是什么?
答:一次函数图像性质总结如下:
1、y=kx时(即b等于0,y与x成正比,此时的图象是一条经过原点的直线):当k>0时,直线必通过一、三象限,y随x的增大而增大。

当k<0时,直线必通过二、四象限,y随x的增大而减小。

2、y=kx+b(k,b为常数,k≠0)时:
当k>0,b>0,这时此函数的图象经过一、二、三象限。

当k>0,b<0,这时此函数的图象经过一、三、四象限。

当k<0,b>0,这时此函数的图象经过一、二、四象限。

当k<0,b<0,这时此函数的图象经过二、三、四象限。

当b>0时,直线必通过一、二象限。

当b<0时,直线必通过三、四象限。

特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图象。

这时,当k>0时,直线只通过一、三象限,不会通过二、四象限。

当k<0时,直线只通过二、四象限,不会通过一、三象限。

3、直线y=kx+b中k、b的关系:
k>0,b>0:经过第一、二、三象限。

k>0,b<0:经过第一、三、四象限。

k>0,b=0:经过第一、三象限(经过原点)。

结论:k>0时,图象从左到右上升,y随x的增大而增大。

k<0,b>0:经过第一、二、四象限。

k<0,b<0:经过第二、三、四象限。

k<0,b=0:经过第二、四象限(经过原点)。

结论:k<0时,图象从左到右下降,y随x的增大而减小。

一次函数的图像和性质

一次函数的图像和性质

课题 一次函数的图像与性质1、一次函数的图像的画法(1)画函数图像的三步:列表-描点-连线. (2)一次函数的图象是一条直线。

一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象是一条直线。

一次函数y=kx+b 也称为直线y=kx+b ,这时,我们把一次函数的解析式y=kx+b 称为这一直线的表达式。

(3)因为一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象是一条直线,根据“两点确定一条直线”的基本性质,画一次函数的图象时只需描出图象上的两个点,再作过这两点的直线即可。

2、一次函数的图像的性质(1)一次函数与x 轴交点的纵坐标为0,与y 轴交点的横坐标为0.(2)一次函数111(y k x b k =+、110b k ≠为常数,)与222(y k x b k =+、220b k ≠为常数,)的图像平行时,则12k k =。

反之,当12k k =时,两直线平行,且当12k k =,12b b =时,两直线重合。

(3)当一次函数111(y k x b k =+、110b k ≠为常数,)与222(y k x b k =+、220b k ≠为常数,)的图像的截距相同且不平行时,则12b b =,12k k ≠。

(4)一次函数y=kx+b (k 、b 是常数,且k ≠0)当k>0时函数值随着x 的增大而增大、减小而减小,即该函数为增函数;当k<0时函数值随着x 的增大而减小、减小而增大。

即该函数为减函数。

3、一次函数图像的平移一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象向上平移h 个单位后的函数解析式为y=kx+b+h;向下平移h 个单位后的函数解析式为y=kx+b-h 。

4、一次函数图像经过的象限示意图k 、b 的符号直线y=kx+b 经过的象限增减性一.基础练习:1.一次函数y=3x-6的图像是,它与x轴的交点坐标是,它与y轴的交点坐标是2.将直线y=x向下平移4个单位,得到直线3.将直线y=-3x-5向上平移4个单位,得到直线4.若直线y=3x-5与直线y=kx-4相互平行,则k=5.若直线y=-2x-5与直线y=6x+b相交于y轴上同一点,则b=6. 请你在不同的平面直角坐标系中画出下列函数的图像(1)y=2x+6 (2)1722 y x=+(3)4833y x=--(4)1344y x=--7,做一做:画出函数y=-2x+2 的图像,结合图象回答下列问题:( 1 )这个函数中,随着x 的增大,y 将增大还是减小?( 2 )当x 取何值时,y=0 ?当y 取何值时,x=0 ?( 3 )当x 取何值时,y>0 ?( 4 )函数的图像不经过哪个象限?8、完成下列各题:(1)下列函数中,y的值随着x的增大而减小的是()A.y=2x-7B.y=0.5x+2C.y=(2-1)x+3D.y=-0.3x+1(2)函数y=4x-3中,y的值随着x值的增大而____(3)函数y=(2m-1)x+2的函数值随x的增大而减小,则m的值为______ (4)一次函数y=2x+4的图像上有两点A(3,a),B(4,b),请判断a与b的大小(5)y=x+5与y=2x-5的增减性(y 随着x 的增加而增加,还是随着x 的增加而减小)是否一样?(6)y=-2x+5与y=-2x-5的增减性是否一样?(7)A(a,6)和B(b,-2)在函数y=2x-5的图像上,请你判断a ,b 的大小关系 9、已知一次函数2(2)28y k x k =--+,分别根据下列条件求k 的值或k 的取值范围: (1)它的图像经过原点(2)它的图像经过点(0,-2)(3)它的图像与y 轴的交点在x 轴上方 (4)y 随着x 的增大而减小(5)这条直线经过一、二、三象限10、要使一次函数y=-3x+4的函数值大于4,求自变量x 的取值范围。

一次函数图象与性质

一次函数图象与性质

一次函数可以用于找到最佳拟 合线,以更好地描述数据的趋 势。
线性回归
一次函数可以用于进行线性回 归分析,以预测未来的数据趋 势。
结论和要点
• 一次函数是数学中最基本的函数之一,具有稳定的线性关系。 • 斜率和截距是一次函数图象的重要特征。 • 平移和缩放操作可以改变一次函数图象的位置和形状。 • 一次函数在实际问题中有广泛的应用,可以帮助解决各种实际情况。
一次函数图象的平移和缩放
通过平移和缩放操作,可以改变一次函数的图象及其性质。
1
平移
平移操作可以改变一次函数图象的位置,例如向左或向右平移。
2
缩放
缩放操作可以改变一Байду номын сангаас函数图象的形状和大小,例如拉伸或收缩。
3
组合操作
平移和缩放操作可以组合使用,以实现更灵活的一次函数图象变换。
一次函数图象的应用
一次函数的图象和性质在实际问题中有许多应用,例如经济学、物理学和工程学等领域。
一次函数图象与性质
一次函数是数学中最基本的函数之一,它具有许多重要的性质和应用。本次 演示将介绍一次函数的定义、图象特点以及与实际问题的关系。
一次函数的定义和表达式
一次函数是指一个自变量的整数次数都是1的函数。通常以y = ax + b的形式表示,其中a和b是常 数。
1 自变量
一次函数的自变量通常表示为x,它可以是任意实数。
经济学
一次函数可以描述供需关 系、市场价格等经济现象。
物理学
一次函数可以描述速度、 位移等物理量与时间的关 系。
工程学
一次函数可以描述电路、 力学系统等工程问题。
一次函数与实际问题的关系
一次函数是解决实际问题的重要工具,它可以帮助我们理解和解决各种实际情况。

一次函数的图像及性质

一次函数的图像及性质
若x1 < x2, 则 y1__________y2
3 x 1 上, 4
2.若 a 是非零实数 , 则直线 y=ax-a 一 定经过( A.第一、二象限 C.第三、四象限 B. 第二、三象限 D. 第一、四象限

拓展与应用
1、一次函数y=kx+b中,kb>0,且y随x的增大而 减小,则它的图象大致为( )
一次函数y=kx+b(k≠0,k、b为常数)有下列性质:
(1)当k>0时,y随x的增大而增大, 这时函数的图象从左到右上升; (2)当k<0时,y随x的增大而减小, 这时函数的图象从左到右下降。
性 质
y=kx+b (k≠0,k、 图 象 b为常数) y b>0
o
直线经过的象限
增减性
(0, b)
x
第一、二、三象限
y随x增大 而增大 y随x增大 而增大 y随x增大 而增大
K>0
b=0
y
o
x
第一、三象限
b<0
(o, b)
y
o
x
第一、三、四象限
性 质
y=kx+b (k≠0,k、 图 象 b为常数) y b>0
o
直线经过的象限
增减性
(0, b)
x
第一、二、四象限
y随x增大 而减小 y随x增大 而减小 y随x增大 而减小
k>0, b<0
上,试比较a和b的大小。你能想出几种判断的方法?
试一试
1、下列一次函数中,y的值随x的增大而减小 的有________ )
2、函数 y 1 x, y 5 x 4, y 3 x
(1) y 10 x 9 (3) y 5 x 4

一次函数图像性质

一次函数图像性质
截距与截点:截距决定了函数与y轴的交点。在中,当x=0时,y=b,因此函数与y轴的 交点为(0, b)
平行与斜率:如果两个一次函数的斜率相同,那么它们的图像是平行的。反之,如果 两个一次函数的图像平行,那么它们的斜率相同
交点与方程:如果有 两个一次函数在同一 直角坐标系中,并且 它们的图像有交点, 那么交点的坐标满足 这两个函数的方程
性质
奇偶性:对于一次函数 ,如果其定义域关于原 点对称,且满足f(-x) = f(x),则称该函数为 偶函数;如果满足f(x) = -f(x),则称该函 数为奇函数。对于奇函 数,其图像关于原点对 称;对于偶函数,其图 像关于y轴对称
渐近线:一次函数没 有渐近线。这是因为 一次函数的图像是一 条直线,它没有垂直 或水平渐近线
性质
零点
如果一个一次函数的值为0,那么这个点称为函数的零点。所有一次函数的图像都至少有一 个零点(除非该函数定义域有限且不包含0)
一次函数的图像是连续的线段,没有端点。然而,当x趋于正无穷大或负无穷大时,函数的 值会趋于无穷大或负无穷大
端点
最大值与最 小值
对于单调递增的一次函数,其最大值出现在右端点;对于单调递减的一次函数,其最大值出现 在左端点。同样地,对于单调递增的一次函数,其最小值出现在左端点;对于单调递减的一次 函数,其最小值出现在右端点
和b的值,我们可以得到不同的一次函数
在坐标系中,一次函数的图像是一条直线。 当k为正时,直线从左下方向右上方倾斜; 当k为负时,直线从左上方向右下方倾斜。
截距b决定了直线与y轴的交点位置
1
2
PART.2
性质
斜率与单调性:一次函数的斜率决定了函数的单调性。如果斜率大于0,函数在区间内 单调递增;如果斜率小于0,函数在区间内单调递减

一次函数图像和性质小结

一次函数图像和性质小结

一次函数图像和性质小结一般地,形如y=kx+b(k、b是常数,且k≠0•)的函数,•叫做一次函数(•linear function).一次函数的定义域是一切实数.当b=0时,y=kx+b即y=kx(k是常数,且k≠0•).所以说正比例函数是一种特殊的一次函数.当k=0时,y等于一个常数,这个常数用c来表示,一般地,我们把函数y=c(c是常数)叫做常值函数(constant function)它的定义域由所讨论的问题确定.一般来说, 一次函数y=kx+b(其中k、b是常数,且k≠0)的图像是一条直线. 一次函数y=kx+b的图像也称为直线y=kx+b. 一次函数解析式y=kx+b称为直线的表达式.一条直线与y轴的交点的纵坐标叫做这条直线在y轴上的截距,简称直线的截距.一般地,直线y=kx+b(k0)与y轴的交点坐标是(0,b).直线y=kx+b(k0)的截距是b.一次函数的图像:k>0 b>0 函数经过一、三、二象限k>0 b<0 函数经过一、二、三象限k<0 b>0 函数经过一、二、四象限k<0 b<0 函数经过二、三、四象限上面性质反之也成立1.b的作用在坐标平面上画直线y=kx+b (k≠0),截距b相同的直线经过同一点(0,b). 2.k的作用k值不同,则直线相对于x轴正方向的倾斜程度不同.(1)k>0时,K值越大,倾斜角越大(2)k<0时,K值越大,倾斜角越大说明(1)倾斜角是指直线与x轴正方向的夹角;(2)常数k称为直线的斜率.关于斜率的确切定义和几何意义,将在高中数学中讨论.3.直线平移一般地,一次函数y=kx+b(b0)的图像可由正比例函数y=kx的图像平移得到.当b>0时,向上平移b个单位;当b<0时,向下平移|b|个单位.4.直线平行如果k1=k2 ,b1b2,那么直线y=k1x+b1与直线y=k2x+b2平行.如果直线y=k1x+b1与直线y=k2x+b2平行,那么k1=k2 ,b1b2 .1.一次函数与一元一次方程的关系一次函数y=kx+b的图像与x轴交点的横坐标就是一元一次方程kx+b=0的解;反之,一元一次方程kx+b=0的解就是一次函数y=kx+b的图像与x轴交点的横坐标.两者有着密切联系,体现数形结合的数学思想.2.一次函数与一元一次不等式的关系由一次函数y=kx+b的函数值y大于0(或小于0),就得到关于x的一元一次不等式kx+b>0(或kx+b<0).在一次函数y=kx+b的图像上且位于x轴上方(或下方)的所有点,它们的横坐标的取值范围就是不等式kx+b>0(或kx+b<0)的解.。

一次函数的图像和性质

一次函数的图像和性质

图象关系 图象平移得到,b>0,向上平移 b 个单位;b<0,向
下平移b个单位
图象确定
因为一次函数的图象是一条直线,由两点确定一条直 线可知画一次函数图象时,只要取两个点即可
第14讲┃ 考点聚焦
(2)正比例函数与一次函数的性质 函数 字母取值 图象 经过的象限
k>0
_一__、__三__象__限_
一次函数图象的
解即两函数图象的交点坐标
交点坐标
一条直线与坐标 轴围成的三角形
的面积
直线y=kx+b与x轴交点坐标为-bk,0,与y轴交
点为(0,b),三角形面积为S△=12-kb
×

|b|
第14讲┃ 考点聚焦 考点5 由待定系数法求一次函数的表达式
因在一次函数y=kx+b(k≠0)中有两个未知系数k和b,所 以要确定其关系式,一般需要两个条件,常见的是已知两点
图 11-1
B.m<1
C.m<0
D.m>0
[解析] 根据函数的图象可知m-1<0,求出m的取 值范围为m<1.故选B.
第14讲┃ 归类示例
► 类型之二 一次函数的图象的平移 命题角度: 1.一次函数的图象的平移规律; 2.求一次函数的图象平移后对应的关系式. [2012·衡阳] 如图11-2,一次函数y=kx+b的图
y随x增 大而增大
_一__、__二__、__四__象__限__ _二__、__三__、__四__象__限__
y随x增 大而减小
第14相交
__k_1_≠__k_2_⇔l1 和 l2 相交
+b1 和 l2:y=k2x 平行 +b2 的位置关系
y=kx (k≠0)
k<0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数复习
大有中学程顺发
教学目标
1、理解一次函数的意义,会用待定系数法求一次函数的表达式。

2、会画一次函数图象,理解函数性质。

3、能根据图象求二元一次方程组的近似值,掌握求两函数图象交点坐标的方法。

4、会用一次函数解决简单的实际问题。

教学重点
1、一次函数的图象和性质
2、一次函数的应用
教学难点
一次函数和二元一次方程(组)、一元一次不等式(组)的关系。

教材分析
1、近几年来,一次函数的中考分值呈上升趋势,命题多为填空、选择(2—3分)和解答题(6—8分)且为中考命题热点。

2、本节主要内容有一次函数的图象和性质、利用一次函数的图象解决二元一次方程(组)和一元一次不等式(组)的问题、一次函数的应用、一次函数与几何的综合题等。

3、结合实际的应用问题涉及面广,也是近几年来各省市中考的热点问题,有行程、温度、利润、电话费等问题,特别是与经济相关的问题在近几年中考中比较常见。

教学过程
一、考点整合
1、一次函数定义:一般地,若两个变量x,y间的关系,可以表示成(k、b 常数且k≠0)的形式,则称y是x的一次函数,当b=0时,一次函数也叫正比例函数。

2、一次函数图象的画法:正比例函数的图象是过和两点的,一次函数图象是过和两点的。

3、一次函数性质:y=kx+b(k≠0)当K>0时,y随x增大而,当K<0时,y随x增大而
4、一次函数图象与k、b的符号关系如下:
5、一次函数与一元一次方程的关系:
直线y=kx+b(k≠0)与x 轴的交点 就是一元一次方程kx+b=0的解, 6、一次函数与一元一次不等式的关系:
一次函数y=kx+b 的函数值 的自变量x 的所有值,就是一元一次不等式kx+b>0的解集;一次函数y=kx+b 的函数值 的自变量x 的所有值,就是一元一次不等式kx+b<0的解集。

7、一次函数与二元一次方程(组)的关系:
一次函数表达式y=kx+b 就是一个 ,反过来任何一个二元一次方程都可转化为一次函数表达式。

二元一次方程组的解就是两个一次函数图象的交点坐标。

二、典型例题
例1:已知一次函数y=kx-k,若y 随x 增大而减小,则函数图象不经过( ) A 第四象限 B 第三象限 C 第二象限 D 第一象限
例2:直线l 1:y=k 1x+b 与直线l 2:y=k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x+b>k 2x 的解为( )
A 、x>-1
B 、x<-1
C 、x<-2
D 、无法确定
解析:根据一次函数的性质分析图象,由图可知l 1上,y 随x 的增大而减小,l 2上,y 随x 的增大而增大,当x<-1时,l 1上的值均大于l 2上的值,当x>-1时,l 2上的值均大于l 1上的值,故可得答案。

例3:如图:一次函数图象经过点A ,且与正比例函数y=-x
的图象交于点B ,则该一次函数的表达式为( )
A 、y=-x+2
B 、y=x+2
C 、y=x-2
D 、y=-x-2
解析:本题主要考察对一次函数图象的认识,由正比例函数的图象和一次函数图象的交点的横坐标可求出一次函数图象上的一点,再根据一次函数与y 轴的交点,已知两点即可求出一次函数的解析式。

例4:某饮料厂开发了A 、B 两种新型饮料,主要原料均为甲和乙,每瓶饮料中甲和乙的含量如下表所示,现用甲原
料和乙原料各2800克进行试生产,计划生产A 、B 两种饮料共100瓶,设生产A 种饮料X 瓶,解答下列问题: (1)有几种符合题意的生产方案?写出解答过程;
(2)如果A 种饮料每瓶的成本为2.60元,B 种饮料每瓶的成本为2.80元,这两种饮料的成本总额为Y 元,请写出Y 与X 的之间的关系式,并说明X 取值会使成本总额最低?
甲 乙 A 20克 40克 B
30克
20克
分析:本题主要考察一次函数与一次不等式的应用,根据提议可得出一个不等式组,再由题意可得出一次函数的表达式,根据一次函数的性质和实际生活的意义可得答案。

解:(1)设生产A 种饮料X 瓶,根据题意得 20X+30(100-X )≤2800
40X+20(100-X )≤2800
y x
o -1
-2 y=k 1x+b y=k 2x y x o
-1 2 A B y=--x 饮料名称
原料名称
解这个不等式组,得20≤X≤40 因为其中正整数解共21个,
所以符合题意的生产方案有21种。

(2)根据题意得,得y=2.6x+2.8(100-x )。

整理,得y=-0.2x+280 因为k=-0.2<0,,所以y 随x 的增大而减小。

所以当x=40时成本最低。

三、总结通法
1、用待定系数法确定函数解析式时,其中有几个待定系数就需要几个条件,将已知条件转化为含有未知数的方程(组)从而解得待定系数的植。

2、正确理解一次函数图象的性质和图象所反应的相关信息,以及函数与一元一次不等式、方程之间的联系,是解一元一次方程、一元一次不等式(组)、二元一次方程(组)有关解(集)的关键。

3、数形结合是重要的数学思想,要学会从“数”分析到“形”,以及由“形”的特征想到“数”的特征的方法。

从而实现数形结合。

4、要学会将与一次函数有关的实际问题转化为数学问题。

即:
四、变式训练
1、将直线y=2x+1向右平移两个单位,所得直线的解析式是 .
2、一次函数的图象过点(1,0),且函数值随自变量的增大而增大,写出一个符合这个条件的一次函数解析式 。

3、在加油站,加油机显示器上显示的某一种油的单价为每升4.75元,总价从0元开始随着加油量的变化而变化,总价Y (元)与加油量X (升)的函数关系式是 。

4、直线y=kx+b 经过点A (-2,0)和y 轴正半轴上一点B ,如果三角形ABO (O 为坐标原点)的面积为2,则b 的值为 .
5、某公共汽车公司规定:旅客可免费携带一定质量的行李,如果超过规定,则需要购买行李车票,行李费用y(元)与行李重量x(千克)的函数关系如图所示:
(1)、你能通过图象给出的信息知道旅客 最多可免费携带多少千克的行李?
实际问题
抽象 转化
数学问题
运用 数学知识
问题的解
返回解释 检验
y(元)

10 60
30 x(千克)
80
o
(2)、在上题中,若把图象与x 轴交点
横坐标30去掉,其他条件不变,你能否根据图象中的其他信息把它求出来?
课后反思
本节课是中招复习过程的重要一课,我仍按习惯分三步走:建立知识网络、自主学习加深理解、检测。

在第一步中首先让学生回忆重新感知概念,梳理概念,构建知识结构图。

目前,学生的知识整合能力还不强,但教师可以借助启发式教学法和问题式教学法相结合,通过现代化教学手段展示知识体系,形成一个知识框架结构,这样做的意义在于有宏观有微观,有收有放,揭示知识间的内在联系,使学生对知识有一个整体的把握,可以培养学生的分析能力及整合能力。

第二步让学生根据这些概念间的联系与区别,进行质疑、练习,完成对概念的简单运用,加深对概念的联系与区别的理解。

教师为学生开设问题研讨情境,师生互问互答,教师引导,培养学生发现问题、解决问题的能力,使该部分知识真正内化在学生的认知中,在理解的基础上并被学生所用。

在质疑过程中,教师要细心发现学生学习的薄弱环节,夯实基础,形成一种活跃、民主、开放而又有的放矢的课堂气氛。

由于是开放式的提问和讨论,所涉及的知识面广,教师要有充分的准备。

第三步则是对前二步的检测,综合本节中的重点进行针对性的训练,同时在检测的过程中发展学生的思维,特别是开放性题目有利于学生创新思维的培养。

选取与实际联系紧密、趣味性强、突出重难点的习题供学生练习,举一反三,以一道题引发多个问题,培养学生的应用能力。

在这个环节中习题的选取十分关键,要少而精,有难有易,体现层次性。

在复习过程中,老师还要注意,不要让学生仅仅局限于“知道”,而要快速的将知识“再现”并能够用准确、规范的专业术语及知识进行叙述做答。

教师应该针对学生平时学习过程中存在的学习问题进行总结和提示,把学生经常出现的问题进行汇总并告知学生,并在学习方法上进行指导,达到事半功倍的效果。

6 60 80 x(千克) y(元) 10
o。

相关文档
最新文档