最新导函数图像与原函数图像关系(我)

合集下载

最新导函数图像与原函数图像关系(我)

最新导函数图像与原函数图像关系(我)

导函数图像类型题类型一:已知原函数图像,判断导函数图像。

1. (福建卷11)如果函数)(x f y =的图象如右图,那么导函数()y f x '=的图象可能是 ( )2. 设函数f (x )在定义域内可导,y=f (x )的图象如下左图所示,则导函数y=f (x )的图象可能为( )3. 函数()y f x =的图像如下右图所示,则()y f x '=的图像可能是( )4. 若函数2()f x x bx c =++的图象的顶点在第四象限,则其导函数'()f x 的图象是( )类型二:已知导函数图像,判断原函数图像。

5. (2007年广东佛山)设)(x f '是函数)(x f 的导函数,)(x f y '=的图象如右图所示,则)(x f y =的图象最有可能的是( )6. (2010年3月广东省深圳市高三年级第一次调研考试文科)已知函数f x ()的导函数2f x ax bx c '=++()的图象如右图,则f x ()的图象可能是( )7. 函数)(x f 的定义域为开区间3(,3)2-,导函数)(x f '在3(,3)2-内的图象如图所示,则函数)(x f 的单调增区间是_____________类型三:利用导数的几何意义判断图像。

8. (2009湖南卷文)若函数()y f x =的导函数在区间[,]a b 上是增函数,则函数()y f x =在区O 1 2 xyxyyO1 2 yO1 2 xO 12xC D O1 2 xy)(x f y '=xoy间[,]a b上的图象可能是( )A . B. C. D.9.若函数)('xfy=在区间),(21xx内是单调递减函数,则函数)(xfy=在区间),(21xx内的图像可以是()A B C D10.(选做)已知函数y=f(x),y=g(x)的导函数的图象如下图,那么y=f(x),y=g(x)的图象可能是()类型四:根据实际问题判断图像。

原函数与导函数的奇偶关系证明

原函数与导函数的奇偶关系证明

原函数与导函数的奇偶关系证明原函数与导函数的奇偶关系是微积分中一个重要的概念。

在研究函数的性质时,我们常常需要分析函数及其导函数的奇偶性。

通过研究函数的奇偶性,我们可以得到函数在坐标系中的对称关系,从而更好地理解函数的行为。

我们来回顾一下奇函数和偶函数的定义。

一个函数被称为奇函数,当且仅当对于任意的x,有f(-x)=-f(x)成立。

换句话说,奇函数在原点对称。

例如,函数f(x)=x^3就是一个奇函数。

因为f(-x)=(-x)^3=-x^3=-f(x)。

另一方面,一个函数被称为偶函数,当且仅当对于任意的x,有f(-x)=f(x)成立。

换句话说,偶函数在y轴对称。

例如,函数f(x)=x^2就是一个偶函数。

因为f(-x)=(-x)^2=x^2=f(x)。

现在,让我们来研究原函数和导函数之间的奇偶关系。

假设f(x)是一个函数,F(x)是它的原函数,即F'(x)=f(x)。

我们可以推导出以下结论:1. 如果f(x)是奇函数,那么F(x)是偶函数。

这是因为由于f(x)是奇函数,我们有f(-x)=-f(x)。

然后,根据原函数和导函数的关系,我们可以得到F'(-x)=-f(-x)=-(-f(x))=f(x),即F'(-x)=f(x)。

这意味着F(x)在y 轴对称,即F(x)是偶函数。

2. 如果f(x)是偶函数,那么F(x)是奇函数。

这是因为由于f(x)是偶函数,我们有f(-x)=f(x)。

然后,根据原函数和导函数的关系,我们可以得到F'(-x)=f(-x)=f(x),即F'(-x)=f(x)。

这意味着F(x)在原点对称,即F(x)是奇函数。

通过这样的推导,我们可以看到原函数和导函数的奇偶关系。

这个关系告诉我们,如果我们知道一个函数是奇函数或偶函数,我们可以推断出它的原函数是什么奇偶性。

这对于研究函数的性质和行为非常有用。

举例来说,我们考虑函数f(x)=sin(x)。

我们知道sin(x)是一个奇函数,因为sin(-x)=-sin(x)。

原函数与导函数的奇偶关系证明

原函数与导函数的奇偶关系证明

原函数与导函数的奇偶关系证明原函数与导函数的奇偶关系是微积分中一个重要的概念,它可以帮助我们更好地理解函数的性质和特点。

在本文中,我们将探讨原函数与导函数的奇偶关系,并通过一些例子来加深理解。

我们需要了解什么是奇函数和偶函数。

一个函数f(x)被称为奇函数,当且仅当f(-x)=-f(x)。

一个函数f(x)被称为偶函数,当且仅当f(-x)=f(x)。

例如,函数f(x)=x^3是一个奇函数,而函数f(x)=x^2是一个偶函数。

接下来,我们来探讨原函数与导函数的奇偶关系。

假设f(x)是一个偶函数,那么它的导函数f'(x)是一个奇函数。

为什么呢?我们来看一下导函数的定义:f'(x) = lim(h->0) [f(x+h) - f(x)] / h如果f(x)是一个偶函数,那么f(x+h)和f(x)的差值也是一个偶函数,因为偶函数的性质是f(-x)=f(x),所以f(x+h)-f(x)也是一个偶函数。

因此,导函数f'(x)中的差值也是一个偶函数。

另外,由于h是一个实数,所以h的取值可以是正数或负数。

当h取负数时,f(x-h)-f(x)也是一个偶函数。

因此,导函数f'(x)中的差值也是一个奇函数。

综上所述,如果f(x)是一个偶函数,那么它的导函数f'(x)是一个奇函数。

同样地,如果f(x)是一个奇函数,那么它的导函数f'(x)是一个偶函数。

这是因为,当f(x)是一个奇函数时,f(x+h)-f(x)是一个奇函数,而f(x-h)-f(x)也是一个奇函数。

因此,导函数f'(x)中的差值是一个偶函数。

下面,我们通过一些例子来加深理解。

假设f(x)=x^2是一个偶函数,那么它的导函数f'(x)=2x是一个奇函数。

这意味着,f(x)的图像是关于y轴对称的,而f'(x)的图像是关于原点对称的。

另外,如果我们在f(x)的图像上选择一个点(x,f(x)),那么在f'(x)的图像上对应的点就是(x,f'(x))。

原函数与导函数的关系

原函数与导函数的关系

课题:探究原函数与导函数的关系首师大附中 数学组 王建华设计思路这节课是在学完导数和积分之后,学生从大量的实例中对原函数和导函数的关系有了一定的认识的基础上展开教学的。

由于这部分内容课本上没有,但数学内部的联系规律和对称美又会使学生既觉得有挑战性又充满探究的兴趣。

备这个课的过程中我虽然参考了大量已有的资料,但需要做更深入地思考这些命题间的联系,以什么方式展开更利于学生拾级而上,最终登上高峰体会一览众山小的乐趣和成就感。

教师实际上是在引导学生进行一次理论的探险,大胆地猜,小心地证,谨慎地修改条件,步步逼近真理。

最终学生能否记住这些结论并不重要,重要的是研究相互关联的事物的一般思路和方法。

对优秀生或热爱数学的学生来说会有更多的收获。

整个教学流程1. 从经验观察发现,猜想得命题p,q. 这两个命题为真命题,证明它们的方法用复合函数求导,比较容易上手。

2. 学生自然会想到这个命题的逆命题是否成立,尝试证明。

证明的思路也要逆向思考。

发现由于导数确定后原函数不能唯一确定,有上下平移的可能,这样关于y 轴对称的性质能够保持,但关于原点对称的性质就不能保证了。

3. 函数的平移不改变函数图象的对称性,因此将奇函数的性质拓展为关于中心对称,将偶函数的性质拓展为关于直线x a =对称,研究前面的四个命题还是否成立。

研究方法可以类比迁移前面的方法。

能成立的严格证明,不能成立的举出反例,并尝试通过改变条件使之成为真命题。

4.已有成果的应用:利用二次函数的对称性性质研究三次函数的对称性。

教学目标在这个探究过程中1.加强学生对导函数与原函数相生相伴的关系的理解;2.增强学生对函数对称性的理解和抽象概括表达能力;3体验研究事物的角度,一个新定理是怎样诞生的,怎样才是全面地认识了一个事物。

4.培养学生的思辨能力,分析法解决问题的能力,举反例的能力等等。

教学重点以原函数与导函数的对称性的联系为载体让学生体验观察发现、概括猜想、辨别真伪的过程。

原函数与导函数的关系

原函数与导函数的关系

课题:探究原函数与导函数的关系首师大附中 数学组 王建华设计思路这节课是在学完导数和积分之后,学生从大量的实例中对原函数和导函数的关系有了一定的认识的基础上展开教学的。

由于这部分内容课本上没有,但数学内部的联系规律和对称美又会使学生既觉得有挑战性又充满探究的兴趣。

备这个课的过程中我虽然参考了大量已有的资料,但需要做更深入地思考这些命题间的联系,以什么方式展开更利于学生拾级而上,最终登上高峰体会一览众山小的乐趣和成就感。

教师实际上是在引导学生进行一次理论的探险,大胆地猜,小心地证,谨慎地修改条件,步步逼近真理。

最终学生能否记住这些结论并不重要,重要的是研究相互关联的事物的一般思路和方法。

对优秀生或热爱数学的学生来说会有更多的收获。

整个教学流程1. 从经验观察发现,猜想得命题p,q. 这两个命题为真命题,证明它们的方法用复合函数求导,比较容易上手。

2. 学生自然会想到这个命题的逆命题是否成立,尝试证明。

证明的思路也要逆向思考。

发现由于导数确定后原函数不能唯一确定,有上下平移的可能,这样关于y 轴对称的性质能够保持,但关于原点对称的性质就不能保证了。

3. 函数的平移不改变函数图象的对称性,因此将奇函数的性质拓展为关于中心对称,将偶函数的性质拓展为关于直线x a =对称,研究前面的四个命题还是否成立。

研究方法可以类比迁移前面的方法。

能成立的严格证明,不能成立的举出反例,并尝试通过改变条件使之成为真命题。

4.已有成果的应用:利用二次函数的对称性性质研究三次函数的对称性。

教学目标在这个探究过程中1.加强学生对导函数与原函数相生相伴的关系的理解;2.增强学生对函数对称性的理解和抽象概括表达能力;3体验研究事物的角度,一个新定理是怎样诞生的,怎样才是全面地认识了一个事物。

4.培养学生的思辨能力,分析法解决问题的能力,举反例的能力等等。

教学重点以原函数与导函数的对称性的联系为载体让学生体验观察发现、概括猜想、辨别真伪的过程。

数学专升本导数知识点总结

数学专升本导数知识点总结

数学专升本导数知识点总结一、导数的定义及几何意义1.1 导数的定义函数y=f(x)在点x=a处的导数定义为:f'(a) = lim(h→0) [f(a+h) - f(a)] / h其中f'(a)为函数f(x)在点x=a处的导数。

导数的定义是利用极限的概念来描述函数在某一点处的瞬时变化率。

1.2 导数的几何意义导数可以解释函数在某一点处的切线斜率,也可以表示函数在该点的瞬时变化率。

直观来说,导数就是函数曲线在某一点处的斜率,可以描述函数在该点的变化情况。

1.3 导数的图形表示导数的图形表示是函数的切线斜率的曲线图形,可以通过导数曲线的斜率正负来判断函数的递增和递减区间,以及函数的凹凸性质。

二、导数的计算方法及性质2.1 基本导数公式在微积分中,有一些基本函数的导数公式,例如幂函数、指数函数、对数函数、三角函数等的导数公式。

(1) 幂函数的导数对于函数y=x^n,其中n是任意实数,则该函数的导数为:y' = nx^(n-1)(2) 指数函数的导数对于函数y=a^x,其中a为常数,该函数的导数为:y' = a^x * ln(a)(3) 对数函数的导数对于函数y=log_a(x),其中a为常数,该函数的导数为:y' = 1/(xlna)(4) 三角函数的导数三角函数的导数公式包括sinx、cosx、tanx、cotx、secx、cscx的导数公式。

2.2 导数的基本运算法则导数的基本运算法则包括了导数的加法法则、乘法法则、商法则和复合函数的导数公式。

(1) 导数的加法法则若函数y=f(x)和y=g(x)的导数分别为f'(x)和g'(x),则这两个函数的和(差)的导数为:(f+g)' = f' + g'(2) 导数的乘法法则若函数y=f(x)和y=g(x)的导数分别为f'(x)和g'(x),则这两个函数的乘积的导数为:(fg)' = f'g + fg'(3) 导数的商法则若函数y=f(x)和y=g(x)的导数分别为f'(x)和g'(x),则这两个函数的商的导数为:(f/g)' = (f'g - fg') / g^2(4) 复合函数的导数若函数y=f(g(x)),其中f和g都可导,则该复合函数的导数为:y' = f'(g) * g'2.3 隐函数的导数对于隐函数的导数计算,通常使用求导公式结合隐函数求导法则进行计算。

函数与图像的关系与变化规律

函数与图像的关系与变化规律

函数表示方法:函数的 表示方法主要有解析法 、表格法和图象法三种 。
解析法:用含有数学表 达式的等式来表示两个 变量之间的函数关系的 方法叫做解析法。
表格法:用列表的方法 来表示两个变量之间函 数关系的方法叫做列表 法。
图象法:把一个函数的 自变量$x$与对应的因变 量$y$的值分别作为点的 横坐标与纵坐标,在直 角坐标系内描出它的对 应点,所有这些点所组 成的图形叫做该函数的 图象。
在平面上画出隐函数中等于某一常 数的点的轨迹,即等值线。通过一 系列等值线可以大致了解隐函数的 图像形状。
梯度法
利用隐函数的梯度方向可以判断函 数值的变化趋势,从而绘制出函数 的图像。这种方法适用于难以转化 为显函数的隐函数。
03
函数变化规律分析
增减性判断方法
导数法
通过求导判断函数的单调性,若 在某区间内导数大于0,则函数在 该区间内单调增加;若导数小于0 ,则函数在该区间内单调减少。
各点。
曲线连接
用平滑的曲线连接各点 ,得到函数的图像。
多元函数图像绘制技巧
确定函数定义域
根据函数表达式确定函数的定义域,即函 数自变量的取值范围。
曲面连接
用平滑的曲面连接各点或区域,得到函数 的图像。
选择合适的视角
对于多元函数,需要选择合适的视角来展 示函数的图像,如三维坐标系或等高线图 等。
描点画图
反函数的图像
反函数的图像与原函数的图像关于直线y=x对称。如果原函数在某区间内单调, 则其反函数在该区间内也存在且单调性相反。
05
参数方程与极坐标下函数关系研 究
参数方程基本概念及性质介绍
参数方程定义
通过引入一个或多个参 数来表示变量间关系的 方程,常用于描述曲线 和曲面。

探析导函数与原函数间的对称性关系

探析导函数与原函数间的对称性关系

探析导函数与原函数间的对称性关系
导函数与原函数间的对称性关系是数学中一个重要的概念,指的是原函数与其导函数之间的关系。

它们之间存在着一种对称的关系,即原函数的导数是其导函数的原函数。

首先,我们来看一下原函数与其导函数之间的关系。

原函数是一个函数,它表示某个变量与另一个变量之间的关系,而导函数则是原函数的导数,它表示原函数的变化率。

由此可见,原函数的导数就是其导函数的原函数,即原函数与其导函数之间存在着一种对称的关系。

其次,我们来看一下原函数与其导函数之间的对称性。

原函数与其导函数之间的对称性体现在两方面:一是原函数的导数是其导函数的原函数;二是原函数的导数与其导函数的原函数的图形是对称的。

最后,我们来看一下原函数与其导函数之间的应用。

原函数与其导函数之间的对称性可以用来求解极值问题,即在一定范围内求函数的最大值或最小值。

由于原函数的导数是其导函数的原函数,因此可以利用原函数的导数来求解极值问题。

导函数与原函数间的对称性关系是数学中一个重要的概念,它体现在原函数与其导函数之间的关系以及原函数与其导函数之间的对称性上,并且可以用来求解极值问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导函数图像类型题
类型一:已知原函数图像,判断导函数图像。

1. (福建卷11)如果函数)(x f y =的图象如右图,那么导
函数
()y f x '=的图象可能是 ( )
2. 设函数f (x )在定义域内可导,y=f (x )的图象如下左图所示,则导函
数y=f
(x )的
图象可能为( ) 3. 函数()y f x =的图像如下右图所示,则()y f x '=的图像可能是
( )
4. 若


2()f x x bx c
=++的图象的顶点在第
四象限,则其导函数'()f x 的图象是( )
类型二:已知导函数图
像,判断原函数图像。

5. (2007年广东佛山)设)(x f '是函数)(x f 的导函数,)(x f y '=的图
象如右图所示,则)(x f y =的图象最有可能的是( )
知函数
象可能是
7.
函数)(x f 的定
义域
为开区间(
,3)2
-
,导函数)
(x f '在
3
(,3)2
-内的图象如图所示,则函数)(x f 的单调增区间是_____________ 类型三:利用导数的几何意义判断图像。

8. (2009湖南卷文)若函数()y f x =的导函数在区间[,]a b 上是增函数,则函数()y f x =在区间[,]a b 上的
图象可能是
( )
A .
B .
C .
D .
9.若函数)('
x f y =在区间),(21x x 内是单调递减函数,则函数)(x f y =在区间),(21x x 内的图像可以是( )
A B C D
10.(选做)已知函数y =f (x ),y =g (x )的导函数的图象如下图,那么y =f (x ),y =g (x )的图象可能是
( )
类型四:根据实际问题判断图像。

9. (2010年浙江省宁波市高三“十校”联考文科)如右图所示是某一容器的三视图,现向容器中匀速注水,
容器中水面的高度h 随时间t 变化的可能图象是( ) 10.如图,直线l 和圆c ,当l 从0l 开始在平面上绕点o 按逆时针方向匀速转动(转动角度不超过︒
90)时,它扫过的园内阴影部分的面积S 是时间t 的函数,这个函数的图
像大致是( )
11.如图, 水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中, 请分别找出与各容器对应的水的高度h 与时间t 的函数关系图
象.
10. 已知函数
)(x f y =的导函数)(x f y '=的图像如下,
则( )
函数)(x f 有1个极大值点,1个极小值点
函数
)(x f 有2个极大值点,2个极小值点 函数)(x f 有3个极大值点,1个极小值点 函数)(x f 有1个极大值点,3个极小值点
11. (2008珠海质检理)函数)(x f 的定义域为
),(b a ,
其导函数),()(b a x f 在'内的图象如图所示,则函数)(x f 在区间),(b a 内极小值点的个

是( )
(A).1 (B).2 (C).3 (D).4 12. 已知函数3
2
()f x ax bx cx =++在点0x 处取得极大值5,

导函数'()y f x =的图象经过点(1,0),(2,0),如图所示.求:
(Ⅰ)0x 的值; (Ⅱ),,a b c 的值. 13. 函数()y f x =在定义域3
(,3)2
-
内可导,
其图象如图,记
()y f x =的导函数为/()y f x =,则不等式
/()0
f x ≤的解集为_____________
14. 如图为函数32()f x ax bx cx d =+++的图象,
'()f x 为函
数()f x 的导函数,则不等式'()0x f x ⋅<的解集为_____ _
15. 【湛江市·文】函数2
2
1ln )(x x x f -
=的图象大致是 A . B . C . D .
16. 【珠海·文】如图是二次函数a bx x x f +-=2
)(的部分图象,则函数)(ln )(x f x x g '+=的零点所在的区
间是 ( )
A.)21,41(
B.)1,21(
C. D.
())3,+∞。

相关文档
最新文档