爆破试验方案.
工程爆破实验指导书

爆破实验指导书左金库编石家庄铁道大学土木学院安全与爆破实验室2010年10月实验一电雷管的认识和电爆网路实验1.实验目的:电雷管是指通电后引起爆炸的雷管,分为瞬发电雷管和延期电雷管两种。
瞬发电雷管是指通电后立即爆炸的电雷管,延期电雷管是指装有延期元件或延期药的电雷管。
多发电雷管可以根据工程的需要连接成串联、串并联、并串联等多种连接方式。
通过本次实验,应达到如下目的:了解电雷管的外形特征及内部构造。
了解电雷管全电阻的测量方法,电爆网路导通测试方法。
了解常用电爆网络的联接方式,培养学生的动手操作能力。
学会计算所连爆破网路中,流过每发电雷管的电流,从而根据《爆破安全规程》规定,判断所连网路是否能准爆。
2. 仪器和材料:瞬发电雷管、延期电雷管、电雷管引火头、电雷管专用电表、220V直流电源、剥线钳、爆破主线、绝缘胶布。
3. 操作步骤:观察瞬发电雷管、延期电雷管的外形特征。
观察电雷管引火头的外形特征及引燃过程。
用爆破专用电表测量爆破主线的电阻R1。
取两把共40发电雷管,将电雷管置于指定的容器内,用爆破专用电表测量电雷管的全电阻,记录每发雷管的电阻值r1,r2……r40。
选取20发电阻相等或相近的电雷管进行网路连接实验,设每发电雷管的电阻值为r1,r2……r20。
首先,将20发测好的电雷管按图2-1连接成简单的串联网路,计算网路的电阻和流过每发电雷管的电流。
计算过程如下:R= R1+(r1+ r2+……r20)(2-1)I=U/R (2-2)i=I (2-3)式中 R——网路电阻,Ω;R1——爆破主线电阻,Ω;r——电雷管全电阻,Ω;I——网路电流,A;i——流过每发雷管的电流,A;U——起爆电源电压,V;本次实验取220。
用专用爆破电桥测量网路的电阻,并和计算的网路电阻比较。
若网路不通或实测电阻值与计算电阻值误差较大,则说明网络连接有问题,应仔细检查连接的网路,找出原因,直至实测与计算的网路电阻值误差满足要求。
试验洞主洞开挖爆破施工方案

试验洞主洞开挖爆破施工方案洞主洞是一种常见的岩石工程,需要通过挖掘和爆破来实现。
为了确保施工的安全和高效,在制定洞主洞开挖爆破施工方案时,需要考虑以下几个方面:洞主洞的类型和规模、工程环境、岩石的物理和力学特性以及爆破的安全和环保要求等。
一、洞主洞的类型和规模:洞主洞的类型包括隧道、坑道、地下室等。
根据洞主洞的规模和形状,选择合适的开挖和爆破方法。
比如,对于小型隧道可以采用手工开挖或机械挖掘,而对于大型隧道则需要采用爆破方法来加速开挖进度。
二、工程环境:施工方案还需要考虑周围的环境因素,包括地质构造、地下水位、土体的稳定性等。
对于存在地下水的区域,需要采取相应的防水措施,以防止水的渗入和破坏岩石。
三、岩石的物理和力学特性:洞主洞的开挖和爆破要根据岩石的物理和力学特性进行评估和选择。
常见的岩石类型包括砂岩、石灰石、花岗岩等。
根据岩石的强度、硬度和断裂带的分布情况,确定合适的爆破参数和方案。
四、爆破的安全和环保要求:洞主洞的爆破施工需要满足安全和环保要求。
在选取爆破药剂和装填方式时,需要确保其稳定性和安全性,并按照相关法规和规范进行操作。
同时,要注意控制爆破震动、飞石飞砂等对周围环境和工程设施的影响。
根据以上几个方面,制定洞主洞开挖爆破施工方案的主要步骤如下:1.确定洞主洞的类型和规模,根据工程环境和周围条件选择合适的开挖和爆破方法。
2.进行岩石勘察和采样,了解岩石的物理和力学特性。
可通过现场观察、岩石钻取和试验等方式获取相关数据。
3.根据岩石特性,确定合理的爆破参数,包括药量、孔距、孔深、装药方式等。
可借助爆破软件和模拟试验进行计算和分析。
4.编制爆破施工方案,包括雷管连接方式、装药方案、起爆序列等。
同时,组织人员进行安全教育和培训,确保施工过程中的安全。
5.在施工过程中进行现场监测和控制,包括爆破震动监测、岩石位移监测等。
及时调整施工方案,确保施工的安全和效果。
6.施工结束后,进行爆破后岩石体的处理,包括清理、加固等。
爆破试验报告

爆破试验报告
测试对象:建筑结构
测试地点:某市区建筑工地
测试时间:2020年7月1日
测试机构:某建筑材料检测机构
一、测试目的
本次爆破试验的目的在于检测建筑结构在受到外力冲击或破坏时的承载能力和安全性。
二、测试方法
采用常规的爆破试验方法,即在建筑结构的指定位置用爆炸物品进行爆破,观察建筑结构受力情况并记录数据。
三、实验过程及结果
1. 测试准备
测试施行前,对测试对象进行彻底的检查和整理,确保其表面干净无杂质,并具备承载试验压力的能力。
2. 测试过程
测试人员先在建筑结构的指定位置进行了标记,然后在此位置处进行装药:
(1) 查询设计结构强度参数,确定装药量。
(2) 将药剂均匀地装入药包内。
(3) 监督工程人员做好安全保障措施。
(4) 加上导火索,拉远安全距离等待装置引爆。
(5) 装置引爆后,观察抵抗力和破坏位置等信息。
3. 测试结果
本次测试得到的结果如下:
(1) 爆破后建筑结构受到了明显的冲击。
(2) 试验结构成功承受了爆破冲击力,未出现明显破坏情况。
四、结论
这次爆破试验验证了该建筑结构能够承担一定范围内的外力冲击,具有较高的结构承载能力和安全性。
但是,建筑结构的承载能力还有待进一步的测试和检测。
爆破试验方案

贵州省科技计划炸药混装车爆破关键技术研究项目现场试验方案1混装炸药性能试验1.1混装炸药成分配比等改变条件下炸药爆炸性能测试试验1.1.1铵油炸药◆改变柴油含量3.5%~6.5%,测试混装铵油炸药爆炸性能参数,如爆速等。
试验目标:从测试数据中找出炸药性能变化规律,确定最佳的配比范围(或配比值)试验方法:每隔0.5%做一组试验(采用大直径药包,Ф120mm),共7组每组3根2m长管子,2两根PVC管,1根钢管另考虑每组加2个实际炮孔内试验◆药包直径(临界直径~极限直径)的改变,炸药性能变化情况(约束条件可考虑在炮孔、PVC管或钢管内)试验目标:从临界直径到爆速最大的药包直径(极限直径)之间变化,找出变化规律,试着确定极限直径试验方法:PVC管:药包直径从60mm到120mm,变化步长为10mm,共7组钢管:药包直径从50mm到120mm,变化步长为20mm,共5组管长:每根2m长每组3根管,2根PVC管,1根钢管,2个炮孔◆炸药密度(主要指装药密度)变化,对爆炸性能的影响试验目标:找出爆炸性能随装药密度变化的变规律,确定最佳的装药密度,与相应的岩石进行匹配试验方法:采用大直径药包,Ф120mm,密度从0.8~1.0(0.7~1.0)g/cm3,变化步长为0.1,共4组每组3根管,长2m,2根PVC管,1根钢管,2个炮孔◆改变铵油炸药柴油与硝酸铵的混合后存放时间,获得其爆炸参数具体包括:①炸药生产厂内测试(能否考虑温度、湿度的影响)②爆破施工现场测试试验目标:观察不同存放时间,获得不同的爆破参数,分析其变化规律试验方法:采用大直径药包,Ф120mm,每组3根管,长2m,2根PVC管,1根钢管存放时间:10分钟,20分钟,30分钟,1小时,1.5小时,2小时,3小时共7组◆铵油炸药含水量的变化对炸药性能的影响(炸药生产厂内测试)试验目标:(1)得出爆炸性能随含水量的变化规律;(2)分别找出,在何种含水量的情况下,炸药①正常爆轰、②爆燃、③拒爆试验方法:含水量从0.1%~0.5%(或直至拒爆的含水量)变化,变化步长为0.1%,测试爆速采用大直径药包,Ф120mm,每组3根管,长2m,2根PVC管,1根钢管共5组1.1.2乳化炸药◆在允许的范围内,改变乳化炸药的油相、敏化剂、添加剂等的比例,测试其爆炸性能参数(此部分主要在炸药厂内完成)试验目标:在一定范围内,分别改变油相、敏化剂、添加剂的含量,获取不同爆炸性能的混装乳化炸药。
爆破实验大纲

一、爆破试验大纲编写依据1、《电站基础开挖支护施工技术要求》2、前期开挖施工中的爆破参数二、爆破试验目的1、验证爆破孔孔径、间排距、爆破单耗等参数;2、验证预裂孔孔径、间距、线装药密度以及爆后预裂面平整度;3、通过爆破试验分析爆破震动对建基面的影响;4、通过爆破试验分析爆破对永久建筑物、混凝土等的影响。
三、试验场地四、试验工艺流程及参数1、爆破试验工艺流程:爆破试验工艺流程:试验内容设计、审批f现场标识、钻孔、检查及爆前声波检测f装药f堵塞f连网f检查记录f起爆f围岩观测及弃渣拉运一爆破试验结果分析及爆后声波检测f提供修正后的爆破试验设计f下一循环f最优爆破参数确定。
(1)声波检测:利用设计图中的声波检测孔,导岩石爆前、爆后进行声波测试。
以便控制爆破梯段和单响装药量。
(2)爆破质点速度测试:因本工程帷幕灌浆和大坝混凝土均在坝基开挖完毕后进行施工,同时周围无永久建筑物,对此在开挖阶段不做爆破质点速度测试。
2、爆破参数:爆破参数主要包括炸药及装药结构,不偶合系数,爆破间距,钻孔深度,起爆顺序、抵抗线、岩石坚硬程度等。
(1)炸药:本工程爆破所要求的炸药是爆速低、猛度低、密度低、爆炸稳定性高的低级或低中级炸药。
硝铵类炸药符合上述爆速低、猛度低、密度低的要求。
本工程炸药选用2#岩石硝铵炸药(①90、①70或散装炸药)、1#岩石乳化炸药(570和①32)(2)起爆材料的选择起爆材料根据作业环境并确保安全的前提下进行选择。
雷管选用8号火雷管和非电毫秒雷管(MS〜,脚线〜)m导爆索选用普通导爆索(外表为红色)。
(3)装药结构:爆破孔、缓冲孔采用连续装药,预裂孔采用不偶合间隔装药。
(4)不偶合系数:构成预裂孔不偶合装药的途径:一是不改变现有普通硝铵类炸药药卷直径而加大炮孔直径;二是改变现有普通硝铵类炸药药卷直径为小直径药卷。
本工程根据以往石方明挖,不偶合装药选用后者,不偶合系数选用1.3~2.8。
(5)孔排距:1)预裂孔间距和抵抗线:根据施工部位和岩石情况,预裂孔间距选在0.8m〜1.2m,坝肩、坝基部位岩石较软弱、节理裂隙较发育或跨度较小时,预裂孔间距选在0.5〜0.7m;中等硬度以上的岩石,预裂孔间距选在0.7〜0.8m;岩石坚硬完整时,预裂孔间距选在0.8〜1.0m。
爆破施工方案3

爆破施工方案3
在工程施工中,爆破技术是一种常用的手段,能够对岩石、土壤等硬质物体进
行有效地破碎和拆除,为工程施工提供了便捷有效的方式。
本文将就爆破施工方案
3进行详细介绍,包括施工前期准备、爆破设计、安全措施等内容。
1. 施工前期准备
在进行爆破施工之前,需要做好以下准备工作:
•审查施工区域周围的环境,确保没有人员和设施受到影响。
•对施工区域进行详细勘察,了解地质情况,确定爆破点位和方向。
•编制详细的爆破设计方案,包括装药量、起爆顺序等内容。
•安排专业人员进行爆破方面的指导和操作。
2. 爆破设计
针对爆破施工方案3,需要根据具体情况进行具体设计,以下是一般的爆破设
计要点:
•确定炸药的种类和数量,根据岩石硬度和爆破效果来选择。
•设计合适的装药方案,确保爆破效果均匀而又有效。
•制定合理的起爆顺序,防止空爆或炸药未能充分爆炸的情况发生。
•定期检查爆破设备和炸药,确保施工质量和安全。
3. 安全措施
在进行爆破施工时,安全至关重要,以下是一些常见的安全措施:
•对施工现场进行严格管控,确保周边区域不受影响。
•在爆破前做好警示标志,清场警报,以确保周边人员及时撤离。
•严格控制爆破设备的使用和操作,确保操作人员具备相关资质和经验。
•确保爆破后现场安全清理,消除爆炸余波,防止二次伤害发生。
结语
综上所述,爆破施工方案3是一项需要高度重视安全和技术要求的工程任务,
在施工前期准备、爆破设计和安全措施方面需严格执行相关规定,确保施工过程安全高效进行。
希望本文能对爆破施工方案3的实施提供一定的参考和帮助。
远距离爆破

远距离爆破一、实验项目:远距离爆破二、放炮距离:1520米三、放炮地点:东部区南部-160运输大巷四、作业队组:五、参加人员:六、试验器材:1、放炮器型号:FD200X型煤矿用电容式发爆器(额定负载电阻1220 Ω,输出电压峰值3000V,8.7≤引燃冲量≤12.0A2ms)2、放炮母线型号:MY3×4+1×43、雷管:段发毫秒延期电雷管总数100发4、欧母表:数字式低阻计TM-508A,测量范围0.1Ω~20KΩ,分6档位,操作温度及湿度5°C~40°C,低于80%RH,储存温度及湿度-10°C~60°C,低于70%RH,精确度±(0.3%+4)。
七、实验过程:1、实验炮眼:13.5m2的断面总共打了100个炮眼,掏槽眼32个眼深1.7米;压眼32个眼深1.6米;周边眼34个眼深1.5米。
掏槽中心炸眼2个眼深1.3米。
2、装药量:采用反向爆破法装药,使用乳化炸药,火药量为45kg。
3、雷管挑选:利用欧姆表对雷管进行测试电阻值,逐个雷管进行排查,在110发雷管挑选过程中,发现有6发电阻值在5Ω以上雷管挑出不用,共计选出104发可使用雷管,使用100发,每发电阻值在4.5Ω~4.9Ω之间。
4、在装药前,用压风管将炮眼内的岩粉全部吹净,达到装药的理想效果。
5、由专职放炮员采用串联式联炮。
6、根据串联电阻计算公式计算,100发电雷管的阻值为500Ω左右。
总结上次联炮测试中存在的问题,在联炮过程中,将雷管脚线头擦干净,每联一段用欧姆表测试一次,达到规定值后再全断面联接好,再用欧姆表测试一次,测得全断面雷管电阻值为540Ω,然后将全断面雷管脚线头联在母线上,母线末端测得电阻值为570Ω,进行起爆成功。
7、爆破时间:中午10点30分正式起爆成功。
八、实验结果:炮响后,待炮烟散净后参加实验人员共同进入工作面进行复查,发现工作面所有炮眼全部启爆,没留一点炮窝子,爆破效果非常理想,实际进尺1.5米。
爆破试验方案

爆破试验方案爆破试验是一种常见的实验方法,主要用于测试材料或结构在受到外部力量作用时的耐受程度。
本方案旨在详细描述爆破试验的相关步骤和注意事项,以确保试验的安全性和准确性。
一、试验目的爆破试验的目的是评估材料或结构在受到爆炸冲击下的承载能力和稳定性。
通过测试材料的破坏点和变形情况,可以了解其在实际应用中的性能,为设计和工程应用提供参考。
二、试验准备1. 选取合适的爆破试验场地,确保场地空旷且安全。
禁止在人口密集区域或建筑物附近进行试验。
2. 根据试验要求,选择合适的爆破装置和爆破材料。
确保装置的可靠性和稳定性。
3. 设计并搭建试验结构,确保其能够承受试验过程中的爆炸冲击,同时保证试验数据的准确性。
4. 向有关部门申请试验许可,并保证符合相关法律法规。
三、试验步骤1. 安全检查:在进行试验之前,对试验装置和试验场地进行全面的安全检查,确保不存在潜在危险因素。
2. 测量和记录:在试验开始前,应准确测量和记录试验结构的初始状态和尺寸。
此外,还需要测量和记录试验装置和爆破材料的参数。
3. 安全防护:进行爆破试验时,应做好必要的安全防护措施,包括佩戴防护眼镜、手套、耳塞等个人防护装备,并设置安全警戒线。
4. 点火方式:根据试验要求选择合适的点火方式,并确保点火操作的准确性和安全性。
5. 试验观察:在试验过程中,通过摄像、录像等方式对试验现场进行持续观察和记录,以获取准确的试验数据。
6. 试验结束:试验结束后,对试验结构和装置进行全面检查,检查是否有破损或变形情况,并及时做好安全处理。
四、试验注意事项1. 严格遵守相关安全规定,并根据试验要求选择适当的爆破装置和爆破材料。
2. 在试验前进行全面的安全检查,并确保试验装置和场地的安全性。
3. 制定合理的试验方案和操作流程,确保试验过程的安全可控。
4. 注意个人防护,佩戴相关防护装备,并设置安全警戒线。
5. 控制试验参数,确保试验条件的准确性和可重复性。
6. 在试验过程中,保持试验装置和结构的稳定性,并进行连续观察和记录。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大方县岔河水库灌溉工程料场开采爆破试验施工方案贵州水利实业有限公司大方县岔河水库灌溉工程项目处二0 一二年十一月三日批准:陈江筑审核:黄国秋罗亮校核:罗亮童绥福编写:刘斌蒋军周武群一、工程概况二、设计依据三、爆破方案选择四、料场开采爆破工艺试验五、材料,机具,劳力安排六、安全技术管理措施七、环境保护及水土保持要求八、持术措施—、工程概况:1、工程溉况大方县岔河水库灌溉工程位于位于大方县西南的高店乡大山村境内,水库枢纽位于乌江流域六冲河水系白甫河支流的一级支流岔河上,坝址距县城24km距毕节市64km距贵阳市186km交通条件较好。
水库是以灌溉、农村人畜饮水为主,兼顾县城供水等多种功能的一项综合性水利工程。
大方县岔河水库坝址以上流域集水面积为45.3km2,多年平均径流量2168万Km3, 水库正常蓄水位高程1445.00m,兴利库容715万m3,校核洪水位高程1447.94(P=0.1%), 总库容1124万m3,为中型水库,工程规模属中型,枢纽永久性主要建筑物有:混凝土面板堆石坝、溢洪道、导流兼放空隧洞、取水口、引水隧洞等建筑物。
本工程大坝需要石料约474654万m3,其中特殊垫层料2922 m3,垫层料22647 m3, 过渡料32815 m3,堆石料410513m3,干砌块石5757 m3及混凝土所需砂石骨料。
2、周围环境:周围最近约200m范围内有部份散落民房,爆破环境条件一般。
3、工程要求:(1)由于本工程为面板堆石坝,为了满足工程设计要求和结合现场实际,采石料场岩石爆破应采用台阶深孔爆破,确保工期和安全;(2)爆破时边坡应保持相对平整;(3)爆破时不得对周边环境和构建筑物造成危害;(4)爆破后的级配要满足堆石坝设计要求。
二、设计依据:1、根据《爆破安全规程》GB6722-2003规定进行设计施工;2、根据设计文件(施工图)及图纸会审记录设计施工。
三、爆破方案选择:根据堆石坝体设计要求,在进行本次爆破方案设计中,必须充分考虑过渡料,大坝主堆石料,次堆石料、垫层料、下游干砌石护坡以及打砂料石、大坝基础碎石桩等开采等综合方案,为了达到理想的爆破效果,结合本工程实际情况,在编制爆破设计时,主要考虑以深孔延时挤压爆破为主的爆破方案。
四、料场开采爆破工艺试验1、爆破试验目的为堆石料开采提供能满足级配要求的深孔微差挤压钻孔爆破参数;为过渡料开采提供能满足级配要求的深孔微差挤压钻孔爆破参数;(1)合理的深孔爆破孔网参数及单孔耗药量的确定。
(2)研究不同爆破条件、地形和地质情况下的爆破振动衰减规律,以制定相应的开挖技术措施。
(3)通过对需要上坝的填筑各种料进行级配料爆破试验,确定相关爆破参数、单耗及级配料筛分测定。
(4)研究爆破对高边坡、临近建筑物及主体建筑物建基面的影响,以确定爆破安全控制标准。
2、爆破试验内容各种钻爆参数试验、开采爆破起爆网络试验、爆破振动影响、石料粒径、级配曲线及成品率等。
3、爆破试验方案为确保开采出优质的级配料,由有爆破资质证书的爆破工程师担任主设计,采用目前较为先进的深孔微差挤压爆破技术,在大规模石料钻爆开采前,结合生产进行级配料开采及其它试验,为本工程级配料开采提供科学的依据。
本试验实施中严格按爆破设计及爆破程序进行施工,爆破工程师到现场监督检查,确保按设计意图和设计参数进行。
确定各种梯段爆破爆破参数如下:第一组钻爆试验:主要针对过渡料的开采进行试验。
过渡料要求最大粒径不大于300mm,小于5mm的颗粒含量为小于20%〜30%的连续级配。
采用潜孔钻钻孔,孔径© 90mm,矩型布孔,孔深6.0m,孔网参数为2.0mx2.0m,单耗0.5〜0.7kg/m3,用膨化散装炸药进行耦合装药,微差挤压爆破。
过渡料爆破参数选择:孔径D:选用90mm直径钻头,故D=90mm;钻孔方向:钻倾斜孔,方向与台阶坡面一致,与水平面夹角85°;台阶高度H=6m,则钻孔深度L1=6m ;前排炮孔的最小抵抗线W1 :按经验公式W仁D (7.85A T L1/mqH) 1/2=0.9x( 7.85X 0.85X 0.7X 6/1.2x 0.6x 6) 1/2=2..2m式中:A ---装药密度,取0.85Kg/dm3;T ---装药长度系数,取0.7;m---炮孔密集系数,取1.2;q---炸药单耗,取0.6Kg/m3;D---炮孔直径,取0.9dm;其他符号同上。
经调整,取W1=2.0m,(5)炮孔排列和布孔方式:取爆破台阶宽度B=10m,长度L=20m,从台阶坡项线向边坡布孔的总排数Nb=B/W仁10/2〜5 排,布孔方式采取矩形布孔。
(6)孔间距a和排间距b:孔间距a取a1=2.0m;排间距b取b1=2.0m;每一排炮孔数N1= L/a 1=20/2〜10孔,共5排(7)单位炸药消耗量q取0.6~0.7kg/m3,本次取0.6kg/m3(8)装药量计算:第一排Q1=q*W1*a1*H=0.6 X 2X 2X 6=14.4Kg;刀Q1= N1*Q 1=10 X 14.4=144Kg;第二排Q2=K*q*b2*a2*H=1.1 X 0.6X 2.0X 2.0X 6=15.84Kg;刀Q2=N2*Q2=10*15.84=158.4Kg ;第三排Q3=K*q*b3*a3*H=1.1 X 0.6X 2.0X 2.0X 6=15.84Kg;刀Q3=N3*Q3=10*15.84=158.4Kg ;第四排Q4=K*q*b4*a4*H=1.1 X 0.6X 2.0X 2.0X 6=15.84Kg;刀Q4=N4*Q4=10*15.84=158.4Kg ;第五排Q5=K*q*b5*a5*H=1.1 X 0.6X 6.0X 6.0X 10=15.84Kg;刀Q5=N5*Q5=10*15.84=158.4Kg ;式中K---后排加强系数,取值范围1.1〜1.2,本式取1.1;第二组钻爆试验:主要针对堆石料爆破开采进行试验,要求最大粒径800m m,小于5mm的颗粒含量为小于20%的连续级配。
采用潜孔钻钻孔,孔径© 90mm,梅花型布孔,孔深10.0m,孔网参数为3.0X 3.0,单耗0.4〜0.50kg/m3,用膨化散炸药进行耦合装药,微差挤压爆破。
堆石料爆破参数选择:(1)孔径D:选用90mm直径钻头,故D=90mm;(钻孔方向:钻倾斜孔,方向与台阶坡面一致,即与水平面夹角85°;(2)台阶高度H=10m,则钻孔深度L仁10m;(3)前排炮孔的最小抵抗线W1 :按经验公式W仁D (7.85A T L1/mqH) 1/2=0.9X( 7.85X 0.85X 0.7X 10/1.2 X 0.45X 10) 1/2=2.94m式中:△---装药密度,取0.85Kg/dm3;T ---装药长度系数,取0.7;m---炮孔密集系数,取1.2;q---炸药单耗,取0.45Kg/m3;D---炮孔直径,取0.9dm;其他符号同上。
经调整,取W1=3.0m,(4)炮孔排列和布孔方式:取爆破台阶宽度B=12m长度L=12m 从台阶坡项线向边坡布孔的总排数Nb=B/W仁12/4 4 排,布孔方式采取梅花形布孔。
(5)孔间距a和排间距b:孔间距a取a1=3.0m;排间距b取b1=3.0m;每一排炮孔数N仁L/a1=12/3〜4孔,共4排(6)单位炸药消耗量q取0.4~0.5kg/m3,暂定0.45kg/m3(7)装药量计算:第一排Q1=q*W1*a1*H=0.45 X 3X 3X 10=40.5Kg;刀Q1= N1*Q 1=4 X 14.4=162Kg;第二排Q2=K*q*b2*a2*H=1.1 X 0.45X 3.0X 3.0X 10=44.55Kg;刀Q2=N2*Q2=4*44.55=178.2Kg ;第三排Q3=K*q*b3*a3*H=1.1 X 0.45X 3.0X 3.0X 10=44.55Kg;刀Q3=N3*Q3=4*44.55=178.2Kg ;第四排Q4=K*q*b4*a4*H=1.1 X 0.45X 3.0X 3.0X 10=44.55Kg;刀Q4=N4*Q4=4*44.55=178.2Kg ;式中K---后排加强系数,取值范围1.1〜1.2,本式取1.1;(8)起爆方式和起爆网络设计由于本工程对石料的粒径、级配要求十分严格,特别是其中过渡料的粒径要求在300mm以内,而且要求一次爆破成功,因此,在参考许多同类型工程的爆破方案的基础上,根据我项目处的施工经验,决定采用“ V'型起爆方式,利用“ V”型起爆的特点, 加强岩块之间的碰撞程度,从而得到符合质量要求的石料。
由于段数过多,为了避免可能出现的“串段”或“重段”现象,均采用孔内延时接力传爆,孔外用电雷管连接,孔内用1段〜15段雷管延时起爆,排与排之间时间差控制在50ms左右。
试验原则:(1)场地选择须具有代表性,在开挖区内选取具有代表性的地段进行爆破试验。
(2)爆破参数试验2〜3组,以便指导施工。
(3)试验数据的初步选定要根据经验和计算选取。
(4)试验记录准确。
(5)暂定试验钻爆参数以梯段爆破选定参数为基础,选定上下界限参数进行试验。
(6)对于堆石料、过渡料等不同级配的坝体填筑料应分别进行爆破试验。
4、试验组织机构及时间安排成立石料场爆破试验小组,严密组织,项目经理亲自抓爆破试验工作,由总工程师具体负责实施,并担任爆破试验小组组长。
根据施工总工期安排,计划于2012年9月上旬前完成爆破试验工作。
(1)试验内容其相关试验内容为:对爆破石渣料,进行颗粒粒径分析,并参照各类坝料的上、下包络曲线图,对爆破参数进行调整。
(2)试验程序1)选定试验部位:由总工程师组织试验小组在开采区内选定试验场地,并制定试验技术措施。
选定试验测试项目,并及时收集数据。
并报监理工程师审批后实施。
实施中由试验组成员进行指导,控制。
2)测量放样:选定试验场地后,由测量队进行地形测量,并放样测出试验要求的控制点。
3)钻孔布置:依据控制点,按试验技术要求进行钻孔布置,如试验场地平面高差较大,先行对场地进行平整,以使试验方便施工,方便数据的收集。
4)装药爆破:依据试验技术要求进行装药、分段、起爆,并作好记录,按施工区爆破安全要求组织爆破。
5)试验成果:试验过程中进行数据收集:①爆破震动数据,采用试波仪收集震动数据,并整理出震动速度公式,以供施工中进行爆破震动控制,具体布置根据现场情况由测试人员布置。
②爆破后石渣堆积体型测量,分析爆破效果。
6)试验总结由总工程师组织对试验工作总结,由各作业组和测试组总结试验情况,并完成试验成果报告,并报监理工程师审核。
(7)爆破安全允许距离计算评价各种爆破对不同类型建(构)筑物和其他保护对象的振动影响,应采用不同的安全判据和允许标准地面建筑物的爆破振动判据,采用保护对象所在地质点峰值振动速度和主振频率水工隧道、交通隧道、矿山巷道、电站(厂)中心控制室设备、新浇大体积混凝土的爆破振动判据,采用保护对象所在地质点峰值振动速度。