六年级上册数学知识点汇总

合集下载

六年级上册人教版数学知识点(通用7篇)

六年级上册人教版数学知识点(通用7篇)

六年级上册人教版数学知识点(通用7篇)六年级上册人教版数学知识点第1篇一、分数乘法(一)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

3、为了计算简便,能约分的要先约分,再计算。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(二)、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。

一个数(0除外)乘小于1的数(0除外),积小于这个数。

一个数(0除外)乘1,积等于这个数。

(三)、分数混合运算的运算顺序和整数的运算顺序相同。

(四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c )乘法分配律: ( a + b )×c = a c + b c a c + b c = ( a + b )×c二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少) 1、找单位“1”:在分率句中分率的前面; 或“占”、“是”、“比”的后面2、求一个数的几倍:一个数×几倍; 求一个数的几分之几是多少:一个数×。

3、写数量关系式技巧:(1)“的”相当于“×”“占”、“是”、“比”相当于“ = ”(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1 分率)=分率对应量三、倒数1、倒数的意义:乘积是1的两个数互为倒数。

强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。

(要说清谁是谁的倒数)。

2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。

六年级数学上册知识点总结(优秀11篇)

六年级数学上册知识点总结(优秀11篇)

六年级数学上册知识点总结(优秀11篇)六年级数学上册知识点总结篇一1.分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。

2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

但分子分母不能为零。

3.分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

一个数与分数相乘,可以看作是求这个数的几分之几是多少。

4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。

6.分数的倒数:找一个分数的倒数,例如3/4,把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子,则是4/3,3/4是4/3的倒数,也可以说4/3是3/4的倒数。

7.整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是1/12,12是1/12的倒数。

8.小数的倒数:普通算法:找一个小数的倒数,例如0.25,把0.25化成分数,即1/4,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是4/19.用1计算法:也可以用1去除以这个数,例如0.25,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。

分数、整数也都使用这种规律。

10.分数除法:分数除法是分数乘法的逆运算。

11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

13.分数除法应用题:先找单位1.单位1已知,求部分量或对应分率用乘法,求单位1用除法。

14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

六年级数学上册知识点汇总及例题解析

六年级数学上册知识点汇总及例题解析

本资料分为简单概括版(上半部分)和重点精析版(下半部分)第一单元位置(1)用数据表示位置的方法:先横着数,看在第几行,这个数就是数据中的第一个数;再竖着数,看在第几列,这个数就是数据中的第二个数。

(第几行,第几列)第二单元分数乘法(1)分数乘以整数:整数与分子的乘积作分子,分母不变。

(能约分的可以先约分,再计算)(2)分数乘以分数:用分子乘以分子的积作分子,分母乘以分母的积做分子。

(能约分的可以先约分,再计算)(3)分数乘加、乘减混合运算顺序:Ⅰ、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。

Ⅱ、在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法后算加、减法。

Ⅲ、在有括号的算式里,要先算括号里面的,再算括号外面的。

(4)分数乘法运算定律⒈交换两个因数的位置,积不变,这叫做乘法交换律。

a×b=b×a⒉先乘前两个数,再乘第三个数;或者先乘后两个数,再乘第一个数,这叫做乘法结合律。

(a×b)×c=a×( b×c)⒊两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配律。

(a+b)×c=a×c+b×c⒋两个数的差与一个数相乘,可以先把它们与这个数分别相乘,再相减,这叫做乘法分配律。

(a-b)×c=a×c-b×c5.. 25×4=100 125×8=1000 25×8=200 125×4=500(5) 规律(比较大小要用到):1、一个数(0除外)乘以大于1的数,积大于这个数;2、一个数(0除外)乘以小于1的数(0除外),积小于这个数;3、一个数(0除外)乘以1,积等于这个数。

第一个数(6)谁是谁的几分之几,就用第一个数除以第二个数,用分数表示就是第二个数。

(7)求一个数的几倍,一个数×几倍;求一个数的几分之几是多少,一个数×几分之几。

六年级数学上册重要知识点

六年级数学上册重要知识点

六年级数学上册重要知识点六年级数学上册重要知识点1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

2.分数乘法的计算法则分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

但分子分母不能为零.。

3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

一个数与分数相乘,可以看作是求这个数的几分之几是多少。

4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。

6.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是4/3。

3/4是4/3的倒数,也可以说4/3是3/4的倒数。

7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是1/12 ,12是1/12的倒数。

8.小数的倒数普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是4/19.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4 ,所以0.25的倒数4 ,因为乘积是1的两个数互为倒数。

分数、整数也都使用这种规律。

10.分数除法:分数除法是分数乘法的逆运算。

11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

13.分数除法应用题:先找单位1。

单位1已知,求部分量或对应分率用乘法,求单位1用除法。

14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

309 六年级数学上册重点知识归纳

309 六年级数学上册重点知识归纳

六年级数学上册重点知识归纳
六年级数学上册的重点知识归纳如下:
圆的周长和面积。

掌握圆的周长公式:C=πd或C=2πr,圆的面积公式:S=πr²。

百分数的应用。

理解各种百分数的意义是解答百分数应用题的基础。

分数乘法。

分数乘法的计算法则,要注意分母不变,分子乘整数,然后约分。

分数乘法是小学数学的重要内容,也是学生学习的难点。

位置与方向。

根据方向和距离确定物体位置的方法是本单元的教学重点。

分数乘法混合运算。

掌握分数乘法混合运算的运算顺序,会进行分数乘法混合运算,并能运用分数乘法运算解决实际问题。

圆面积的应用。

求圆的部分的周长和面积时,可以根据圆的半径、周长和面积公式直接解题。

观察物体。

了解常见的两个垂直方向(正面和上面)观察到的几何图形特点是本单元的教学重点。

可能性。

通过本单元的学习使学生感受并描述简单事件发生的等可能性以及游戏规则的公平性。

这些知识点在六年级数学上册教材中占据着重要的地位,对于学生来说具有一定的难度和重要性,因此需要学生认真学习和掌握。

六年级数学上册知识点整理归纳完整版

六年级数学上册知识点整理归纳完整版

六年级数学上册知识点整理归纳HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】六年级上册数学知识点第一单元 分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。

例如:53×7表示: 求7个53的和是多少? 或表示:53的7倍是多少?2、一个数乘分数的意义就是求一个数的几分之几是多少。

注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。

(第一个因数是什么都可以)例如:53×61表示: 求53的61是多少?9 × 61表示: 求9的61是多少?A × 61表示: 求a 的61是多少?(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

注:(1)为了计算简便能约分的可先约分再计算。

(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。

(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

(分子乘分子,分母乘分母)注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。

(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。

a ×b=c,当b >1时,c>a.一个数(0除外)乘小于1的数,积小于这个数。

a ×b=c,当b <1时,c<a (b ≠0).一个数(0除外)乘等于1的数,积等于这个数。

六年级上册数学知识点大全

六年级上册数学知识点大全1500字六年级上册数学知识点大全一、数的认识:1. 数的读法、写法;2. 形式相同的数与数相等。

二、数的比较:1. 掌握数的大小关系;2. 大于、小于的符号;3. 正整数的比较;4. 数排序。

三、数的组成:1. 两位数的由十位和个位组成;2. 分析两个数的关系;3. 比较两个数的大小。

四、数的运算:1. 了解数的加法和减法;2. 加法和减法的运算规则;3. 加法和减法的口算;4. 加法和减法的综合应用。

五、整数的认识:1. 正整数和零;2. 整数的概念;3. 整数的正负。

六、整数的大小比较:1. 整数的大小;2. 整数的绝对值。

七、整数的加法运算:1. 整数的加法运算规则;2. 整数的加法法则;3. 整数的加法口诀;4. 整数的加法计算方法;5. 整数的加法练习;6. 整数的加法的应用。

八、整数的减法运算:1. 整数的减法运算规则;2. 整数减法的性质;3. 整数减法运算的口诀;4. 整数减法计算方法;5. 整数减法的应用。

九、整数的乘法运算:1. 正整数的乘法运算;2. 整数的乘法运算规则;3. 整数的乘法口诀;4. 整数的乘法计算方法;5. 整数的乘法计算应用。

十、整数的除法运算:1. 正整数的除法运算;2. 整数的除法运算规则;3. 带余除法运算;4. 整数的除法运算应用。

十一、数的分数:1. 了解分数的定义;2. 看图分析分数;3. 转化分数为整数;4. 分数的大小比较;5. 分数的简便表示;6. 分数及其十分之一;7. 分数的意义。

十二、分数的加法运算:1. 分数的加法原则;2. 分子之和、分母保持不变;3. 分数的加法口诀;4. 分数的加法计算。

十三、分数字的减法运算:1. 分数的减法原则;2. 分子之差、分母保持不变;3. 分数的减法口诀;4. 分数的减法计算。

十四、分数的乘法运算:1. 分数和整数的乘法原则;2. 分数的乘法口诀;3. 分数乘法的计算方法;4. 分数和分数的乘法;5. 分数的乘法的简化。

六年级上册数学知识点(概念)归纳与整理

第一单元 分数乘法一、分数乘法 1、分数乘法的意义。

①、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。

例如:512 ×6表示6个512 相加的和是多少,还表示512 的6倍是多少。

②、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。

例如:6×512 表示:6的512 是多少。

27 ×512 表示:27 的512 是多少。

2、分数乘法的计算法则:①、整数和分数相乘:整数和分子相乘的积作分子,分母不变。

②、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。

注意:能约分的先约分,然后再乘,得数必须是最简分数。

当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

3、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。

一个数(0除外)乘小于1的数(0除外),积小于这个数。

一个数(0除外)乘1,积等于这个数。

4、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律:ɑ×b=b ×d 乘法结合律:ɑ×b ×c= ɑ×(b ×c) 乘法分配律: ɑ×( b+c )= ɑb + ɑc 或ɑ ×( b —c )= ɑb — ɑc 二、分数乘法的解决问题1、分数应用题一般解题步行骤。

(1)找出含有分率的关键句。

(2)找出单位“1”的量 (3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。

(4)根据已知条件和问题列式解答。

2、已知单位“1”的数量,求单位“1”的几分之几是多少?(1)、找单位“1”: “占”、“是”、“比”的后面 (2)、求一个数的几分之几是多少?用乘法计算方法:单位“1”的数量×对应分率=对应量。

注意:分率与量要对应。

六年级上册第一单元数学知识点汇总

六年级上册第一单元数学知识点汇总一、数的认识1.1 整数1.1.1 知识要点- 理解整数的意义,掌握整数的分类(自然数、负整数、整数)。

- 掌握整数的加法、减法、乘法、除法的运算规则。

- 理解整数的大小比较方法。

1.1.2 重点解析- 整数的加法、减法、乘法、除法运算规则是数学中的基础,需要熟练掌握。

- 整数的大小比较方法包括:比较两个整数的绝对值大小,以及考虑它们的符号。

1.2 小数1.2.1 知识要点- 理解小数的意义,掌握小数的分类(有限小数、无限小数、循环小数)。

- 掌握小数的加法、减法、乘法、除法的运算规则。

- 理解小数的大小比较方法。

1.2.2 重点解析- 小数的加法、减法、乘法、除法运算规则与整数类似,需要注意小数点的对齐。

- 小数的大小比较方法包括:比较两个小数的整数部分大小,以及考虑它们的小数部分。

1.3 分数1.3.1 知识要点- 理解分数的意义,掌握分数的分类(正分数、负分数、真分数、假分数)。

- 掌握分数的加法、减法、乘法、除法的运算规则。

- 理解分数的大小比较方法。

1.3.2 重点解析- 分数的加法、减法、乘法、除法运算规则需要熟练掌握,特别是通分的概念。

- 分数的大小比较方法包括:比较两个分数的分子和分母的大小,以及考虑它们的符号。

二、几何图形2.1 平面图形2.1.1 知识要点- 掌握常见平面图形的名称和特征,如三角形、四边形、五边形、六边形等。

- 掌握平面图形的周长、面积的计算方法。

- 理解平面图形的对称性、旋转性。

2.1.2 重点解析- 平面图形的周长、面积计算方法是数学中的基础,需要熟练掌握。

- 平面图形的对称性、旋转性是几何中的重要概念,有助于解决实际问题。

2.2 立体图形2.2.1 知识要点- 掌握常见立体图形的名称和特征,如正方体、长方体、球体等。

- 掌握立体图形的表面积、体积的计算方法。

- 理解立体图形的展开图、剖面图。

2.2.2 重点解析- 立体图形的表面积、体积计算方法是数学中的基础,需要熟练掌握。

六年级数学上册全册知识点

六年级数学上册全册知识点一、内容概括六年级数学上册的内容涵盖了数与代数、空间与几何、统计与概率等多个数学领域的知识点。

主要包括整数、小数、分数的认识与计算,比例与百分数,空间图形的认识与计算,图形的变换,以及简单的统计与概率知识等。

全册知识点按照学生的认知规律进行编排,从基础知识出发,逐渐提高难度,形成完整的知识体系。

也注重数学知识的实际应用,引导学生将数学知识应用于日常生活实际问题中,提高学生的数学应用能力。

在这一部分的学习过程中,学生需要掌握数的概念与运算、几何图形的理解以及概率与统计的基本应用,为将来的数学学习奠定坚实的基础。

二、数的认识与运算自然数的概念:我们生活中的数往往来源于自然物体的数量,包括如水果的数量、物体的长度等。

数学中把这些数量简化为抽象的自然数。

自然数包括正整数和零。

六年级学生应熟练掌握自然数的概念,理解其在实际生活中的应用。

整数的认识:整数包括正整数、零和负整数。

学生应进一步理解正负数的概念,了解负数的应用场景,例如温度、海拔等。

他们还应能够比较和排序整数,理解整数的相对大小关系。

数的运算:六年级学生应熟练掌握基本的四则运算(加、减、乘、除),并能解决一些复杂的运算问题。

他们还应理解分数和小数的概念,掌握分数和小数的运算方法,并能解决相关的实际问题。

混合运算也是六年级学生需要掌握的重要技能之一。

运算定律和性质:六年级学生应了解并掌握基本的运算定律,如加法交换律、乘法分配律等。

他们还应理解运算性质,如分数的通分和约分等。

这些定律和性质在解决复杂问题时非常重要。

六年级学生还应注意避免在运算过程中的计算错误。

在进行运算时,要认真审题、规范步骤和验算结果。

避免出现看错数字、符号错误等问题,以免影响结果的准确性。

培养一定的估算能力也是非常重要的,可以帮助我们快速判断计算结果是否有可能出错。

同时也有助于我们在日常生活中快速做出决策和判断。

1. 整数、小数、分数的认识与性质性质:整数具有封闭性,即两个整数的和或差仍为整数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版六年级数学上册知识点汇总第一单元圆1.圆的定义:平面上的一种曲线图形。

2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。

圆心一般用字母O表示。

它到圆上任意一点的距离都相等.3.半径:连接圆心到圆上任意一点的线段叫做半径。

半径一般用字母r表示。

把圆规两脚分开,两脚之间的距离就是圆的半径。

4.圆心确定圆的位置,半径确定圆的大小。

5.直径:通过圆心并且两端都在圆上的线段叫做直径。

直径一般用字母d表示。

6.在同一个圆内,所有的半径都相等,所有的直径都相等。

7.在同一个圆内,有无数条半径,有无数条直径。

8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。

用字母表示为:d=2rr =1/2d用文字表示为:半径=直径÷2直径=半径×29.圆的周长:围成圆的曲线的长度叫做圆的周长。

10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。

我们把圆的周长和直径的比值叫做圆周率,用字母表示。

圆周率是一个无限不循环小数。

在计算时,取π≈3.14。

世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

11.圆的周长公式:C=πd 或C=2πr圆周长=π×直径圆周长=π×半径×212、圆的面积:圆所占面积的大小叫圆的面积。

13.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,用字母(πr)表示,宽相当于圆的半径,用字母(r)表示,因为长方形的面积=长×宽,所以圆的面积= πr×r。

圆的面积公式:S=πr2。

14.圆的面积公式:S=πr2或者S=π(d/2)2 或者15.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。

16.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。

17.一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=πR2-πr2或S=π(R2-r2)。

(其中R=r+环的宽度.)19.半圆的周长等于圆的周长的一半加直径。

半圆的周长与圆周长的一半的区别在于,半圆有直径,而圆周长的一半没有直径。

半圆的周长公式:C=πd/2+d或C=πr+2r圆周长的一半=πr20.半圆面积=圆的面积÷2公式为:S=πr2/221.在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。

而面积扩大或缩小以上倍数的平方倍。

例如:在同一个圆里,半径扩大4倍,那么直径和周长就都扩大4倍,而面积扩大16倍。

22.两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方。

例如:两个圆的半径比是2:3,那么这两个圆的直径比和周长比都是2:3,而面积比是4:9。

圆周长和直径的比是π:1,比值是π圆周长和半径的比是2π:1,比值是2π23.当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;当一个圆的直径增加a厘米时,它的周长就增加πa厘米。

24.在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积就占圆面积的几分之几;所对的弧就占圆周长的几分之几.25.当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小26.扇形弧长公式:扇形的面积公式:S=nπr2/360(n为扇形的圆心角度数,r为扇形所在圆的半径)27.轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。

折痕所在的这条直线叫做对称轴。

28.有一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。

有2条对称轴的图形是:长方形有3条对称轴的图形是:等边三角形有4条对称轴的图形是:正方形有无数条对称轴的图形是:圆、圆环。

29.直径所在的直线是圆的对称轴。

30、永远记住要带单位,周长是(例如:cm),面积是平方(例如:cm2),体积是立方(例如:cm3)。

31、圆的周长:3.14×1=3.14 3.14×2= 6.283.14×3=9.42 3.14×4=12.563.14×5=15.7 3.14×6=18.843.14×7=21.98 3.14×8=25.123.14×9=28.26 3.14×10=31.432、圆的面积:3.14×12=3.14 3.14×22=12.563.14×32=28.26 3.14×42=50.243.14×52=78.5 3.14×62=113.043.14×72=153.86 3.14×82=200.963.14×92=254.34 3.14×102=314第二单元分数混合运算1、分数混合运算的运算顺序与整数混合运算的运算顺序完全相同,都是先算乘除,再算加减,有括号的先算括号里的。

①如果是同一级运算,按照从左到右的顺序依次计算。

②如果是分数连乘,可先进行约分,再进行计算;③如果是分数乘除混合运算时,要先把除法转换成乘法,然后按乘法运算。

2、解决问题(1)用分数运算解决“求比已知量多(或少)几分之几的量是多少”的实际问题,方法是:第①种方法:可以先求出多或少的具体量,再用单位“1”的量加或减去多或少的部分,求出要求的问题。

第②种方法:也可以用单位“1”加或减去多或少的几分之几,求出未知数占单位“1”的几分之几,再用单位“1”的量乘这个分数。

(2)“已知甲与乙的和,其中甲占和的几分之几,求乙数是多少?”第①种方法:首先明确谁占单位“1”的几分之几,求出甲数,再用单位“1”减去甲数,求出乙数。

第②种方法:先用单位“1”减去已知甲数所占和的几分之几,即得未知乙数所占和的几分之几,再求出乙数。

(3)用方程解决稍复杂的分数应用题的步骤:①要找准单位“1”。

②确定好其他量和单位“1”的量有什么关系,画出关系图,写出等量关系式。

③设未知量为X,根据等量关系式,列出方程。

④解答方程。

(4)要记住以下几种算术解法解应用题:①对应数量÷对应分率=单位“1”的量②求一个数的几分之几是多少,用乘法计算。

③已知一个数的几分之几是多少,求这个数,用除法计算,还可以用列方程解答。

3、要记住以下的解方程定律:加数 +加数 = 和;加数 = 和–另一个加数。

被减数–减数 = 差;被减数=差+减数;减数=被减数–差。

因数×因数 = 积;因数 = 积÷另一个因数。

被除数÷除数 = 商;被除数=商×除数;除数=被除数÷商。

4、绘制简单线段图的方法:分数应用题,分两种类型,一种是知道单位“1”的量用乘法,另一种是求单位“1”的量,用除法。

这两种类型应用题的数量关系可以分成三种:(一)一种量是另一种量的几分之几。

(二)一种量比另一种量多几分之几。

(三)一种量比另一种量少几分之几。

绘制时关键处理好量与量之间的关系,在审题确定单位“1”的量。

绘制步骤:①首先用线段表示出这个单位“1”的量,画在最上面,用直尺画。

②分率的分母是几就把单位“1”的量平均分成几份,用直尺画出平均的等分。

标出相关的量。

③再绘制与单位“1”有关的量,根据实际是上面的三种关系中的哪一种再画。

标出相关的量。

④问题所求要标出“?”号和单位。

5、补充知识点分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

分数乘法的计算法则分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

但分子分母不能为零.。

分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

一个数与分数相乘,可以看作是求这个数的几分之几是多少。

分数乘整数:数形结合、转化化归倒数:乘积是1的两个数叫做互为倒数。

分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是4/3。

3/4是4/3的倒数,也可以说4/3是3/4的倒数。

整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是1/12 ,12是1/12的倒数。

小数的倒数普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是4/1 用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4 ,所以0.25的倒数 4 ,因为乘积是1的两个数互为倒数。

分数、整数也都使用这种规律。

分数除法:分数除法是分数乘法的逆运算。

分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

分数除法应用题:先找单位1。

单位1已知,求部分量或对应分率用乘法,求单位1用除法。

第三单元观察物体1、观察物体一般从正面、上面、左面或右面来观察。

2、同样高度的物体,在同一光源的照射下,离光源越近,这个物体的影子就越短;离光源越远,这个物体的影子就越长。

3、站得高,才能望得远。

4、确定观察的范围:1)先找到观察点、障碍点;2)连接观察点和障碍点后确定观察的范围。

5、看不到的地方称作盲区。

第四单元百分数的认识1、百分数的意义像84%,28%,2.5%……这样的数叫作百分数,表示一个数是另一个数的百分之几。

百分数也叫百分比、百分率。

百分数只表示两个数之间的关系,不能带单位名称,它表示的是一个比值。

2、百分数的读法和写法①百分数的读法:百分数的读法与分数的读法相同,但百分数读作“百分之几”,不读作“一百分之几”。

②百分数的写法:百分数相当于分母是100的分数,但百分数不能写成分数的形式,而是在分子的后面加上百分号(%)来表示。

3、百分数和分数的区别①意义不同百分数只表示一个数是另一个数的百分之几。

它只能表示两个数之间的倍数关系,并不是表示某一个具体数量,所以百分数不能带单位。

分数不仅可以表示两个数之间的倍数关系,还可以表示一定的数量,所以分数表示数量时可以带单位。

②写法不同百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。

分数的最后结果中的分子只能是整数,计算结果不是最简分数的要化成最简分数。

百分数的最后结果中的分子可以是整数,也可以是小数。

如:18%,16.7%,180%4、小数、分数、百分数的互化①把小数化成百分数的方法:先把小数点向右移动两位,再在数的后面直接添上“%”,如0.25=25%②把分数化成百分数的方法:可以先把分数化成分母是100的分数,再改写成百分数,如3/5=0.6=60%(除不尽的保留三位小数)。

相关文档
最新文档