统计调查条形图与扇形图

合集下载

八年级数学-条形统计图与扇形统计图练习题(含解析)

八年级数学-条形统计图与扇形统计图练习题(含解析)

八年级数学-条形统计图与扇形统计图练习题(含解析)1.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生700人,则据此估计步行的有280人.解析:∵骑车人数所占的百分比为126°360°×100%=35%,∴步行的有700×(1-10%-35%-15%)=280(人).2.小亮一天的时间安排如图所示,请根据图中的信息计算:小亮一天中,上学、做家庭作业和体育锻炼的总时间占全天时间的37.5%.解析:(7+1+1)÷24×100%=37.5%.3.某校八年级数学课外兴趣小组的同学积极参加义工活动,小庆对小组全体成员参加活动次数的情况进行统计分析,绘制了如下不完整的统计表和统计图.次数1086 5人数3 a 2 1(1)表中a=4;(2)请将条形统计图补充完整.解:补全条形统计图,如图.4.某中学开展“阳光体育一小时”活动.根据学校实际情况,决定开设四项运动项目:A:踢毽子;B:篮球;C:跳绳;D:乒乓球.为了解学生最喜欢哪一种运动项目,随机抽取了n 名学生进行问卷调查,每位学生在问卷调查时都按要求只选择了其中一种喜欢的运动项目.收回全部问卷后,将收集到的数据整理并绘制成如下的统计图,若参与调查的学生中喜欢A方式的学生的人数占参与调查学生人数的40%.根据统计图提供的信息,解答下列问题:(1)求n的值;(2)求参与调查的学生中喜欢C的学生的人数;(3)根据统计结果,估计该校1 800名学生中喜欢C方式的学生比喜欢B方式的学生多的人数.解:(1)80÷40%=200(人).(2)200-80-30-50=40(人).(3)40-30200×1 800=90(人).答:该校1 800名学生中喜欢C方式的学生比喜欢B方式的学生多90人.5.某校学生会就同学们对我国改革开放30多年来所取得的辉煌成就的了解程度进行了随机抽样调查,如图①②所示是根据调查结果绘制成的统计图的一部分.根据统计图中的信息,解答下列问题:(1)本次抽样调查的样本容量是50,调查中“了解很少”的学生占50%.(2)补全条形统计图.(3)若全校共有学生1 300人,那么该校约有多少名学生“很了解”我国改革开放30多年来取得的辉煌成就?(4)通过以上数据分析,请你从爱国教育的角度提出自己的观点和建议.解:(2)补全条形统计图如图所示.(3)1 300×10%=130(人).答:该校约有130名学生“很了解”我国改革开放30多年来所取得的辉煌成就.(4)由统计图可知,“不了解”和“了解很少”的占60%,由此可以看出同学们对国情的关注不够.建议:加强国情教育、爱国教育等.(本题答案不唯一,只要观点正确,建议合理即可)。

统计图有哪几种

统计图有哪几种

统计图有哪几种
答:统计图有种条形图、扇形图、折线图、半对数线图、直方图、散点图。

具体如下:
1、条形图,又称直条图,表示独立指标在不同阶段的情况,有两维或多维,图例位于右上方。

2、扇形图,描述百分比的大小,用颜色或各种图形将不同比例表达出来。

3、折线图,用线条的升降表示事物的发展变化趋势,主要用于计量资料,描述两个变量间关系。

4、半对数线图,纵轴用对数尺度,描述一组连续性资料的变化速度及趋势。

5、直方图,描述计量资料的频数分布。

6、散点图,描述两种现象的相关关系。

统计图间相互转化

统计图间相互转化

学习方法报社 全新课标理念,优质课程资源第 1 页 共 1 页 统计图间相互转化侯怀有条形统计图、扇形统计图和折线统计图是三种基本的统计图,它们之间可相互转化.下面以条形统计图和扇形统计图间的转化为例加以说明.一、已知条形统计图画扇形统计图例1一所学校准备搬迁,在迁校之前,学校对300名学生到校方式进行了一次调查,并绘制了如图1所示的条形统计图,请你根据条形统计图中的数据信息,绘制出学生到校方式的扇形统计图.分析:从条形统计图中可知每种到校方式的学生人数,再计算出相应到校方式的人数占总人数的百分比,即可画出相应的扇形统计图. 解:步行占总体的百分比为60÷300=20%,相应扇形圆心角的度数为360°×20%=72°;骑自行车占总体的百分比为108÷300=36%,相应扇形圆心角的度数为360°×36%=129.6°;坐公共汽车占总体的百分比为120÷300=40%,相应扇形圆心角的度数为360×40%=144°;其他占总体的百分比为12÷300≈4%,相应扇形圆心角的度数为360°×4%=14.4°,所画扇形统计图如图2所示.二、已知扇形统计图画条形统计图例2为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了40名学生的鞋号,绘制了如图3的扇形统计图,请将扇形统计图转化为条形统计图.分析:将扇形图统计图转化为条形统计图,首先应根据扇形统计图各项所占的百分比计算出各鞋号的人数,然后再画出相应的条形统计图.解:鞋号为38号的人数为40×10%=4(人),鞋号为37号的人数为40×20%=8(人),鞋号为36号的人数为40×25%=10(人),鞋号为35号的人数为40×30%=12(人),鞋号为34号的人数为40×(1-10%-20%-25%-30%)=6(人),所画条形统计图如图4所示.。

几种常见的统计图表

几种常见的统计图表

R
W
扇形图(sector diagram)
概念:以一个圆面积为100%,用圆内 各扇形面积所占的百分比来表示各 部分所占的构成比例 适用资料:构成比资料 绘制要点: ①每3.6o为1%,用3.6乘以百分数即为 请问:如何表示 所占扇形的度数。用量角器画出. 扇形内各部分所 ②从相当于时钟12点或9点的位置开始 顺时针方向绘图. ③每部分用不同线条或颜色表示,并在 图上标出百分比,下附图例说明. ④当比较不同资料的百分构成时,可以 画两个相等大小的圆,在每个圆的 下面写明标题,并用相同的图例表 示同一个构成部分. 应用:描述各部分的百分构成.
展变化或一种现象随另一种现象变迁的情况 2、适用资料:连续性资料。 3、绘制要点: ①坐标轴:横轴表示时间或组段,纵轴表示频数或频率。 纵轴坐标可以不从0开始,因此在看图时要注意纵轴的 起点坐标。 ②数据点画在组段中间位置。相邻的点用直线连接,不要 用平滑的曲线连接。无数据的组段用虚线连接。直线 不能任意外延。 ③同一张折线图上不要画太多条曲线,否则不易分清。当 有两条或两条以上曲线在同一张折线图上时,须用不 同颜色或不同的图形形式加以区分,并附图例加以说 明。 4、应用:反映事物的连续的动态变化规律。
190 180 170 160 150 40 45 50 ©Û ¤ 55 Ç ª± (cm)
ì ß É µ (cm)
Í 10.Ä ³ 20Ë Ä Ç Ä É µ · Ç Û ± Ä ¶ Ï ¼ ± Ø ê Ð ­ ê ì ß Í ©ª¤³ Ø ³
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 5 10 15 20 25 30
9% 18% 43%
ô · « ² È Ï ä Æ
ü ³ ° ¡ Î Ï ¼ ° ¾ ¡ È ° ë Ô ° ¡ Ì Ð ¼ ° ü Ë

扇形统计图17.ppt

扇形统计图17.ppt

2008年德国世界杯之际, 某电视台通过手机发短信方 式,调查了一些球迷分别支 持英国、德国、巴西三支球 队夺冠的人数,并绘制以下 条形统计图
球迷人数
英国 德国 巴西
200
150
100
50
60
90 支持夺冠国家的球迷人数
150
150 90 60
系列1
0
英国
德国
巴西
国家
1、被调查的球迷总人数 是 300人 。
该组的频数。 2、频率:频数与数据总数的比为频率。
频率反映各组频数的大小在总数中所占的份量,
频数×100%就是百分比。
用条形统计图描述31个城市的空气质量状况:
条形统计图:用一个单位单位长度表示一定的数量,根据 数量的多少画成长短不同的直条,再把这些直条按一定的 顺序排列起来,这样的统计图叫做条形统计图。 条形统计图特点: 1、能够显示每组中的具体数据; 2、便于比较数据之间的差别。
第十二章 数据的描述
§12.1.1 条形图与扇形图
课件制作:邯郸市第十四中学 杨春红
新课 引入
2002年1月1日,这31个城市中, 空气质量为一级,二级,…,五 级的城市各有多少个?各占百分 之几?请用表格表示。
圆心角度数
12° 93° 221° 23° 12° 360°
1、频数:落在不同小组中的数据个数为
扇形统计图:利用圆和扇形来表示总体和部分
的关系,即用圆表示总体,圆中的各个扇形分
别表示总体中的不同部分,扇形的面积反映部
分在总体中的百分比大小。
A
30%
二级25.8%
四级6.5%
五级3.2% 一级3.2%
三级61.3%
圆心角的度数=百分比360° 扇形统计图特点:

3从统计图分析数据的集中趋势 数据的表示

3从统计图分析数据的集中趋势 数据的表示

数据的表示【学习目标】1.会用扇形统计图、条形统计图和折线统计图表示数据,并能从统计图或表中获取信息.描述数据的方法有两种:统计表和统计图.统计表:利用表格将要统计的数据填入相应的表格内,表格统计法可以很好地整理数据 统计图:利用“条形图”、“扇形图”、“折线图”描述数据,这样做的最大优点是将表格中的数据所呈现出来的信息直观化.1.扇形统计图(1)扇形统计图的概念用圆和扇形来表示总体和部分的关系,即用圆表示总体,各个扇形分别代表总体中的不同部分,扇形面积的大小表示各部分占总体的百分比的大小,这样的统计图叫扇形统计图.扇形统计图,它是用整个圆的面积表示总数,用圆内的扇形面积表示各部分占总数的百分比的统计图.特点:能直观地反映每组数据占总数的百分比,及各部分之间的关系. 画法:(1)计算出各部分数量占总体数量的百分比;(2)利用百分比计算出各部分所对应的扇形圆心角的度数; (3)绘制扇形图;(4)标明各部分的名称和相应的百分比.应用:①透过扇形图能读出各组数据所占的百分比,在已知总数的情况下能求出各组数据的个数. ②在扇形统计图中,每部分扇形占总体的百分比乘以360°等于该部分所对应的扇形圆心角的度数. 【例1】 如图是某中学七年级(3)班全体同学年龄的统计表:年龄/岁 13 14 15 16 合计 人数/名4 15 256 50 根据表中提供的信息,绘制扇形统计图表示该班学生的年龄分布情况.分析:根据表中提供的信息,首先计算出不同年龄的人数占全班总人数的百分比.然后计算出不同年龄的人数在圆中所占的扇形圆心角的度数.最后画出扇形统计图.解:分别计算出不同年龄的人数占全班人数的百分比及相应的扇形圆心角的度数:13岁:450×100%=8%,360°×8%=28.8°;14岁:1550×100%=30%,360°×30%=108°;15岁:2550×100%=50%,360°×50%=180°;16岁:650×100%=12%,360°×12%=43.2°.根据这些数据画出如图所示的扇形统计图.5. (益阳)南县农民一直保持着冬种油菜的习惯,利用农闲冬种一季油菜.南县农业部门对2009年的油菜籽生产成本、市场价格、种植面积和产量等进行了调查统计,并绘制了如下统计表与统计图(如图所示):每亩生产成本每亩产量油菜籽市场价格种植面积110元130千克3元/千克500000亩请根据以上信息解答下列问题(1)种植油菜每亩的种子成本是多少元?(2)农民冬种油菜每亩获利多少元?(3)2009年南县全县农民冬种油菜的总获利多少元?(结果用科学记数法表示)【思路点拨】由扇形统计图反映出来的信息知:种子占生产成本的10%,根据这一点不难解答本题.【答案与解析】解:(1)种子占成本的百分数为 1-10%-35%-45%=10%,故种植油菜每亩的种子成本为:110×10%=11(元).(2)由统计表知,每亩油菜销售总价为:130×3=390(元),故农民冬种油菜每亩获利390-110=280(元).(3)因为农民种植油菜.每亩获利280元,则500000亩油菜共获利:280×500000=140000000=1.4×108(元).【总结升华】在扇形统计图中,各部分所占的百分比之和=1,扇形对应圆心角度数=该扇形所占百分比×360°.2.条形统计图条形统计图是用一定单位长度的长方形表示一定的数量,并根据数量的多少画成长短不同的条形图,然后,把这些图形按照一定的顺序排列起来的反映数据之间关系的图形.条形的宽度相同,长度不同,通过条形高的长短来体现各组数据个数及各组数据间的差别.特点:①它能直观地反映每组中数据的个数;②能直观地反映出数据之间的差别.缺点:不容易看出各组数据占总数的比例.应用:通过条形统计图能读出各组数据的个数,进而能求出总数据个数及各组数据间的差,以及各组数据所占的百分比等.【例2】对某校八(2)班学生参加课外活动情况的一次调查得到下表:参加的体育项目乒乓球篮球羽毛球足球人数1510520(1)该班有多少名学生?(2)根据上述统计表,请用条形图来表示各个数据的分布情况.分析:画条形图时,要注意单位长度的选择.解:(1)15+10+5+20=50(名).(2)根据所提供的统计表,画出条形图如图所示.4. (珠海)2010年亚运会即将在广州举行,广元小学开展了“你最喜欢收看的五项亚运会球类比赛(只(1)将统计图补充完整;(2)根据以上调查,试估计该校1800名学生中,最喜欢收看羽毛球的人数. 【思路点拨】依据条形图反映出来的数量作答. 【答案与解析】解:(1)因为喜欢排球的12人占抽样总人数的6%,故抽样人数为:122006%=(人), 故喜欢乒乓球的人数为:200-12-38-80-20=50(人). (2)喜欢收看羽毛球人数为:201800180200⨯=(人). 【总结升华】把小长方形对应的纵轴数相加即得到抽取的调查报告数,这也是样本数;每组所占样本的百分比乘总数即这组调查报告约有的份数.3.频数直方图频数直方图也是描述数据的一种重要方法.通过频数直方图能直观地了解各组数据中的频数分布情况.画频数直方图的一般步骤:(1)计算最大值与最小值的差,找出数据的变化范围通过观察,首先找出数据中的最大值和最小值,并计算出最大值与最小值的差(极差),找出数据的变化范围.(2)决定组距与组数把所有数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围)称为组距.根据最大值与最小值的差,来决定组距与组数.组距和组数的确定没有固定的标准,一般来说,数据越多分的组数也越多,当数据不超过50个时,可以分成5~7组;当数据在50~100之间时,一般分成8~12组.组数可以根据最大值-最小值组距来计算.(3)决定分点有些数据本身就是分点,不好决定它们究竟应该属于哪一组,为了避免出现这种情况,可以使分点比已知数据多一位小数,并且把第一组的起点稍微的减小一点.(4)列频数分布表频数分布表一般由三部分组成,一是数据分组,二是划记,三是频数. 对落在各个小组内的数据进行累计,得到各个小组内的数据的个数(叫做频数),整理可得频数分布表. (5)画频数直方图频数直方图的横轴由数据组成,纵轴由频数组成.每个小长方形的高表示相应小组内数据的频数. 【例3】 王大爷开了一个报亭,为了使每天进的某种报纸适量,王大爷对这种报纸40天的销售情况作了调查,这40天卖出这种报纸的份数如下:136,175,153,135,161,140,155,180,179,166,188,142,144,154,155,157,160,162,135,156,148,173,154,145,158,150,154,168,168,155,169,157,157,149,134,167,151,144,155,131.将上面数据适当分组,作出频数直方图,说明王大爷每天进多少这种报纸比较合适?分析:由于这组数据的最大值为188,最小值为131,所以最大值与最小值的差是188-131=57,所份数(x)划记频数130≤x<140正 5140≤x<1507150≤x<160正正正15160≤x<1708170≤x<180 3180≤x<190 2合计40(2)画频数直方图,如图所示.由此可知,王大爷每天进150~160份比较合适.注:分组不同,组距不同,频数分布表和直方图也不同.6. (湖北荆门)某住宅小区六月份的1至6日每天的用水量变化情况如图所示,那么这6天的平均用水量是A.30吨 B.31吨 C.32吨 D.33吨【答案】C.【解析】解:从折线统计图,可知1日的用水量为30吨,2日的用水量为34吨,3日的用水量为32吨,4日的用水量为37吨,5日的用水量为28吨,6日的用水量为31吨,由此可计算出这6天的平均用水量为(30+34+32+37+28+31)÷6=32(吨).【总结升华】折线图的特点:易于显示数据的变化趋势.【高清课堂:统计图例4】举一反三:【变式】近年来国内生产总值增长率变化情况如图, 从图上看下列结论不正确的是( ). A.1995~1999年国内生产总值增长率逐年减少B.2000年国内生产总值的年增长率开始回升C.这7年中, 每年的国内生产总值不断增长D.这7年中, 每年的国内生产总值有增有减【答案】D4.合理分组的方法分组是列频数分布表和画频数直方图的前提,分组不同,所画出的直方图也不同. 对于一组数据,分组的方法有三种:一是根据组距分组,首先计算出最大值与最小值的差,根据最大值与最小值的差,适当地确定组距,根据最大值-最小值组距=组数(收尾法)来确定组数,然后分组,整理数据.二是根据组数分组,先根据数据的个数和实际需要确定组数,再根据最大值-最小值组数=组距,取适当的数作为组距,然后分组,整理数据.三是根据最大值与最小值的差,再根据数据的实际情况,大约确定一个适合的利于计算的数为组距,如5,10等.只要能正确地反映数据的分布情况,并且能包含所有的数据的分组方法都可以.【例4】 育才中学为了了解本校学生的身体发育情况,对同年龄的40名女生的身高进行了测量,结果如下(数据均为整数,单位:厘米):168,160,157,161,158,153,158,164,158,163,158,157,167,154,159,166,159,156,162,158,159,160,164,164,170,163,162,154,151,146,151,160,165,158,149,157,162,159,165,157.请将上述的数据适当分组整理,列出频数分布表,根据频数分布表的数据说明:大部分同学处于哪个身高段?身高的整体分布情况如何?分析:由于有40个数据,最小的数据为146厘米,最大的数据为170厘米,其差为24厘米,可将数据分成5组,整理数据列出频数分布表,可从总体上把握数据的分布情况.解:列频数分布表如下:身高x (厘米) 划记 频数146≤x <1512 151≤x <156 正5 156≤x <16118 161≤x <16611 166≤x <1714 合计40 由频数分布表可知,大部分学生处于156厘米到166厘米之间,占抽样调查人数的72.5%,低于156厘米和高于166厘米的学生比较少,分别占17.5%和10%.5.频数直方图与扇形统计图综合应用在统计图表的综合应用中,频数直方图与扇形统计图组合是出现较多的题目,它们之间的互相结合、互相补充,能多方面地反映数据间的内在关系.频数分布表和频数直方图能直观显示各组频数分布的情况,也能清楚地反映各组数据中频数的差别,扇形图侧重反映了各部分占总数的百分比,因而,它们之间互相补充.【例5】 某学校开展了向贫困地区捐赠图书的活动.全校1 200名学生每人都捐赠了一定数量的图书.已知各年级人数比例的扇形统计图如图①所示.学校为了了解各年级捐赠情况,从各年级中随机抽样调查了部分学生,进行了捐赠情况的统计调查,绘制成图②所示的频数直方图.根据以上信息解答下列问题.(1)从图②中我们可以看出人均捐赠图书最多的是几年级? (2)九年级约捐赠图书多少册? (3)全校大约共捐赠图书多少册?解:(1)从图中可以看出,人均捐赠图书最多的是八年级.(2)九年级的学生有1 200×35%=420(人),估计九年级共捐赠图书420×5=2 100(册);(3)全校大约共捐赠图书1 200×35%×4.5+1 200×30%×6+2 100=1 890+2 160+2 100=6 150(册).7. (泰州)玉树地震后,全国人民慷慨解囊,积极支援玉树人民的抗震救灾,他们有的直接捐款,有的捐物,国家民政部、中国红十字会、中华慈善总会及其他基金会分别接收了捐赠,青海省也直接接收了部分捐赠截至5月14日12时,他们分别接收捐赠(含直接捐款数和捐赠物折款数)的比例见扇形统计图(如图①所示),其中,中华慈善总会和中国红十字会共接收捐赠约合人民币15.6亿元.请你根据相关信息解决下列问题:(1)其他基金会接收捐赠约占捐赠总数的百分比是________; (2)全国接收直接捐款数和捐赠物折款数共计约________亿元; (3)请你补全图②中的条形统计图;(4)据统计,直接捐款数比捐赠物折款数的6倍还多3亿元,那么直接捐款数和捐赠物折款数各多少亿元?【思路点拨】本题是一道与扇形统计图和条形统计图的综合题.从扇形统计图中,可以获取各部门获得捐赠的百分数.从条形统计图中可以获取其他基金会获得的捐赠为2亿元根据这两点,问题便迎刃而解. 【答案与解析】解:(1)1-33%-33%-13%-17%=4%;(2)15.65213%17%=+(亿元);(3)因为中华慈善总会接收捐赠占所有捐赠的13%,故中华慈善总会接收捐赠共计:52×13%=6.76(亿元);(4)设捐赠物折款数为x 亿元,依题意有 6x+3+x =52,解方程得x =7.举一反三:【变式1】如果想表示我国从2000 2010年间国民生产总值的变化情况, 最合适的是采用( ).A. 条形统计图B. 扇形统计图 C.折线统计图 D.以上都很合适【答案】C.【变式2】(自贡)我市某化工厂从2008年开始节能减排,控制二氧化硫的排放.图③,图④分别是该厂2008-2011年二氧化硫排放量(单位:吨)的两幅不完整的统计图,根据图中信息回答下列问题.(1)该厂2008-2011年二氧化硫排放总量是吨;这四年平均每年二氧化硫排放量是吨.(2)把图中折线图补充完整.(3)2008年二氧化硫的排放量对应扇形的圆心角是度,2011年二氧化硫的排放量占这四年排放总量的百分比是.【答案】(1)100,25.(2)略.(3)144,10%.6.频数直方图与条形统计图的比较应用条形图和直方图都是描述数据的重要方式,它们图形类似,都能直观地反映每组中数据的个数(频数),也能直观地反映出数据(频数)之间的差别.但它们是两种不同的数据描述方式,在描述数据的侧重点和表现形式上也存在着很多不同.(1)条形图是用条形的高表示各类别频数的多少,其宽度是固定的;频数直方图是用面积表示各组频数的多少,宽度则表示各组的组距,因此各长方形的高度与宽度均有意义.(2)由于分组数据具有连续性,频数直方图的各长方形通常是连续排列的,而条形统计图则是分开排列的,中间有空隙.(3)条形统计图是直观地显出具体数据,频数直方图是表现频数的分布情况.【例6】向阳超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成如图所示的频数直方图(图中等待时间6分钟到7分钟表示大于或等于6分钟而小于7分钟,其他类同).这个时间段内顾客等待时间不少于6分钟的人数为( ).A.5 B.7 C.16 D.33解析:频数直方图可以直观地表示各部分数目的多少及数量大小.由频数直方图可以很清楚地看到顾客等待时间为6~7 min的有5人,等待时间为7~8 min的有2人,这个时间段内顾客等待时间不少于6分钟的人数为5+2=7,故应选B.答案:B【巩固练习】一、选择题1.数据处理过程中,以下顺序正确的是().A.收集数据→整理数据→描述数据→分析数据B.收集数据→整理数据→分析数据→描述数据5.若扇形统计图中有4组数据,其中前三组数据相应的圆心角度数分别为72°、108°、144°,则这四组数据的比为().A.2:3:4:1 B.2:3:4:3 C.2:3:4:5 D.第四组数据不确定7.如图所示是某造纸厂2009年中各季度的产量统计图,下列表述中不正确的是().A.二季度的产量最低B.从二季度到四季度产量在增长C.三季度产量增幅最大D.四季度产量增幅最大8.(重庆)某班学生在颁奖大会上得知该班获得奖励的情况如下表:已知该班共有28人获得奖励,其中只获得两项奖励的有13人,那么该班获得奖励最多的一位同学可能获得的奖励为().A.3项B.4项C.5项D.6项二、填空题10.某中学举行一次演讲比赛,分段统计参赛同学的成绩,结果如下表(分数均为整数,满分为100分):请根据表中提供的信息,解答下列各题:(1)参加这次演讲比赛的同学共有________人;(2)已知成绩在91~100分的同学为优胜者,那么,优胜率为________.13.某城市有120万人口,其中各民族所占比例如图所示,则该市少数民族的人口共有________万人.14.(天津)为了解某新品种黄瓜的生长情况,抽查了部分黄瓜株上长出的黄瓜根数,得到如下图所示的条形图,观察(如图),可知共抽查了________株黄瓜,并可估计出这个新品种黄瓜平均每株结________根黄瓜.三、解答题15. (长春)小明参加卖报纸的社会实践活动,他调查了一个报亭某天A、B、C三种报纸的销售量,并把调查结果绘制成如图所示条形统计图.(1)求该天A、C报纸的销售量各占这三种报纸销售量之和的百分比.(2)请绘制该天A、B、C三种报纸销售量的扇形统计图.(3)小明准备按上述比例购进这三种报纸共100份,他应购进这三种报纸各多少份.17.(山东菏泽)初中生对待学习的态度一直是教育工作者关注的问题之一.为此菏泽市教育局对我市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了________名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计我市近80000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?【答案与解析】一、选择题1. 【答案】A;【解析】数据处理的基本过程是:收集,整理,描述,分析数据.5. 【答案】A;【解析】这四组数据的比为:72:108:144:(360-72-108-144)=2:3:4:1.6. 【答案】A;7. 【答案】D;【解析】从折线统计图可知,这个造纸厂第一季度至第二季度的产值呈下降趋势,第二至第四季度的产值呈上升趋势,第四季度产值最高,第二季度的产值最低.8. 【答案】B;【解析】获奖人次共计18+3+6+2+12+3=44人次,减去只获两项奖的13人计13×2=26人次,则剩下44-13×2=18人次.28-13=15人,要使“该班获得奖励最多的一位同学”获奖最多,则让剩下的15人中的一人获奖最多,其余15-1=14人获奖最少,只获一项奖励,则获奖最多的人获奖项目为18-14=4项.二、填空题10.【答案】 (1)20 (2)20%;【解析】优胜率=42020优胜人数==%总人数.13.【答案】18;【解析】120×(6%+4%+5%)=18(万人).14.【答案】60,13;【解析】由条形图可知总株数为20+15+15+10=60.三、解答题15.【解析】解:(1)46100%20%4611569⨯=+=,69100%30%4611569⨯=++.∴该天A、C报纸的销售量各占这三种报纸销售量之和的20%和30%.(2)A、B、C三种报纸销售量的扇形统计图如图所示.(3)100×20%=20(份),100×50%=50(份),100×30%=30(份).∴小明应购进A种报纸20份,B种报纸50份,C种报纸30份.17.【解析】解: (1)200:(2)200-120-50=30(人).画图如图所示.(3)C所占圆心角度数=360°×(1-25%-60%)=54°.(4)80000×(25%+60%)=68000.∴估计该市初中生中大约有68000名学生学习态度达标.11。

几种常见统计图的比较与选择

几种常见统计图的比较与选择

几种常见统计图的比较与选择我们已经学习了几种常见的统计图,这些统计图各有其优点和缺点,所以在平时的具体应用时,应根据统计图的各自特点灵活选择运用.一、条形统计图表示各种数量的多少用条形统计图.条形统计图的优点是能清楚地表示出每个项目的具体数目;缺点是不能准确地描述各部分量之间的关系.例1北京奥组委从4月15日起分三个阶段向境内公众销售门票,开幕式门票分为五个档次,票价分别为人民币5000元、3000元、1500元、800元和200元.某网点第一周内开幕式门票的销售情况见如图1所示的统计图,那么第一周售出的门票票价..的众数是( ) A.1500元B.11张C.5张D.200元简析 从条形图中我们清楚地看到票价分别为人民币5000元、3000元、1500元、800元和200元的门票分别销售2张、5张、11张、5张和6张,由此可知这第一周售出的门票票价的众数是1500元,故应选A .二、扇形统计图表示各部分数量同总数之间的关系用扇形统计图. 扇形统计图的优点是能清楚地表示出各部分在总体中所占的百分比;缺点是不能从统计图上看出具体的数量.扇形统计图的制作步骤是:(1)数据的采集,即各部分的数据的收集;(2)数据的整理,即计算出各部分的总和,再计算各部分所占的百分比;(3)作图,即根据百分比计算出各部分对应圆心角的大小(将百分比乘以360°),再用量角器画出各个扇形;(4)标上各部分的名称和它所占的百分比.例2 已知小明家五月份总支出共计1200元,各项支出如图2所示,那么其中用于教育5000 3000 1500 800 200 档(元)第一周开幕式门票销售情况统计图数量(张)图1图2上的支出是元.简析从扇形统计图中可知小明家五月份用于教育上的支出的百分数是18%,而五月份总支出共计1200元,所以小明家五月份用于教育上的支出是1200×18%=216(元).三、折线图表示数量的多少及数量增减变化的情况用折线图. 折线图的优点是能清楚地反映事物的变化情况;缺点是不能反映每一个数据在总体中的具体情况.例3(2007·义乌市)“义乌·中国小商品城指数” 简称“义乌指数”.如图3是2007年3月19日至2007年4月23日的“义乌指数”走势图,下面关于该指数图的说法正确的是()DA.4月2日的指数位图中的最高指数B.4月23日的指数位图中的最低指数C.3月19至4月23日指数节节攀升D.4月9日的指数比3月26日的指数高简析由折线统计图可知4月16日的指数位图中的最高指数,3月19日的指数位图中的最低指数,3月19至4月2日指数节节攀升,即A、B、C的选择支都是错误的,而4月9日的指数比3月26日的指数高的说法是正确的,故应选D.图3四、直方图落在不同小组中的数据个数为该组的频数,频数与数据总数的比为频率,频率能反映各组频数的大小在总数中所占的份量.直方图能直观清楚地反映数据在各个范围内的分布情况,从而更全面、准确、细致地反映事物的属性.绘制频数分布直方图的一般步骤是:(1)计算最大值与最小值的差,目的是知道数据波动的大小,把它作为分组的依据;(2)决定组距与组数;(3)决定分点;(4)列频数分布表;(5)绘制频数分布直方图.例4 抽取某校学生一个容量为150的样本,测得学生身高后,得到身高频数分布直方图如图4,已知该校有学生1500人,则可以估计出该校身高位于160cm至165cm之间的学生大约有人.简析 从频数分布直方图中可知150人中身高位于160cm 至165cm 之间的学生有30人,所以该校有学生1500人中可以估计出身高位于160cm 至165cm 之间的学生大约有1500150×30=300(人). 下面几道题目供同学们自己练习:1、某射击小组有20人,教练根据他们某次射击的数据绘制成如图5所示的统计图,则这组数据的众数和中位数分别是( )A.7、7B.8、7.5C.7、7.5D.8、6.52、某校七年级(1)班36位同学的身高的频数分布直方图如图6所示.问: (1)身高在哪一组的同学最多? (2)身高在160cm 以上的同学有多少人?(3)该班同学的平均身高约为多少(精确到0.1cm )?3、在2004年雅典奥运会上,中国队取得了令人瞩目的成绩,获得金牌32枚、银牌17枚、铜牌14枚,在金牌榜上位居第二.请用扇形统计图表示中国队所获奖牌中,金、银、铜牌的分布情况.(cm)图4图5cm )图6参考答案: 1、C .2、(1)通过观察频数分布直方图知,身高在160.5cm ~165.5cm 这一组人数最多.(2)由频数分布直方图知,身高在160cm 以上的同学有:12+8+3=23(人).(3)该班同学的平均身高为41539158121638168317336⨯+⨯+⨯+⨯+⨯=162(cm ).3、中国队所获的奖牌是由金牌、银牌、铜牌组成,它们是总量和分量的关系.先求出金、银、铜牌分别占奖牌总数的百分比,在根据百分比算出扇形的圆心角,进而画出扇形统计图.即①中国队共获奖牌63枚,其中金牌32枚,占奖牌总数的百分比为:32÷63≈50.79%.银牌17枚,占奖牌总数的百分比为:17÷63≈26.99%.铜牌14枚,占奖牌总数的百分比为:14÷63≈22.22%.②反映在扇形统计图上,扇形的圆心角为:金牌应为:360°×50.79%≈182.8°,银牌应为:360°×26.99%≈97.2°,铜牌应为:360°×22.22%≈80°.③绘制扇形统计图,如图所示.4、(1)5月6日新增确诊病例138人.(2)5月9日至5月11日三天共新增确诊病例为118+85+69=272(人).(3)从折线统计图中可清楚看到5月上半月新增确诊病例总体的趋势是下降的.两类复合条形图特征对比条形图是一种重要的统计图,其特点是:(1)能够显示每组中的具体数据;(2)易于比较数据之间的差别。

新人教版七年级数学下册《数据的收集、整理与描述 10.1 统计调查 利用折线图、条形图、扇形图描述数据》_2

新人教版七年级数学下册《数据的收集、整理与描述 10.1 统计调查 利用折线图、条形图、扇形图描述数据》_2

20
条形统计图的特点:
15
能清楚地表示出每个
项目的具体数目。
10
5
0
AB C
D APP名称
小组成员最喜爱的明星类别的人数的扇形统计图
扇形统计图的特点: 能清楚地表示出各部 分占总体中的百分比。
统计调查的步骤 01 收集数据0 Nhomakorabea 整理数据
03 描述数据 04 分析数据
如图是超市销售雨伞的情况:
300
全面调查
定义
考察全体对象的调查叫 做全面调查(普查。)
举例说明
1.考察对象数量较少 2.统计对象非常重要
(如人口统计、飞船火 箭零部件检查)
小结
统计调查 的步骤
如何画 统计图
各统计图的特点
统计调查的 实际应用
选一选
你最喜欢下列哪种类型的明星人物?
A.综艺类 B.体育类 C.教育科研类 D.其他
小组成员最喜爱的明星类别的人数统计表
类型
划 记 人数 百分比
A.综艺类 B.体育类
C.教育科研类
D.其他
合计
注:划记法是用“正”字的每一划(笔画)代表一个数据。
小组成员最喜爱的明星类别的人数条形统计图 人数
250
200 150 100
销售量 (把)
折线统计图的特点: 能清楚地表示出各
50 0
阶段的变化情况
第一季度第二季度第三季度第四季度
请观察折线图回答问题: (1)哪个季度雨伞销售量最大? (2)请你为这家商场就进货问题提出建议。
!注意
1、调查问卷的答案不能有重复或模糊 2、根据统计图或表格选出有用的数据 3、画统计图时需要注意的地方
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题1
如果要了解全班同学对新闻、体育、 动画、娱乐、戏曲五类电视节目的喜爱 情况,你会怎么做?
问题1
设计调查问卷进行调查.
调查问卷 年 月 在下面五类电视节目中,你最喜爱的是 ( ).(单选) A .新闻 B .体育 C .动画 D .娱乐 E.戏曲 填完后,请将问卷交给数学课代表.
问题1
某同学经调查,得到如下50个数据:
全班同学最喜爱节目的人数统计图 人数
20 15 15 18
10
10 5 4 3
条 形 统 条形统计图的特点: 计 条形统计图能清楚 图 地表示出每个项目
的具体数目。
0
新闻
体育 动画 娱乐 戏曲 节目类别 图10.1-1 ( 1)
全班同学最喜爱节目的人数统计图
戏曲 6﹪
新闻 8﹪ 体育
娱乐 36﹪
20﹪
7、得出结论
理一理
一表 二图——条形统计图,扇形统计图 三注意
①调查问卷——设计合理、科学 ②统计表——项目齐全,数据准确 ③统计图——比例准确,表注不遗漏
四步骤——收集、整理、绘图、分析

作业:P153 练习 1、2
邹泽权
动画 30﹪
扇 形 统 扇形统计图的特点: 计 扇形统计图能清楚地 表示出各部分在总体 图 中所占的百分比。
图10.1-1
(2)
问题1
讨论3:如何根据百分比或圆心角画出相应 的扇形图?
在问题1中全班同学是要考察的全体对象
考察全体对象的调查—— 全面调查
全 面 调 查 的 步 骤 :
1、明确调查问题 2、确定调查对象 3、选择调查方法 4、展开调查,收集数据 5、整理数据 6、描述数据
CCADBCADCD CEABDDBCCC DBDCDDDCDC EBBDDCCEBD ABDDCBCBDD
问题1
讨论1:从上面的数据中,你能看 出全班同学喜爱各类节目的情况吗? 怎样才能很清楚地看出全班同学喜爱 各类节目的情况?
统计中经常用表格整理数据,P152表
相关文档
最新文档