问卷调查的统计分析方法
问卷调查统计分析方法[整理]
![问卷调查统计分析方法[整理]](https://img.taocdn.com/s3/m/8f6f28647ed5360cba1aa8114431b90d6c8589b5.png)
问卷调查统计分析方法从统计分析的层次划分问卷的统计分析方法可分为两类:定性分析和定量分析。
一、定性分析定性分析是一种探索性调研方法。
目的是对问题定位或启动提供比较深层的理解和认识,或利用定性分析来定义问题或寻找处理问题的途径。
但是,定性分析的样本一般比较少(一般不超过三十),其结果的准确性可能难以捉摸。
实际上,定性分析很大程度上依靠参与工作的统计人员的天赋眼光和对资料的特殊解释,没有任何两个定性调研人员能从他们的分析中得到完全相同的结论。
因此,定性分析要求投入的分析者具有较高的专业水平,并且优先考虑那些做数据资科收集与统计工作的人员。
二、定量分析在对问卷进行初步的定性分析后,可再对问卷进行更深层次的研究——定量分析。
同卷定量分析首先要对问卷数量化,然后利用量化的数据资料进行分析。
问卷的定量分析根据分析方法的难易程度可分为定量分析和复杂定量分析。
(一)简单的定量分析简单的定量分析是对问卷结果作出一些简单的分析,诸如利用百分比、平均数、频数来进行分析。
在此,我们可将问卷中的问题分为以下几类进行分析。
1、对封闭问题的定量分析。
封闭问题是设计者已经将问题的答案全部给出,被调查者只能从中选取答案。
例如:您认为出入正式场合时,穿着重要吗?(限选一项)一点也不重要……………………l不重要 (2)无所谓 (3)重要 (4)非常重要 (5)对于全部45次访问的回答,我们可以简单地统计每种回答的数目:一点也不重要=2;不重要=5;无所谓=10;重要=15,可把结果整理成如表一所示:表一出入正式场合穿着重要性从表一中可以一目了然地看出分析结果——几乎三分之一的被调查者认为在正式场合穿着很重要,仅有15.6%的人认为在正式场合穿着不重要。
表一是对全部样本总体的分析。
然而,几乎所有的问卷分析都要求不同的被访群之间的比较。
这就需要用较为复杂的方法——交叉分析来实现。
交叉分析是分析三个变量之间的关系。
例如美国的一位调研人员怀疑美国人“海外旅游的欲望可能与年龄”有关,但通过分析发现,没有发现两者之间存在任何联系,当将性别作为第三个变量引进之后,发现在男性中45岁以下的人中有60%有“海外旅游欲望”,而45岁以上者只有40%有这种愿望。
问卷分析方法

问卷分析方法问卷调查是一种常用的数据收集方法,通过问卷可以获取大量的信息和数据,但如何对问卷进行有效的分析是至关重要的。
本文将介绍几种常用的问卷分析方法,希望能对您的研究工作有所帮助。
首先,问卷调查的数据分析可以采用描述性统计方法。
描述性统计是通过对问卷数据中的各项指标进行统计描述,包括频数分布、均值、标准差等。
通过描述性统计,可以直观地了解被调查对象的一些基本情况,比如年龄分布、性别比例、受教育程度等,这些信息对于后续的分析和研究具有重要意义。
其次,问卷数据的分析还可以采用相关性分析方法。
相关性分析可以帮助我们了解问卷中各项指标之间的相关关系,包括正相关、负相关以及相关程度。
通过相关性分析,可以找出问卷中不同指标之间的内在联系,为后续的研究提供重要参考。
此外,因子分析也是一种常用的问卷分析方法。
因子分析是通过分析问卷中各项指标之间的相关性,将它们归纳为几个较为独立的因子,从而简化数据结构。
因子分析可以帮助我们找出问卷中隐藏的结构和规律,为研究提供更深层次的信息。
最后,问卷数据的分析还可以采用回归分析方法。
回归分析可以帮助我们了解问卷中各项指标之间的因果关系,找出影响因变量的自变量,并建立相应的数学模型。
通过回归分析,可以深入挖掘问卷数据中的信息,为研究提供更为精确的结论。
总之,问卷分析是问卷调查工作中至关重要的一环,不同的分析方法可以帮助我们从不同角度了解问卷数据,为研究提供有力支持。
希望本文介绍的问卷分析方法能对您的工作有所启发,也希望您能在实际工作中灵活运用这些方法,取得更好的研究成果。
调查问卷中的统计分析方法

调查问卷中的统计分析方法一、数据类型的分类在进行统计分析之前,我们需要了解问卷数据所属的数据类型。
常见的数据类型主要可以分为四类:名义型、顺序型、区间型和比率型数据。
名义型数据是最基本的数据类型,它仅表示分类或标记的信息。
例如,在一份调查问卷中,我们可以使用“是”和“否”的选项来表示一个问题的答案。
顺序型数据则在名义型数据的基础上增加了顺序关系的信息。
例如,我们使用“非常不满意”、“不满意”、“一般”、“满意”和“非常满意”的五个选项来衡量一个产品的满意度。
区间型数据是一种有序的连续数据,它的测量单位是固定的,但没有一个确定的零点。
例如,我们对一组人群的年龄进行调查,得到的数据是区间型数据。
最后,比率型数据在区间型数据基础上添加了一个确定的零点,可以进行加减乘除等运算。
例如,我们可以统计一组人的身高、体重等信息。
二、描述性统计分析方法描述性统计分析方法能够总结和展示数据的基本特征,帮助我们对数据有一个整体的认识。
常用的描述性统计分析方法包括频数分析、百分比分析、中心位置分析和离散程度分析等。
频数分析是统计各个变量取值的频数,它可以直观地了解到数据中各个不同取值的个数。
百分比分析可以进一步对频数进行转化,得到各个取值的百分比。
中心位置分析可以帮助我们了解数据的集中趋势,常用的指标有均值、中位数和众数等。
均值是指将所有数据加起来后除以数据个数得到的平均数;中位数则是将数据按照大小排列后找到中间位置的数;众数是指在一组数据中出现次数最多的数。
离散程度分析可以帮助我们了解数据的分散程度,常用的指标有方差和标准差等。
方差是各个数据与均值之差的平方的平均值;标准差是方差的平方根,它可以反映数据的离散度。
通过以上的描述性统计分析方法,我们可以对调查问卷中的数据进行初步的了解和总结。
三、推断统计分析方法描述性统计分析方法能够对数据进行总结,但无法做出具有代表性和普遍性的推断。
而推断统计分析方法可以通过对样本数据进行分析,从而推断出与总体数据相关的结论。
问卷调查结果分析方法

问卷调查结果分析方法
概述:
本文档旨在介绍一种常见的问卷调查结果分析方法。
通过该方法,研究人员可以有效地分析和解释所收集到的问卷调查数据,从而为相关研究提供有意义的结论和洞见。
步骤:
以下是该问卷调查结果分析方法的步骤:
1. 数据清洗:
- 检查和去除问卷调查中的错误、缺失或无效数据。
- 对于多项选择题和开放性问题,将回答进行编码,以便进行统计分析。
2. 数据分析:
- 对于定量数据(如数值或比例),可以使用统计方法(如平均值、百分比、方差等)进行描述性分析。
- 对于定性数据(如分类变量),可以使用频数统计或交叉分析来了解各个类别的分布情况。
- 利用统计软件(如SPSS或Excel)来计算和呈现统计结果。
3. 结果解释:
- 解释每个分析结果的含义和背后的原因。
- 比较不同群体或变量之间的差异,并从中提取重要的洞见。
- 基于分析结果,提出相关研究的结论和建议。
4. 结果呈现:
- 使用图表、表格、图像等可视化工具将分析结果清晰地展示出来。
- 编写简洁明了的文字描述,使读者能够直观地理解数据分析结果。
5. 引用和验证:
- 在结果报告中引用所使用的数据来源和引用的研究方法。
- 使用可靠的数据和研究结果来支持分析和结论,避免引用未经确认的内容。
总结:
通过该问卷调查结果分析方法,研究人员可以系统地处理和分析所收集到的问卷调查数据。
该方法不仅能将数据转化为有用的信息和知识,还可以为决策提供实际的借鉴。
然而,在进行数据分析和结果解释时,研究人员应遵循简单的策略,避免引入法律复杂性和未经确认的内容。
问卷调查的数据分析怎么做

问卷调查的数据分析怎么做介绍问卷调查是一种常用的研究方法,用于收集大量的数据。
然而,收集到的数据本身并不能直接帮助我们得出结论。
为了从问卷调查数据中提取有用的信息,对数据进行分析是至关重要的。
本文将介绍如何进行问卷调查的数据分析,包括数据清洗与整理、统计分析和数据可视化等方面。
数据清洗与整理在进行数据分析之前,首先需要对收集到的数据进行清洗与整理。
以下是一些常见的数据清洗与整理步骤:1.删除重复数据:检查数据集中是否存在重复的记录,并将其删除,以确保数据的准确性和一致性。
2.处理缺失值:检查数据集中是否存在缺失值,并根据实际情况决定如何处理。
可以选择删除含有缺失值的记录,或者使用插补方法填充缺失值。
3.标准化数据:如果数据集中包含不同的度量单位或不同的量表,需要对数据进行标准化,以便能够进行有效的比较和分析。
4.删除异常值:检查数据集中是否存在异常值,并根据实际情况决定是否删除或纠正这些异常值。
统计分析完成数据清洗与整理之后,可以进行统计分析,以获取对数据集的进一步理解和洞察。
以下是一些常见的统计分析方法:1.描述统计分析:通过计算数据集的中心趋势(如均值、中位数等)和离散程度(如标准差、方差等),可以对数据的总体特征进行描述性的分析。
2.相关性分析:通过计算变量之间的相关系数,可以查看不同变量之间的关系强度和方向,了解它们是否具有显著的相关性。
3.分组比较:如果数据集中存在分类变量,可以将数据按照这些分类变量进行分组,并比较不同组之间的差异,以获取更深入的洞察。
4.回归分析:对于包含自变量和因变量的数据集,可以使用回归分析来建立模型,并研究自变量对因变量的影响程度以及相关性。
数据可视化数据可视化是将数据以图表等形式展示出来,以便更直观地理解数据和发现其中的规律。
以下是一些常见的数据可视化方法:1.条形图:用于比较不同类别或组之间的数据差异和趋势。
2.饼图:用于展示数据的占比关系,可以帮助我们了解不同类别的比例和构成。
(完整版)问卷调查的常用统计分析方法

问卷调查的常用统计分析方法问卷调查的方法用得很广泛,对于没有接触过spss的人第一步面临的就是问卷编码问题,有很多外专业的同学都在问这个问题,现在通过举例的方法详细讲解如下,以方便第一次接触SPSS 的同学也能做简单的分析。
后面还有分析时的操作步骤,以及比较适用的深入统计分析方法的简单介绍。
调查分析问卷回收,在经过核实和清理后就要用SPSS做数据分析,首先的第一步就是把问题编码录入。
SPSS的问卷分析中一份问卷是一个案,首先要根据问卷问题的不同定义变量。
定义变量值得注意的两点:一区分变量的度量,Measure的值,其中Scale是定量、Ordinal是定序、Nominal 是指定类;二注意定义不同的数据类型Type各色各样的问卷题目的类型大致可以分为单选、多选、排序、开放题目四种类型,他们的变量的定义和处理的方法各有不同,我们详细举例介绍如下:问卷调查的方法用得很广泛,对于没有接触过spss的人第一步面临的就是问卷编码问题,有很多外专业的同学都在问这个问题,现在通过举例的方法详细讲解如下,以方便第一次接触SPSS的同学也能做简单的分析。
后面还有分析时的操作步骤,以及比较适用的深入统计分析方法的简单介绍。
自己写的,错误之处请指正,调查分析问卷回收,在经过核实和清理后就要用SPSS做数据分析,首先的第一步就是把问题编码录入。
SPSS的问卷分析中一份问卷是一个案,首先要根据问卷问题的不同定义变量。
定义变量值得注意的两点:一区分变量的度量,Measure的值,其中Scale是定量、Ordinal是定序、Nominal 是指定类;二注意定义不同的数据类型Type各色各样的问卷题目的类型大致可以分为单选、多选、排序、开放题目四种类型,他们的变量的定义和处理的方法各有不同,我们详细举例介绍如下:1 、单选题:答案只能有一个选项例一当前贵组织机构是否设有面向组织的职业生涯规划系统?A有 B 正在开创C没有D曾经有过但已中断编码:只定义一个变量,Value值1、2、3、4分别代表A、B、C、D 四个选项。
问卷调查的数据分析方法

问卷调查的数据分析方法标题:问卷调查的数据分析方法引言:随着社会的发展和科技的进步,问卷调查已经成为研究和了解人们意见、态度和行为的常用方法之一。
然而,仅仅收集到大量的数据并不能帮助我们深入理解和分析问题。
在这篇文章中,我们将探讨一些常用的数据分析方法,以助于更好地理解问卷调查结果。
一、数据整理与预处理在开始数据分析之前,我们需要进行数据整理与预处理,以确保数据的可靠性和一致性。
首先,我们应该检查数据是否完整,是否存在缺失值或异常值。
其次,对于多选题或开放式问题,我们需要对回答进行分类和编码,以便后续的统计和分析。
二、描述性统计分析描述性统计分析是对数据进行总结和描述的方法,通常包括计算平均数、中位数、众数、标准差等统计指标。
通过这些指标,我们可以了解数据的分布、集中趋势和离散程度。
此外,我们还可以通过绘制条形图、饼图、频率分布图等图表来直观地展示数据特征。
三、关联分析关联分析是研究不同变量之间关系的方法,一般利用相关系数或卡方检验等统计方法进行计算。
通过关联分析,我们可以了解不同变量之间的相关性强弱程度,判断它们之间是否存在显著关联。
这对于了解问题的核心因素、解释变量之间的作用关系非常重要。
四、回归分析回归分析是研究因变量与自变量之间关系的方法,通过构建数学模型进行预测和解释。
常见的回归方法包括线性回归、逻辑回归等。
通过回归分析,我们可以深入探讨各个自变量对因变量的影响程度和方向,帮助我们理解问题的本质和原因。
五、聚类分析聚类分析是将相似的个体归为一类,不相似的个体归为不同类别的方法。
通过聚类分析,我们可以进行数据的分类与整理,发现数据集中的分组结构和内部规律。
对于大规模问卷调查数据,聚类分析可以帮助我们减少数据的复杂性,提取出主要特征。
六、主成分分析主成分分析是一种降维方法,通过将原始变量进行线性组合,得到新的综合指标(主成分),从而降低数据维度并保留较多信息。
主成分分析可以帮助我们理解变量之间的相关性和重要性,发现隐藏在数据背后的潜在因素。
在问卷调查中常用数据分析方法有哪些?

在问卷调查中常用数据分析方法有哪些?1.描述性统计分析包括样本基本资料的描述,作各变量的次数分配及百分比分析,以了解样本的分布情况。
此外,以平均数和标准差来描述市场导向、竞争优势、组织绩效等各个构面,经过西线学院小编了解,以了解样本企业的管理人员对这些相关变量的感知,并利用t检验及相关分析对背景变量所造成的影响做检验。
2.Cronbach’a信度系数分析信度是指测验结果的一致性、稳定性及可靠性,一般多以内部一致性来加以表示该测验信度的高低。
信度系数愈高即表示该测验的结果愈一致、稳定与可靠。
针对各研究变量的衡量题项进行该信度分析,以了解衡量构面的内部一致性。
一般来说,Cronbach’a仅大于0.7为高信度,低于0.35为低信度,0.5为最低可以接受的信度水准。
3.探索性因素分析和验讧性因素分析用以测试各构面衡量题项的聚合效度(convergent validity)与区别效度(discriminantvalidity)。
因为仅有信度是不够的,可信度高的测量,可能是完全无效或是某些程度上无效。
所以我们必须对效度进行检验。
效度是指工具是否能测出在设计时想测出的结果。
收敛效度的检验根据各个项目和所衡量的概念的因素的负荷量来决定;而区别效度的检验是根据检验性因素分析计算理论上相关概念的相关系数,检定相关系数的95%信赖区间是否包含1.0,若不包含1.0,则可确认为具有区别效度。
4.结构方程模型分析由于结构方程模型结合了因素分析和路径分析,并纳入计量经济学的联立方程式,可同时处理多个因变量,容许自变量和因变量含测量误差,可同时估计因子结构和因子关系。
容许更大弹性的测量模型,可估计整个模型的拟合程度,因而适用于整体模型的因果关系。
在模型参数的估计上,采用最大似然估计法;在模型的适合度检验上,以基本的拟合标准、整体模型拟合优度以及模型内在结构拟合优度,三个方面的各项指标作为判定的标准。
在评价整体模式适配标准方面,平均残差平方根(root—mean.square:residual,RMSR)、近似误差均方根(root-mean—square-error-of-approximation,RMSEA)等指标;模型内在结构拟合优度则参考Bagozzi和Yi的标准,考察所估计的参数是否都到达显著水平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问卷调查的统计分析方法
问卷调查是体育科研中一个常用的方法。
对问卷调查获得的信息进行统计分
析后,可以为科学决策提供重要的依据。
例如:每5年一次的国民体质监测,都要对每一个监测对象进行问卷调查,以便了解我国城乡居民参加体育锻炼的基本状况,为推进全民健身提供科学决策
依据。
在许多体育研究的课题中也广泛采用问卷调查的方法,将调查的数据统计
后作为撰写研究论文中各种论点的依据。
但是,许多问卷调查的统计分析,存在两个值得注意的问题。
1.调查的样本量太小,计算出的结论可靠性不高。
例如看到一些研究生的论文,只发了几十份问卷调查表,就根据统计到的百
分比写下十分肯定的结论。
其实,是有问题的。
例如:调查“你对××活动喜欢的程度”,调查了45人。
调查结果:非常
喜欢2人,喜欢5人,一般10人,不太喜欢13人,不喜欢15人。
作者统计出:喜欢和非常喜欢的共7人占调查人数45人的15.5%,不太喜欢和不喜欢的共28人,占62.2%。
并根据15.5%和62.2%来进一步写结论。
但是,他忽略了调查的样本计算出率以后,还应该计算率的标准误和置信区间。
如本例喜欢率为15.5%。
还应该计算率的标准误Sp。
_________ _________________
本例,喜欢率的标准误 Sp =√P(1-P)/n = √15.5(100-15.5)/45 = 5.39 % 按样本量n,查t值表上, n-1的t0.01和t0.05 的值,查得t0.05=2.02 , t0.01
=2.69, 根据喜欢率15.5 %、标准误5.39 % 和t0.05的值,可计算出:95% 置信区间:15.5±2.02×5.39=4.6%~26.4%。
(置信区间上下限的差值
高达21.8%)。
95% 置信区间的含义是,如果用样本的喜欢率15.5%来估计总体的喜欢率
时,有95%的可能是在4.6%~26.4%的区间之间。
这样高达21.8%的区间意味着15.5%是不太可信的。
但是,如果扩大样本量到450人,4500人,而统计出的喜欢率也是15.5%。
由于调查的样本量扩大了,标准误 Sp会缩小,计算出的95% 置信区间也就缩小
为12.2%~18.8%和14.4%~16.6%。
这时用样本率估计总体率时,上下限的差值
很接近15.5%,才是可信的。
2. 调查数据的统计分析过于简单。
目前看到的调查数据统计分析大都比较简单。
只是计算各个问卷指标的百分比,如上面举例的喜欢率15.5%等等。
要避免统计分析过于简单,首先,在做调查表设计时,就事先要考虑好调查数据的统计分析方法。
例如同样是调查“你对××活动喜欢的程度”,除了要扩大调查样本量外,在调查表中增加调查性别和年龄。
这样就可以采用一种较为复杂的方法——交叉分析。
交叉分析是分析“年龄”、“性别”和“对××活动喜欢程度”三个变量之间的关系。
假设不分类统计时,喜欢率是15.5%。
交叉分析后就会发现由于性别的不同,年龄段的不同喜欢率是不同的。
例如:2005年国民体质监测问卷调查中,对“睡眠时间”的统计分析,如果只是简单地计算某市成年男子2473人的问卷,只能统计出:睡眠6小时以下的人为13.4%,睡眠6~9小时的73.6%,睡眠9小时以上的13%。
但是,如果增加年龄因素,分年龄段进行统计就可以看到,各年龄段的百分比是不同的(统计表略)。
利用分年龄段的百分比还可以画出折线图(图略)。
从图上更可以清楚的显示出:随着年龄增加,睡眠时间逐渐减少的趋势。
上述统计分析方法比较简单。
但是,仅靠简单的统计方法来处理问卷调查数据是十分可惜的,因为大量的数据信息还没有充分利用。
所以,设计问卷时,就应该注意到,让收集到的调查数据能做多因素统计分析(如:回归分析,因子分析等)。
下面是我帮助或指导有关单位做过的统计分析实例:
例1:2005年国民体质监测的调查问卷内容中,包括了各人的文化程度,职业,工作、生活和体育锻炼等方面的许多问题。
为了分析这些调查内容和各人的体质有什么关系,找出哪些因素对体质的好坏特别有关?在进行统计分析时,就需要把体质监测的指标和问卷调查的内容联系起来进行统计。
在成年组调查问卷内容中可进行计算的12个问题是:受教育程度,职业,平均每周工作时间,平均每天睡眠时间,睡眠质量,平均每天步行时间,平均每天坐姿活动时间,吸烟状况,运动感受,平均每周锻炼次数,平均每次锻炼时间,坚持锻炼时间。
把这些作为X1, X2, ……X12,再把每个人体质监测中的体质总分作为Y,就可以进行逐步回归分析计算。
某省成年男甲组4242人的数据用逐步回归分析计算结果是:从12个指标中依次选出了X 1 (受教育程度),X12 (坚持锻炼时间),X10(平均每周锻炼次数),X7(平均每天坐姿活动时间) 4个指标。
得到回归方程:
Y = 21.85+ 1.02 X 1 -0.20 X7+ 0.34 X10 + 0.28 X12F=101.92 (P<0.01) 复相关系数R= 0.296
根据回归方程的系数就可以知道:受教育程度高,平均每周锻炼次数多,坚持锻炼时间长,平均每天坐姿活动时间少的人体质总分就高。
反之就低。
而这个结论只做一般的调查表百分比统计,是得不到的。
例2:某市开展《超重与肥胖人群运动与营养综合干预实验研究》12周后,对参加者进行了问卷调查,内容有:每天进餐情况(分为:五分饱,八分饱,十分饱),每周快走次数(分为:3次以下,3次,4次,5次及以上),每次快走时间(分为:30分钟以内,30~60分钟,60~90分钟,90分钟以上),每次快走距离(分为:3公里以下,3~4公里,5公里及以上)等。
如果仅统计各个问卷内容的百分比,只能计算出如:每次快走时间30分钟以内的29人占22.1%,30~60分钟的47人占35.9%,60~90分钟的19人占14.5%,90分钟以上的36人占27.5% 等等,这样的统计结果并不能说明什么问题。
更无法分析出哪些是对减肥有效果的因素。
但是,把问卷调查的内容与参加12周实验后各人体重下降值联系起来统计,情况就不同了。
如可以分别计算出:每周快走次数、每次快走时间等指标与体重下降值的相关系数。
当计算出以上指标都和体重下降值呈中度或低度相关时,还可以进一步用回归分析的方法计算出标准回归系数或偏回归平方和来分析各指标对体重下降的作用大小。
本例有131人参加实验,为了用数学表达式来描述:饮食、运动量和降体重的关系。
把调查表内容转换成数字后,选择了X1(每天进餐情况)、X2(每周快走次数)、X3(每次快走距离)与Y(体重下降值)计算出三元回归方程:Y= 1.26-1.30 X1 +0.59 X2 +1.70 X3 F =13.855 (P<0.01)
复相关系数R = 0.4966
从回归方程可以看到,在吃八分饱的情况下,增加每周快走次数和每次快走距离,降体重的效果更好。
可见,当采用了多元回归分析方法后,可以充分利用调查表里的信息从而获得比简单的统计百分比更多的研究结果。
例3:某市对学生体质下降原因进行调研时,设计的调查表内容包括:学生、家长、学校等方面30多项指标。
为了分析调查的各指标对学生身体素质影响的主次关系,从调查表中选出可进行因子分析计算的26个指标进行了R型因子分析计算。
R型因子分析通过计算,可找出控制着所有指标的几个主要因素。
计算后,原来的许多指标重新组合成较少的几个新的综合指标──公因子。
这些公因子相互独立而且反映了原来指标的绝大部分信息。
通过R型因子分析的结果,可以看出哪些指标是同一类的,每一个指标以哪一公因子为主,其他公因子所占比例如何,从而分析该指标的特点。
还可根据贡献率较大的几个公因子中所包括的指标,来分析出各指标的主次关系。
对3699名中学生的调查数据作R型因子分析计算后,从贡献率最大的5个公因子所包括的调查指标看,归入第1公因子的7个指标,都和参加体育活动有关,因此把第一公因子命名为体育活动因子,归入第2公因子的2个指标,是反映学生家长文化水平的学历,归入第3公因子的2个指标,是反映学生是否关心自己体质、健康的指标,归入第4公因子的2个指标,是反映学校是否关心和组织学生体育活动的指标,归入第5公因子的2个指标,是反映学生家长对体育运动的态度的指标。
从而可以分析出,对学生体质影响最大的第一因素是学生参加体育活动的情况,第二因素是家长的文化水平高低,第三因素是学生自己是否关心自己的体质、健康情况。
第四因素是学校是否关心和组织学生参加体育活动,第五因素是家长是否喜爱体育活动是否支持学生参加体育活动。
因子分析的优点在于用一个或少数几个综合指标概括原始数据中尽量多的信息,它能够实现对问题的高度概括,并揭示出一般的特征和规律。
本例通过因子分析的统计方法,从学生填在26个调查问卷中的信息,分析出了对学生体质影响的几个主要因素。