小学奥林匹克竞赛——找出数列的排列规律-

合集下载

小学五年级奥数练习找规律

小学五年级奥数练习找规律

小学五年级奥数精选一、数列规律的应用--找规律(四)按一定的顺序排列的一串数,叫做数列,每一个数是数列的一项,排在第几个位置就叫第几项。

要找到数列的规律,必须善于观察,一般可以从以下几方面去观察数列: ①数列的每一项怎样随项数变化而变化; ②后面的项与前面的项有什么关系; ③数列分组后有什么规律。

注意:同一个数列,从不同的方面去观察,可以有不同的规律性。

如数列:1,4,9,16,25,36,……规律1:从第2项起每一项比前一项依次大3,5,7,9,11,……规律2:每一项=它的项数的平方。

把这个数列看作:12,22,32,42,52,62,…… 例1、准备题,按规律填数。

(1) 2,9,16,23, , ; (2) 1,2,4,7,11, , ;(3) 21,32,43,54, , ;(4) 2,4,5,10,11,22,23, , ;例2、把自然数中的偶数:2,4,6,8,……依次排成5列(如图)从上到下为列,从左到右为行,最左边的一列叫第一列,最上面一行叫第一行,那么数1994出现在第几行第几列?2 4 6 8 16 14 12 10 18 20 22 24 32 30 28 26 34 36 38 40 … … … …例3、把自然数如右图排列, ①第10行正中的数是哪个? ②1999在第几行左起第几个 数?例4、自然数如右图排列:①第一行中自左至右第8个数是几? ②自上至下第10行中第8个数是几?例5、把所有自然数按下图规律排列后,从上到下分成A,B,C,D,E 五类,问1991在哪一类?第一行 1 第二行23 4第三行5 67 8 9第四行 10 11 12 1314 15 16…1 3 6 10 15 21 … 2 5 9 14 20 …4 8 13 19 …712 18 …11 17 (1)6…A B C DE12 3 4 8 7 6 5 9 10 11 12 16 15 14 13 17 … … ………… …例6、所有自然数如右图排列, ①300应位于哪个字母下面? ②字母F 下面,从上往下数 第6个数是多少?例7、有列数:2,3,6,8,8, …,从第3个数起,每个数都是前两个数乘积的个位数字,那么这一列数的第80个数是多少?例8、有一列数:1,1989,1988,1,1987, …,从第3个数起,每一个数都是前两个数中大数减小数的差,那么第1989个数是多少?例9、如数表,第n 行有一个数A,它的下一行(第n+1行)有一个数B,且A 和B 在同一竖列,如果A+B=394,那么n 是多少?1 2 3 4 7 6 5 8 9 10 11 14 13 12 15 16 … … … …第1行1 2 3 4 5 … 14 15第2行 30 29 28 27 26 … 17 16第3行 31 32 33 3435 … 44 45……………………………………………………例10、右图是一个由数字组成的三角形。

小学奥数找规律

小学奥数找规律

小学奥数找规律一、知识要点按照一定次序排列起来的一列数,叫做数列。

如自然数列:1,2,3,4,……双数列:2,4,6,8,……我们研究数列,目的就是为了发现数列中数排列的规律,并依据这个规律来填写空缺的数。

按照一定的顺序排列的一列数,只要从连续的几个数中找到规律,那么就可以知道其余所有的数。

寻找数列的排列规律,除了从相邻两数的和、差考虑,有时还要从积、商考虑。

善于发现数列的规律是填数的关键。

二、精讲精练【例题1】在括号内填上合适的数。

(1)3,6,9,12,(),()(2)1,2,4,7,11,(),()(3)2,6,18,54,(),()练习1:在括号内填上合适的数。

(1)2,4,6,8,10,(),()(2)1,2,5,10,17,(),()(3)2,8,32,128,(),()(4)1,5,25,125,(),()(5)12,1,10,1,8,1,(),()【例题2】先找出规律,再在括号里填上合适的数。

(1)15,2,12,2,9,2,(),()(2)21,4,18,5,15,6,(),()练习2:按规律填数。

(1)2,1,4,1,6,1,(),()(2)3,2,9,2,27,2,(),()(3)18,3,15,4,12,5,(),()(4)1,15,3,13,5,11,(),()(5)1,2,5,14,(),()【例题3】先找出规律,再在括号里填上合适的数。

(1)2,5,14,41,()(2)252,124,60,28,()(3)1,2,5,13,34,()(4)1,4,9,16,25,36,()练习3:按规律填数。

(1)2,3,5,9,17,(),()(2)2,4,10,28,82,(),()(3)94,46,22,10,(),()(4)2,3,7,18,47,(),()【例题4】根据前面图形里的数的排列规律,填入适当的数。

(1)(3)练习4:(1)(3)【例题5】按规律填数。

(1)187,286,385,( ),( ) (2)练习5:根据规律,在空格内填数。

一年级奥数题及答案-数列规律

一年级奥数题及答案-数列规律

一年级奥数题及答案-数列规律
小朋友们知道什么是奥数吗?一般奥数是奥林匹克数学竞赛的简称,是非常难的数学题目,超出了义务教育的水平,而且奥数对于青少年脑力的锻炼有着一定的作用哦,所以还是多多来学习怎么做奥数题目吧。

问: 1.4,5,7,10,14,()
2.20,18,16,14,(),(),8,6,4
3.1,20,2,18,3,16,4,14,(),()
4.根据前面两幅图找到规律,将第三幅图补全。

答:1、【解析】从第二个数开始,每个数分别比前一个数大1,大2,大3,大4…因此接下来括号中的数应比14大5,即19。

【答案】19
2、【解析】从第二个数开始,每个数都比前面一个数少2,所以第一个括号中应该比14少2,填12,第二个括号中应该比12少2,填10
【答案】12;10。

3、【解析】将这个数列间隔着看就会发现规律,分别是1,2,3,4……和20,18,16,14……
按照第一个的规律,第一个括号里应该填5,按照第二个规律,第二个括号里应该填12
【答案】5;12
4、【解析】每幅图中的上下两个数相加都等于右边的数,三幅图之间的规律是:左上方的数以此减少2,左下方的数依次增加1。

四年级奥数数列规律解密

四年级奥数数列规律解密

四年级奥数数列规律解密数学是一门充满魅力的学科,其中一个让人着迷的领域便是数列。

在四年级的奥数课程中,我们经常会遇到各种各样的数列题目。

这些题目看似复杂,但实际上背后隐藏着一些规律,只要我们掌握了这些规律,解题将会变得轻松而有趣。

本文将解密一些常见的数列规律,帮助大家在奥数课上取得更好的成绩。

一、等差数列等差数列是最常见的数列类型之一。

在等差数列中,每一项与前一项之间的差值保持不变。

我们可以通过以下形式来表示一个等差数列:an = a1 + (n-1)d其中,an表示第n项,a1是首项,d为公差(即每一项之间的差值)。

对于等差数列,我们需要关注三个重要要素:首项、公差和项数。

如果我们知道其中任意两个要素,就可以求解出其他的未知要素。

举例来说,如果我们知道等差数列的首项是3,公差是5,我们就可以轻松地计算出第10项的值。

a10 = a1 + (10-1)d = 3 + 9 * 5 = 48通过掌握等差数列的规律,我们可以迅速求解各种数列题目,不论是计算项数、求和还是找出某一项的值。

二、等比数列另一个常见的数列类型是等比数列。

在等比数列中,每一项与前一项之比保持不变。

我们可以通过以下形式来表示一个等比数列:an = a1 * r^(n-1)其中,an表示第n项,a1是首项,r为公比(即每一项与前一项的比值)。

与等差数列类似,对于等比数列,我们同样需要关注三个重要要素:首项、公比和项数。

通过掌握等比数列的规律,我们可以轻松求解各种等比数列题目。

例如,如果我们知道等比数列的首项是2,公比是3,我们可以计算出第5项的值。

a5 = a1 * r^(5-1) = 2 * 3^4 = 162三、斐波那契数列斐波那契数列是一种非常特殊的数列,其规律更加复杂。

在斐波那契数列中,每一项都是前两项的和。

数列的前几项通常为:1, 1, 2, 3, 5, 8, 13, 21, 34, ...我们可以使用递推公式来表示斐波那契数列:an = a(n-1) + a(n-2)其中,an表示第n项,a(n-1)表示前一项,a(n-2)表示前两项。

小学奥数找规律知识点

小学奥数找规律知识点

小学奥数找规律知识点小学奥数是指小学生参加的数学奥赛比赛,题目难度较高,常常需要运用一些找规律的方法来解题。

在小学奥数中,找规律是一种重要的解题技巧,掌握了找规律的知识点,可以在解题时事半功倍。

本文将介绍小学奥数中常用的找规律的知识点。

一、数字序列的规律在小学奥数中,经常会给出一组数字的序列,要求找出其中的规律。

在解决这类问题时,我们可以首先观察数字序列的前几个数,看是否能够找到一些明显的规律。

比如,给定数字序列:2, 4, 6, 8, 10,我们可以发现每个数字都是前一个数字加2,因此规律是“加2”。

有时候数字序列的规律可能更加复杂,我们可以根据数字之间的差异来寻找规律。

例如,给定数字序列:1, 3, 6, 10,我们可以发现每个数字相对于前一个数字的差值递增,即1, 2, 3,因此规律是“差值递增”。

二、图形的规律小学奥数中常常会出现一些图形题目,要求找出图形之间的规律。

在解决这类问题时,我们可以先观察图形的形状、颜色、数量等特征,看是否能够找到一些规律。

例如,给定以下图形序列:△ △△ △△△ △△△△我们可以发现每一行图形的数量递增,因此规律是“数量递增”。

有时候图形的规律可能与位置有关,我们可以根据图形在位置上的变化来寻找规律。

比如,给定以下图形序列:□□ □□ □ □□ □ □ □我们可以发现每一行图形的位置与数量有关,因此规律是“位置与数量相关”。

三、数学运算的规律在小学奥数中,常常会出现一些涉及数学运算的题目,要求找出运算中的规律。

解决这类问题时,我们可以先观察数学运算的过程和结果,看是否能够找到一些规律。

例如,给定以下数学运算序列:2 +3 = 53 +4 = 74 +5 = 9我们可以发现每一组的结果都比前一组的结果大2,即组数与结果之间存在着一定的关系,因此规律是“结果与组数相关”。

有时候数学运算的规律可能与数的性质有关,我们可以根据数的性质来寻找规律。

比如,给定以下数学运算序列:6 × 1 = 66 × 2 = 126 × 3 = 18我们可以发现每一组的结果都是一个等差数列,因此规律是“结果是一个等差数列”。

小学三年级奥数——01找规律

小学三年级奥数——01找规律
〔1〕1,2,3,4,6…… 〔2〕1,2,4,8,16…… 〔3〕1,0,0,1,0 ,0, 1,0,0 ……
解题思路:
从连续的几个数中找到规律,就可以知道 其余所有的数。
寻找数列的排列规律,要从相邻两数的和、 差、积、商考虑;要从数列的排列分组考 虑等多个角度考虑。
〔1〕相邻两数的差是固定不变的
练习题6:
D
等比数列:后项除以前项为定值的叫做等比数列。
பைடு நூலகம்
〔4〕单双项分组找规律
〔〕.〔〕…… 〔〕.〔〕…… 〔〕.〔〕…… 〔〕.〔〕…… 〔〕.〔〕 〔〕.〔〕……
〔5〕连续型分组找规律
〔〕.〔〕…… 〔〕.〔〕……
〔6〕后项由前项推导而出:
〔〕.〔〕…… 〔〕.〔〕…… 〔〕.〔〕…… 〔〕.〔〕…… 〔〕.〔〕……
例: 3,6,9,12,〔〕,〔〕 2 , 4 , 6 , 8 , 10,〔〕,〔〕
等差数列:后项减前项的差是定值。
〔2〕相邻两数的差是变化的
1,2 , 4 , 7,11,〔 〕,〔 〕…… 1,2,5,10,17,〔〕,〔〕……
〔3〕与相邻两数的商和积有关 〔〕.〔〕…… 〔〕.〔〕….. 〔〕.〔〕……
〔7〕与项数有关
〔〕.〔〕…… 〔〕.〔〕…… 〔〕.〔〕……
图形型找规律:
方法: 观察图形的变化,主要从各图形的形状、方向、 数量、大小及各组成局部的相对位置入手,从 中找出变化规律。找到每局部的相关规律是关 键。
例1:
练习题1
例2:
练习题2:
例4:
练习题4:
例5:
练习题5:
例6:
数字型找规律:
〔1〕1,2,3,4,6…… 〔2〕1,2,4,8,16…… 〔3〕1,0,0,1,0 ,0, 1,0,0 ……

四年级奥数找规律填数的技巧与方法总结

四年级奥数找规律填数的技巧与方法总结

四年级奥数找规律填数的技巧与方法总结奥数作为一项智力竞赛,对于学生们的逻辑思维和数学能力提出了挑战。

在四年级的阶段,学生们需要掌握一些找规律填数的技巧与方法,以应对奥数的考验。

本文将总结四年级奥数找规律填数的技巧与方法,帮助学生们更好地解题。

一、数列规律的识别在找规律填数的题目中,经常会给出一组数列,要求我们找出这个数列的规律并填写接下来的数字。

这时,我们可以通过以下几种方法来帮助我们识别数列规律:1. 看数之间的关系:观察给出的数列中,每个数与前一个数之间是否有相同的差值或倍数关系,例如等差数列(公差为一个常数)、等比数列(公比为一个常数)等。

2. 找重复的数:如果数列中存在重复的数字,那么这个数字很可能就是数列的规律。

3. 观察数字的变化规律:有些数列中的数字变化不是很明显,可以通过仔细观察每个数字的变化情况来找出规律。

二、常见规律填数的方法在解决奥数找规律填数题时,有几种常见的方法可以帮助我们找出规律并填写正确的数字:1. 逆向思维法:有时,我们可以从题目给出的答案入手,逆向考虑规律,试着将答案反推回去找到规律。

2. 表格法:将数列中的数字按照一定的顺序排列在一个表格中,观察数字之间的规律,填写接下来的数字。

3. 分解法:将数列中的数字进行分解,观察每个数字的组成部分是否存在规律,并根据规律填写接下来的数字。

4. 假设法:设想一个可能的规律,然后试验这个规律是否能够适用于其他的数字,如果能够适用,那么这个假设就是正确的。

5. 倒推法:如果找不到数列的规律,我们可以试着从后往前倒推,观察前面数字与后面数字之间的关系,从而找到规律。

三、练习与应用为了更好地掌握奥数找规律填数的技巧与方法,我们需要进行大量的练习,并将所学应用于实际问题中。

可以通过以下几种途径来提高自己的能力:1. 完成奥数题目:多做一些奥数题目,尝试应用所学的技巧和方法,逐渐提高解题的能力。

2. 参加竞赛活动:报名参加奥数竞赛活动,与其他学生进行切磋和比拼,激发自己的学习兴趣和动力。

小学三年级奥数找简单数列的规律【五篇】

小学三年级奥数找简单数列的规律【五篇】

小学三年级奥数找简单数列的规律【五篇】解答:奇数项构成数列1,3,5,7,…,每一项比前一项多2;偶数项构成数列4,8,12,…,每一项比前一项多4,所以应填:16”【第二篇:斐波那契数列】斐波那契数列为1,1,2,3,5,8,13,那么数列的第100项与前98项之和的差是多少?解答:因为第100项等于第99项与第98项之和,所以第100项与前98项之和的差等于第99项与前97项之和的差.同理第99项与前97项之和的差等于第98项与前96项之和的差,……依次类推,可得第100项与前100项之和的差等于第3项与前1项的差,即为第2项,所以第100项与前98项之和的差是【第三篇:填完数列】按照数列的变化规律在括号里填上合适的数:3,1,6,2,12,3,24,4,(),()。

【答案解析】第1个数、第3个数、第5个数、第7个数……依次为:3,6,12,24,…又组成一个新的数列,后一个数是前一个数的2倍。

所以,第9个数应填48;同样,第2个数、第4个数、第6个数、第8个数……依次为:1,2,3,4,…,也组成一个新的数列,后一个数比前一个数大1。

所以,第10个数应填5【第四篇:周期数列】小明在地上写了一列数:7,0,2,5,3,7,0,2,5,3…你知道他写的第81个数是多少吗?你能求出这81个数相加的和是多少吗?【答案解析】⑴从排列上能够看出这组数按7,0,2,5,3依次重复排列,那么每个周期就有5个数.81个数则是16个周期还多1个,第1个数是7,所以第81个数是7,81÷5=16 (1)⑵每个周期各个数之和是:7+0+2+5+3=17.再用每个周期各数之和乘以周期次数再加上余下的各数,即可得到答案.17×16+7=279,所以,这81个数相加的和是279.【第五篇:等差数列】对于数列4、7、10、13、16、19……,第10项是多少?49是这个数列的第几项?第100项与第50项的差是多少?【答案解析】能够观察出这个数列是公差是3的等差数列.根据刚刚学过的公式:第n项=首项+公差×(n-1),项数=(末项-首项)÷公差+1,第n项-第m项=公差×(n-m);第10项为:4+3×(10-1)=4+27=31,49在数列中的项数为:(49-4)÷3+1=16,第100项与第50项的差:3×(100-50)=150。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

找出数列的排列规律(一)找规律是我们在生活、学习、工作中经常使用的一种思想方法,在解数学题时人们也常常使用它,下面我们利用找规律的方法来解一些简单的数列问题。

(一)思路指导例1. 在下面数列的()中填上适当的数。

1,2,5,10,17,(),(),50例2. 自1开始,每隔两个整数写出一个整数,这样得到一个数列:1,4,7,10……问:第100个数是多少?例3. 已知一列数:2,5,8,11,14,……,44,……,问:44是这列数中的第几个数?试试看:数列7,11,15,……195,共有多少个数?例4. 观察下面的序号和等式,填括号。

序号1234( )等式 1236357155811247111533++=++=++=++= ( )+( )+7983=( )综上所述,括号里应填的数是:(1996) (3991)+(5987)+7983=(17961)例5. 已知数列1,4,3,8,5,12,7,16,……,问:这个数列中第1997个数是多少?第2000个数呢? 分析与解:从整体观察不容易发现它的排列规律,注意观察这个数列的单数项和双数项,它们各自的排列规律为:单数项:1,3,5,7,……双数项:4,8,12,16,……显然,它们各自均成等差数列。

为了求出这个数列中第1997个数和第2000个数分别是多少,必须先求出它们各自在等差数列中的项数,其中:第1997个数在等差数列1,3,5,7,……中是第()()199712999+÷=个数;第2000个数在等差数列4,8,12,16,……中是第()20002÷=1000个数。

所以,第1997个数是()1999121997+-⨯=。

第2000个数是()41000144000+-⨯=(二)尝试体验1. 按规律填数。

(1)1,2,4,( ),16;(2)1,4,9,16,( ),36,49;(3)0,3,7,12,( ),25,33;(4)1,1,2,3,5,8,( ),21,34;(5)2,7,22,64,193,( )。

2. 数列3,6,9,12,15,……,387共有多少个数?其中第50个数是多少?3. 有数组(1,1,1),(2,4,8),(3,9,27),……,求第100组的三个数之和。

4. 下面各列数中都有一个“与众不同”的数,请将它们找出来:(1)6,12,3,27,21,10,15,30,……;(2)2,3,5,8,12,16,23,30,……。

找出数列的排列规律(二)这一讲我们利用前面学习的等差数列有关知识和找规律的思想方法,解决数学问题。

(一) 例题指导例题1、如果按一定规律排出的加法算式是3+4,5+9,7+14,9+19,11+24,……,那么第10个算式是( )+( );第80个算式中两个数的和是多少?分析与解:第一个加数如下排列:3,5,7,9,11……,这是一个等差数列,公差是2,第二个加数排列如下: 4,9,14,19,24,……,这也是一个等差数列,公差是5。

根据等差数列的通项公式可以分别求出第10个算式的两个加数。

()()31012214101549+-⨯=+-⨯=所以第10个算式是2149+。

要求第80个算式的和,只要求出第80个算式的两个加数,再相加即可,当然也可以找一找和的规律。

想一想:第几个加法算式中两个数的和是707?例2. 有一列数:1,2,3,5,8,13,……,这列数中的第200个数是奇数还是偶数?例3. 下面的算式是按某种规律排列的:1+1,2+3,3+5,4+7,1+9,2+11,3+13,4+15,1+17,…… 问:(1)第1998个算式是( )+( );(2)第( )个算式的和是2000。

例4. 将1到200的自然数,分成A 、B 、C 三组:A 组:1 6 7 12 13 18……B 组:2 5 8 11 14 17……C 组:3 4 9 10 15 16……根据分组的规律,请回答:(1)B 组中一共有( )个自然数;(2)A 组中第24个数是( );(3)178是( )组里的第( )个数。

(二)尝试体验1. 如下图所示,黑珠、白珠共102个,穿成一串,这串珠子中,最后一个珠子是( )颜色的,这种颜色的珠子共有( )个。

○●○○○●○○○●○○○……2. 有红、白、黑三种纸牌共158张,按5张红色,后3张白色,再4张黑色的次序排列下去,最后一张是( )色,第140张是( )色。

3. 节日的校园内挂起了一盏盏小电灯,小明看出每两个白灯之间有红、黄、绿各一盏彩灯,小明想,第73盏一定是( )色灯。

4. 下面的算式是按一定的规律排列的:4+2,5+8,6+14,7+20……,那么,第100个算式的得数是( )。

5. 找规律,按规律填数。

131422351164457136662527111001001123135060⨯+==⨯⨯+==⨯⨯+==⨯⨯+==⨯⨯+==⨯⨯+==⨯……第式……第式……第式……第式…………第式……第式…………()()()()()()()()()()()6. 自然数按一定规律排成下表形式,问:第30行第5个数是多少?12345678910…………历届希望杯有关数列的题(2003年第1届小学希望杯1试)1、观察1、2、3、6、12、23、44、x、164的规律,可知x =______ 。

(2003年第1届小学希望杯2试)2、观察右面的五个数:19、37、55、a、91排列的规律,推知a=________ 。

(2004年第2届小学希望杯1试)3、如图,用火柴棍摆出一系列三角形图案,按这种方式摆下去,当N=5时,按这种方式摆下去,当N=5时,共需要火柴棍根。

(2004年第2届小学希望杯2试)4、3+12、6+10、12+8、24+6、48+4、……是按一定规律排列的一串算式,其中第六个算式的计算结果是。

(2005年第3届小学希望杯1试)5、从1开始的奇数:1,3,5,7,……其中第100个奇数是_____。

(2005年第3届小学希望杯1试)6、从1开始的前2005个整数的和是______数(填:“奇”或“偶”)。

(2005年第3届小学希望杯2试)7、1+2+……+8+9+10+9+8+……+2+1=________。

8、1,3,5,7,……是从1开始的奇数,其中第2005个奇数是________。

(2006年第4届小学希望杯1试)9、观察下列算式:2+4=6=2×3,2+4+6=12=3×42+4+6+8=20=4×5……然后计算:2+4+6+……+100=_________。

(2007年第5届小学希望杯2试)10、一群小猴上山摘野果,第一只小猴摘了一个野果,第二只小猴摘了2个野果,第三只小猴摘了3个野果,依次类推,后面的小猴都比它前面的小猴多摘一个野果。

最后,每只小猴分得8个野果。

这群小猴一共有_________只。

(2008年第6届小学希望杯1试)11、(2005+2006+2007+2008+2009+2010+2011)÷2008=__________(2008年第6届小学希望杯2试)12、已知一列数:5,4,7,1,2,5,4,3,7,1,2,5,4,3,7,1,2,5,4,3,……,由此可推出第2008个数是________。

(2009年第7届小学希望杯1试)13、计算:1÷50+2÷50+……+98÷50+99÷50=_________。

(2009年第7届小学希望杯2试)14、计算:1-3+5-7+9-11+13-……-39+41=_________。

15、将一些半径相同的小圆按如下所示的规律摆放:第1个图形中有6个小圈,第2个图形中有10个小圈,第3个图形中有16个小圈,第4个图形中有24个小圈,…,依此规律,第6个图形中有___________个小圈。

(2011年第9届小学希望杯1试)16、计算:1+11+21+31+……+1991+2001+2011=_________。

(2012年第10届小学希望杯1试)17.小兰将连续偶数2、4、6、8、10、12、14、16、…逐个相加,得结果2012.验算时发现漏加了一个数,那么,这个漏加的数是_______。

1.【答案】从第5个数开始,每一个数是前4个数的和,所以X=6+12+23+44=852.【答案】19+18=37,37+18=55,所以a=55+18=733.【答案】找规律3,3+6,3+6+9…,N=5时,需要火柴棍3+6+9+12+15=454.【答案】规律是,第一个加数每一个都是前面的两倍,第二个加数是公差为2的等差数列,所以第六个式子是96+2=985.【答案】1996.【答案】1+2+3+…+2004+2005=(1+2005)×2005÷2=1003×2005是奇数7.【答案】1+2+3+…+n+…+3+2+1=n×n,所以原式=10×10=1008.【答案】2×2005-1=40099.【答案】等式右边第一个乘数等于等式左边加数的个数,100以内的偶数有50个,所以2+4+6+……+100=50×51=255010.【答案】平均每只猴分8个野果,所以最后一只猴摘了8×2-1=15只果,共有15只猴.11.【答案】2005+2006+2007+2008+2009+2010+2011=2008×7,所以原式= 2008×7÷2008=712.【答案】观察数列发现,除前两个数字之外7,1,2,5,4,3,六个数字周期出现,因为(2008-2)÷6=334…2,所以第2008个数是1。

13.【答案】原式=(1+2+3+…+98+99)÷50=(1+99)×99÷2÷50=9914.【答案】原式=(41-39)+(37-35 )+…+(5-3)+1=2+2+…+2+1=2×10+1=2115.【答案】:除周围4个小圆外,中间小圆的规律是1×2,2×3,3×4,……,第6个图有6×7+4=46个小圆.16.【答案】原式=(1+2011)×202÷2=2012×101=203212.17.【答案】最接近2012且比2012大的偶数和为2+4+6+…+90=(2+90)×45÷2=2070,所以2070-2012=58就是漏掉的数。

相关文档
最新文档