钴对硬质合金生产的影响及对策
硬质合金含钴高低关系

硬质合金(也称为钨钴合金或碳化钨合金)是一种由碳化钨(WC)和钴(Co)组成的材料,其中钴作为粘结剂将碳化钨颗粒粘结在一起。
硬质合金的含钴量对材料的性能有显著影响,包括硬度、韧性、耐磨性和抗冲击性等。
以下是硬质合金含钴高低与其性能之间的关系:1. 硬度:-含钴量较低(如10%以下)的硬质合金通常具有较高的硬度,因为碳化钨颗粒之间的结合较弱,不易于塑性变形。
-含钴量较高(如20%以上)的硬质合金硬度相对较低,因为钴含量增加,粘结作用加强,导致材料在受力时更容易发生塑性变形。
2. 韧性:-含钴量较高的硬质合金具有更好的韧性,因为钴的加入提高了材料的韧性,使其在受到冲击或振动时更不易断裂。
-含钴量较低的硬质合金韧性较差,容易在受到冲击时产生裂纹或断裂。
3. 耐磨性:-含钴量较高的硬质合金耐磨性较好,因为钴能够提供更好的粘结力和抗磨损能力。
-含钴量较低的硬质合金耐磨性较差,因为碳化钨颗粒之间的结合不牢固,容易在磨损过程中脱落。
4. 抗冲击性:-含钴量较高的硬质合金具有更好的抗冲击性,因为钴的加入提高了材料的韧性和抗断裂能力。
-含钴量较低的硬质合金抗冲击性较差,容易在受到冲击时发生断裂。
5. 耐腐蚀性:-含钴量较高的硬质合金耐腐蚀性较好,因为钴能够提供更好的抗氧化和耐腐蚀能力。
-含钴量较低的硬质合金耐腐蚀性较差,容易在恶劣环境下发生腐蚀。
总的来说,硬质合金的含钴量与其性能之间的关系是复杂的,不同的应用场景和要求需要选择不同含钴量的硬质合金。
例如,在需要高硬度和耐磨性的应用中,可能会选择含钴量较低的硬质合金;而在需要良好韧性和抗冲击性的应用中,则可能会选择含钴量较高的硬质合金。
硬质合金牌号成分标准

硬质合金牌号成分标准
首先,硬质合金的主要成分包括碳化钨、钴、钛、钼等。
其中,碳化钨是硬质合金的主要成分,其含量通常在70%以上。
碳化钨具有极高的硬度和耐磨性,是硬质合金具有优异性能的关键成分。
而钴的作用则是增加硬质合金的韧性和强度,提高其加工性能和耐冲击性。
钛和钼的加入可以提高硬质合金的耐腐蚀性能,使其在恶劣环境下仍能保持稳定的性能。
其次,硬质合金的成分标准在不同的行业和应用中有所差异。
比如,用于机械加工的硬质合金通常要求硬度高、耐磨性好,因此碳化钨和钴的含量会相对较高;而用于石油钻探的硬质合金则需要具有较好的耐腐蚀性能,因此钛和钼的含量会相对较高。
因此,针对不同的应用,硬质合金的成分标准也会有所不同。
此外,硬质合金的成分标准还受到生产工艺、设备条件、成本控制等因素的影响。
在生产工艺方面,采用不同的制备方法和烧结工艺,可以调控硬质合金的微观结构和性能,从而影响其成分标准。
在设备条件和成本控制方面,生产企业需要根据自身的实际情况,合理调整硬质合金的成分标准,以实现性能和成本的平衡。
综上所述,硬质合金牌号成分标准是影响硬质合金性能和应用的重要因素。
了解硬质合金的成分标准,可以帮助生产企业选择合适的硬质合金材料,满足不同领域的需求。
同时,科研人员也可以根据硬质合金的成分标准,开展相关的材料设计和工艺优化研究,推动硬质合金材料的发展和应用。
希望本文对硬质合金牌号成分标准有所帮助,谢谢阅读!。
硬质合金各项参数之间的关系

硬质合金各项参数之间的关系硬质合金(硬质合金)是一种由碳化物、氮化物、钨钼钴硫化钒等粉末冶金材料制成的高硬度、高强度、耐磨损、耐腐蚀的金属材料。
硬质合金广泛应用于切割工具、矿山工具、石油钻采工具、冲压模具等领域。
硬质合金的性能参数之间存在着复杂的关系,下面将详细介绍硬质合金各项参数之间的关系。
硬质合金的主要成分是钨碳化物(WC)和钴(Co),其它成分包括钼、铬、铌、钒等金属,这些成分的含量、配比和相互作用对硬质合金的性能具有重要影响。
硬质合金中钨碳化物的含量越高,硬度越大,但脆性也相应增大,而钴的含量增加可以提高合金的韧性和冲击强度,但硬度会降低。
合金成分的选择和比例设计是决定硬质合金性能的关键因素之一。
硬质合金的显微组织结构对其性能也有很大影响。
碳化物颗粒尺寸、分布均匀性和结合相之间的结合强度等因素都会对硬质合金的硬度、韧性、耐磨性等性能产生影响。
硬质合金的显微组织通常包括主要相(如WC)和结合相(如Co),主要相颗粒尺寸的大小和分布均匀性对硬质合金的硬度和耐磨性有显著影响。
而结合相的含量和性能对合金的韧性和冲击强度有重要作用。
优化硬质合金的显微组织结构是提高其性能的有效途径之一。
硬质合金的加工工艺对其性能也有重要影响。
比如粉末制备工艺、烧结工艺、热处理工艺等都会对硬质合金的组织结构和性能产生重要影响。
合理的烧结工艺可以有效控制合金的孔隙率和气密性,提高合金的硬度和抗变形能力。
而优化的热处理工艺可以有效改善硬质合金的组织结构,提高其耐磨性和韧性。
加工工艺的优化对硬质合金的性能提升具有重要意义。
硬质合金的各项参数之间存在着复杂的关系,包括成分配比、显微组织结构和加工工艺。
合理设计和控制这些参数,对提高硬质合金的性能具有重要意义。
在今后的研究和生产中,需要重点关注这些参数之间的关系,并通过优化设计和加工工艺来提高硬质合金的性能,以满足不同领域对硬质合金材料的需求。
标准 钨钴类硬质合金

标准钨钴类硬质合金
钨钴类硬质合金是由碳化钨和钴组成的合金,是一种常见的硬质合金类型。
这种合金具有较高的硬度、耐磨性和耐腐蚀性,因此被广泛应用于各种工业领域,如采矿、石油、化工、机械制造等。
在钨钴类硬质合金中,碳化钨是一种非常硬的化合物,具有优良的耐磨性和耐腐蚀性,而钴则可以起到粘结剂的作用,使碳化钨颗粒能够更好地粘结在一起。
这种合金的硬度主要来自于碳化钨,而钴的存在可以增加合金的韧性和强度。
钨钴类硬质合金的牌号通常以“YG”开头,后跟数字表示钴的质量分数。
例如,YG6表示钴的质量分数为6%的钨钴类硬质合金。
不同牌号的钨钴类硬质合金具有不同的硬度、耐磨性和韧性等性能,因此可以根据实际需求选择合适的牌号。
除了钨钴类硬质合金外,还有钨钛钴类硬质合金和钨钛钽钴类硬质合金等其他类型的硬质合金。
这些合金在成分和性能上都有所不同,可以根据实际需求进行选择。
硬质合金产业的发展现状

硬质合金产业的发展现状硬质合金产业是一种以钨、钽、钴等金属和碳化物、硫化物等非金属为主要原料,通过冶炼、铸造、粉末冶金等工艺制造出的高硬度、高耐磨、高强度等特点的合金材料。
它具有广泛的应用领域,包括切削工具、矿山工具、机床配件、石油开采工具、航空航天等领域。
随着科技的进步和产业的不断发展,硬质合金产业也在不断壮大。
当前,硬质合金产业的发展呈现出以下几个特点:首先,市场需求不断增加。
随着经济的快速发展,各行各业对硬质合金产品的需求也在不断增加。
尤其是在制造业中,硬质合金刀具、磨料等产品的使用日益广泛,推动了硬质合金产业的快速发展。
其次,技术不断创新。
硬质合金产业是一个高技术含量的产业,技术创新是硬质合金产业发展的核心驱动力之一、目前,国内外在硬质合金制备、粘结相、颗粒加工等方面都取得了一系列突破性进展,提高了硬质合金产品的质量和性能。
再次,行业整合加速。
由于硬质合金产业的行业门槛较高,传统制造企业在技术和资金上面临一定的压力。
因此,行业内进行整合和转型升级已经成为大势所趋,通过企业的兼并重组,提高了行业内竞争力,并实现了规模效益的提升。
此外,市场国际化程度加深。
随着经济全球化的加深,硬质合金产品的市场不断拓展到全球范围。
同时,国际市场上涌现了一批具有竞争力的硬质合金企业,通过技术创新、产品优势等手段,它们与中国的硬质合金企业进行竞争,带动了整个硬质合金产业的发展。
然而,硬质合金产业的发展也面临一些挑战:一是原材料供应问题。
硬质合金的主要原料是钨、钽、钴等稀有金属,在全球范围内资源分布不均衡,且受到政策和市场波动的影响较大。
因此,加强原材料的保障和供应链管理,成为硬质合金产业发展的一大难题。
二是环境污染问题。
硬质合金的制造过程中会产生大量的废水、废气和废渣,其中含有一定的重金属和有害物质。
这些废弃物如果处理不当,会对环境造成污染。
因此,硬质合金产业需要加强环保意识,推动绿色制造和循环经济,减少对环境的影响。
YG8硬质合金混料生产工艺研究

YG8硬质合金混料生产工艺研究1. 引言硬质合金是一种结合了高硬度、高强度和耐磨性能的复合材料,其应用广泛于机械加工、煤矿开采、石油开采等领域。
YG8是一种常见的硬质合金材料,由钨碳化物(WC)和钴(Co)组成。
在YG8硬质合金的生产过程中,混料是关键环节,影响着最终合金材料的性能和质量。
因此,本文对YG8混料的生产工艺进行研究,旨在提高YG8硬质合金的性能和生产效率。
2. 材料与方法2.1材料本实验所用的YG8硬质合金材料包括钨碳化物(WC)、钴(Co)等原料。
### 2.2 方法2.2.1 混料比例确定:根据YG8硬质合金材料的成分要求和实验需求,确定合适的混料比例,常见的比例是WC和Co的质量比例为6:4。
2.2.2 原料准备:将WC和Co原料按照混料比例称取,然后将WC和Co放入球磨机中一起混合并球磨。
球磨的时间和速度需要根据实际情况进行调整,一般情况下,球磨时间为12小时,转速为150转/分钟。
2.2.3 球磨过程控制:在球磨过程中,要保持一定的湿度,一般湿度为10-15%。
另外,还需定期检查球磨机的磨球情况,及时更换磨损严重的磨球,以保证混料的均匀度和质量。
2.2.4 混料质量检测:将混合后的料样取出,进行密度测定和成分分析。
密度测定采用水置换法,将样品放入已知质量的容器中,浸入水中,根据位移量计算出材料的密度。
成分分析使用扫描电镜(SEM)和能谱仪进行,观察样品的表面形貌和元素成分。
3. 结果与讨论3.1 混料比例的确定根据实验的需求和YG8硬质合金的成分要求,我们确定了WC和Co的质量比例为6:4。
通过该比例的混料制备,可以得到满足YG8硬质合金材料性能和成分要求的混料。
3.2 球磨时间和速度的影响通过不同时间和速度的球磨实验,我们发现球磨时间对YG8硬质合金的物理性能有一定影响,较长的球磨时间可以使材料的压实度和硬度增加。
而球磨速度对YG8硬质合金的物理性能的影响较小。
3.3 混料质量检测结果经过密度测定和成分分析的结果显示,通过上述工艺研究的YG8硬质合金混料具有较高的密度和符合预期的成分,表明我们所设计的工艺研究是成功的。
硬质合金的发展及现状现代工程材料

硬质合金的发展及现状现代工程材料硬质合金(Hardmetal)是一种以钨(W)或钨-钴(WC-Co)为主要成分的复合材料,由于其优异的硬度、耐磨性和耐腐蚀性,被广泛应用于现代工程材料中。
它的发展历史可以追溯到20世纪初,经过了一个世纪的发展,硬质合金已经成为了重要的产业和技术领域。
硬质合金最早被用于制造切割工具,如刀片和铣刀。
由于其高硬度和耐磨性,硬质合金刀具在切削过程中具有较高的切削速度和较长的使用寿命,可以大大提高生产效率和降低生产成本。
随着机械化工业的快速发展,对切削工具的需求不断增加,硬质合金也得到了快速的发展。
硬质合金的应用范围迅速拓展,不仅用于切削工具,还广泛应用于钻头、研磨头、车削刀具、轧辊等领域。
此外,硬质合金还用于制造粉末冶金模具、矿山工具、石油钻头、喷嘴、零件和齿轮等。
随着科学技术的不断进步,硬质合金的材料性能得到了进一步的提高,可用于更多的领域。
目前,硬质合金的发展已经进入了一个相对成熟的阶段。
在复杂环境和高温高压等恶劣条件下,硬质合金仍然能够保持较好的性能,这使得它在航天、能源、化工等领域得到了广泛应用。
同时,随着技术的不断进步,新型硬质合金材料的研发也得到了重视。
例如,针对特定应用需求,人们研制出了超硬合金(如氮化硼、碳化硅等)和纳米硬质合金等新材料。
这些材料具有更高的硬度和耐磨性,可以满足更苛刻的工况要求。
对于硬质合金的未来发展,人们普遍认为,其应用领域将会进一步拓展。
随着科技进步和制造业的转型升级,对于工程材料性能的要求也会不断提高。
硬质合金作为一种优异的工程材料,将会在诸多领域发挥更重要的作用。
同时,随着新材料、新技术的不断涌现,硬质合金也将不断进一步优化和发展,以满足各种工程需求。
综上所述,硬质合金作为一种优秀的现代工程材料,已经取得了显著的发展成就。
它在切削工具、钻头、研磨头等领域得到了广泛应用,并且在航天、能源、化工等领域中也获得了重要地位。
未来,硬质合金的发展前景广阔,将会在更多领域中发挥重要作用,并且随着科技的进步,它的材料性能将会不断得到提高和优化。
钴对硬质合金生产的影响及对策

钴对硬质合金生产的影响及对策钴对硬质合金生产的影响及对策欧应龙(中南工业大学粉末冶金厂长沙,410083)摘要描述了钴在硬质合金中的重要作用及其战略地位;分析了研制代钴金属或合金粘结剂的必要性、迫切性和可行性;讨论了代钴粘结剂及新型硬质合金的研制实践及其重要意义。
关键词:钴生产与供应,硬质合金,铁基粘结剂,镍基粘结剂,铁-钴-镍粘结剂1研制代钴金属或合金粘结剂的必要性和迫切性1.1钴在硬质合会中的作用及其战略地位WC-CO硬质合金于1923年问世。
1926年该合金首先被用于制做钨丝热拨模具。
该类合金具有独特的耐磨损能力及抗压强度,从而最终被用于制造切削刀具、耐磨零件、顶锻工具、压模及采矿工具等。
硬质合金是由硬质的碳化物和软质的粘结金属所组成,碳化物为合金提供承受负荷的能力和耐磨性,粘结金属则通过它在室温下的塑性形变的能力而赋予硬质合金耐冲击的韧性。
硬质合金是通过液相烧结而成的,粘结金属对硬质相的润湿对于获得良好的烧结制品起着非常重要的作用。
自1926年Kruppwidia成功地生产出第一个WC-Co商品硬质合金以来,钴已成为WC硬质合金的万能粘结剂,其中90%以上的硬质合金以金属钻作为粘结剂。
美国是第一号钴金属消费大国,其用钴量约占世界总量的四分之一,且其中约42%用于制造硬质合金(包括耐热合金);我国则有70%的钴消耗量用于生产硬质合金。
可见,钴对硬质合金生产具有重要影响。
钴的高功能合金钢与优质合金,多用于航空航天工业,例如制造飞机引擎与飞行器骨架等。
钨钴硬质合金系列用于高硬度表面的切削刀具刀尖和采掘设备,以及外科手术耐用器械。
有些强效永久性磁铁,也是钴合金制造。
正是由于钴具有上述优越性能,美国历来把钴作为储备金属,其国家防务储备中心在储备物资,总值上,除钛和铁-铬外,现在钴已超过所有其他金属。
由于钴的供给主要来自干政治动荡的中非地区,缺少安全保证,在美国战略储备清单上,钴一直处于“突出地位”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钴对硬质合金生产的影响及对策钴对硬质合金生产的影响及对策欧应龙(中南工业大学粉末冶金厂长沙,410083)摘要描述了钴在硬质合金中的重要作用及其战略地位;分析了研制代钴金属或合金粘结剂的必要性、迫切性和可行性;讨论了代钴粘结剂及新型硬质合金的研制实践及其重要意义。
关键词:钴生产与供应,硬质合金,铁基粘结剂,镍基粘结剂,铁-钴-镍粘结剂1研制代钴金属或合金粘结剂的必要性和迫切性1.1钴在硬质合会中的作用及其战略地位WC-CO硬质合金于1923年问世。
1926年该合金首先被用于制做钨丝热拨模具。
该类合金具有独特的耐磨损能力及抗压强度,从而最终被用于制造切削刀具、耐磨零件、顶锻工具、压模及采矿工具等。
硬质合金是由硬质的碳化物和软质的粘结金属所组成,碳化物为合金提供承受负荷的能力和耐磨性,粘结金属则通过它在室温下的塑性形变的能力而赋予硬质合金耐冲击的韧性。
硬质合金是通过液相烧结而成的,粘结金属对硬质相的润湿对于获得良好的烧结制品起着非常重要的作用。
自1926年Kruppwidia成功地生产出第一个WC-Co商品硬质合金以来,钴已成为WC硬质合金的万能粘结剂,其中90%以上的硬质合金以金属钻作为粘结剂。
美国是第一号钴金属消费大国,其用钴量约占世界总量的四分之一,且其中约42%用于制造硬质合金(包括耐热合金);我国则有70%的钴消耗量用于生产硬质合金。
可见,钴对硬质合金生产具有重要影响。
钴的高功能合金钢与优质合金,多用于航空航天工业,例如制造飞机引擎与飞行器骨架等。
钨钴硬质合金系列用于高硬度表面的切削刀具刀尖和采掘设备,以及外科手术耐用器械。
有些强效永久性磁铁,也是钴合金制造。
正是由于钴具有上述优越性能,美国历来把钴作为储备金属,其国家防务储备中心在储备物资,总值上,除钛和铁-铬外,现在钴已超过所有其他金属。
由于钴的供给主要来自干政治动荡的中非地区,缺少安全保证,在美国战略储备清单上,钴一直处于“突出地位”。
1.2钴的储量、生产与供给钴的资源稀少又相对集中,且生产地区极不均衡。
世界钴的生产主要集中于中部非洲。
八十年代中期,扎伊尔、赞比亚两个产钴大国的产量,占世界总产量的63%,对于世界钴的供给具有举足轻重的地位。
其次为北欧的挪威与荷兰;俄罗斯;加拿大。
以上六国共占世界钴产量的97.2%,基本上囊括了世界钴的生产与供给。
八十年代上半叶,世界上钴的生产量基本呈上升趋势,至1986年达到巅峰,其后持续下降。
扎伊尔与赞比亚政局动荡不稳,严重地影响了钴的生产与供给。
1986年至1992年世界各主要产钴国的钴生产情况见表1。
钴的供货与需求情况复杂,很不稳定,致使钻的价格波动幅度较大。
据预测,中非政局动荡,供货困难;俄罗斯经济不稳定,出口前景不明朗,钴的价格存在若干难以确定因素,但基本上仍有上扬趋势,表2列出了1993年下半年世界钴的市场价格。
1.3研制代钴金属或合金的必要性和迫切性据1977年勘查估计,按照1975年的消耗量计算,目前探明的450万吨的钴矿石储量尚可用78年,而在另外公布的资料中估计的钴矿石储量还要少些,只能再用35-60年。
因此,鉴于钴的资源极其有限及世界局势与销售战略引起的钴价波动,研制全部或部分代钴的金属或合金粘结剂,对硬质合金生产来说不仅是必要的,而且十分迫切。
2研制代钴粘结剂可行性分析2.1硬质合金对粘结剂的需求通常,硬质合金中的粘结剂能够赋予硬质合金所要求的塑韧性,并使人们能在远低于高熔点硬质合金熔点的温度下将其制成零部件。
最佳的粘结剂应该能完全润湿高熔点硬质合金;对硬质合金的溶解能力与温度密切相关;不易形成有害的第三相;与硬质合金相有良好的物理。
化学、热学、力学性能相容性,从而使硬质合金复合材料获得所需的塑韧性。
元素周期表中的铁族元素,即铁、钴、镍具有相似的性能,在某种程度上能满足上述要求。
Holleck评述并总结了Fe-W-C、Co-W-C和Ni-W-C系统的三元相图,发现上述三个系统均存在一个WC与Fe(或Co、Ni)的准平衡,且在亚化学计量碳量之下,在很宽的范围内有三个复杂碳化物形成。
WC-粘结剂合金两相区,由铁→钴→镍朝高溶钨量方向变化,即就是说,在WC-Fe系统中应加入过量碳以防止复杂碳化物的形成,在WC-Ni系统中应加入亚化学计量值的碳量,以免出现游离碳。
众所周知,WC硬质合金的最高强度值只能在不出现第三相个碳化物或游离碳的前提下(即在两个区内)获得。
近几年来,人们用Calphad方法计算了Fe-W-C、Co-W-C、Ni-W-C及Fe-Co-Ni-W相图。
计算表明,通过适当选择碳含量,能生产出两相硬质合金,且与粘结剂的成分无关。
但业已证实,在含铁粘结剂中,应比在无铁粘结剂中更严格地控制碳含量。
2.2研制代钴粘结剂可行性分析在研究过渡金属-粘结剂有关文献的基础上,Ogwu等认为金属的电子排布可能对在烧结过程中发生的动力学反应起重要作用。
假设过渡金属的d层电子排布是选择合适的烧结活化剂的重要因素,对于具有d电子结构的过渡金属或化合物与具有d电子结构的过渡金属或粘结剂(xy代表不饱和d壳层的电子数),当满足x+y=11的条件时,则粘结剂的效果最佳。
钨具有不饱和的5d4轨道(即x=4),而钴具有不饱和的3d7轨道(即y=),故满足x+y=11;对铁、镍则分别有x+y=10和x+y=12,因此可以选择满足上述条件的合金。
3研制代钴粘结剂的实践3.1铁基粘结剂因铁的储量和产量很大,价格便宜,在一些性能上与钴接近,因此,最早研究的就是以铁代钴合金。
由于铁对WC的润湿性差,WC在铁中的固溶度过高,以及形成Ferwy型的脆性二元碳化物,与WC-Co合金相比,其强度很低。
此外,由于铁易生锈有碍外表美观,所以,以纯铁作粘结剂的WC-Fe合金未能得到发展。
3.2镍基粘结剂由于镍和钴性能相似,且价格相对便宜,储量相对较广,分布相对较高,因此是钴的最佳代用品。
WC-Ni的TRS值与WC-Co合金相当,但硬度比后者低100-200Hv。
两种粘结剂的主要差别是钴具有较高的加工硬化率。
镍具有比钴高很多的断裂应变,但二者的断裂应力相当。
镍的延性约为钴的2倍,因此,从较好的断裂韧性来看富有吸相力。
用镍部分代钴可获得介于镍和钴之间的性能及更好的综合性能。
研究结果还表明,Co-W-C合金具有很高的的应变硬化速率。
由于y相的沉淀硬化作用,Ni-W-C类合金的强度可与Co-W-C合金匹敌。
往Ni-W-C合金中添加铬和锰的固溶强化也很成功,且固溶强化作用和y相的沉淀硬化相结合,使Ni-W-C-Cr-Mo合金性能优于Co-W-C合金。
所以,采用镍基粘结剂能生产出性能优于常规WC-Co合金的硬质合金。
3.3Fe-Co-Ni合金粘结剂向Fe-Ni合金中添加Mo、Ti及Al,可通过沉淀强化作用提高合金强度。
在Fe-Ni合金中添加Mo和Co可使该合金获得很高的强度。
Co对Fe-Ni合金的强化作用反应在Fe-Ni合金的强度变化上,添加Co可使Fe-Ni合金的强度由700MPa提高到1600-2480MPa。
Co能提高Fe-Nl合金的马氏体转变温度,并通过相变和有序-无序反应提高合金强度。
C是能够大大改善Fe-Ni合金性能的另一合金元素。
富铁的马氏体型Fe-Co-Ni-W-C合金,其硬度超过Hv450,而Co-W-C的硬度只有约Hv350。
故选择这类合金做WC基硬质合金的粘结剂是合适的。
综上所述,通过选用成分经过优化的铁基、镍基合金作粘结剂的WC基硬质合金,就硬度、断裂韧性及抗弯强度等力学性能而言,可以与WC-Co硬质合金相媲美。
在磨料磨损、耐腐蚀、耐侵蚀等方面,采用镍、钴基粘结剂可以获得优于WC-Co的硬质合金。
4我国研制代钴粘结剂及新型硬质合金的实践与意义4.1研制实践传统的硬质合金由难溶金属(主要是钨)的硬质化合物和粘结金属组成。
随着超合金、化工等产业的迅猛发展,钴的消费急剧膨胀,钴的供需矛盾日益加剧。
况且我国70%的钴消耗用在硬质合金生产上,因此,寻找钴的替代金属或合金充当粘结剂,研究和开发新一代硬质合金显得十分迫切。
五十年代,我国硬质合金工业曾生产过WC-Fe/Ni硬质合金。
在铁中加入一定数量的镍,可以改善润湿性,同时铁与镍形成固溶体,使合金性能得到改善。
但由于Fe-Ni作粘结剂的合金,其粘结相的结构为奥氏体和铁素体,其体积比为90:10,合金强度虽有所提高,但仍低于WC-Co合金,特别是合金耐热性差,不能用作要求高耐磨性的切削工具。
1980年开始,东北大学以李规华教授为首的“稀土应用科研组”着手研究“中国特色的稀土硬质合金系列”,能通过添加稀上提高硬质合金质量。
1980-1983年间,他们先后解决了加入稀土的种类、加入方式(包括形态)、最终含量等关键问题。
实验结果表明:湿磨中添加少量稀土元素,如镧、钕、铈、镝、钇等,或者是混合稀土元素,都能使硬质合金的室温抗弯强度有明显提高,其提高幅度达15%以上;稀土添加剂的最佳含量为0.2%-0.4%。
在1982年的全国第二次钨业会议上发表了“稀土元素对貌质合金性能影响的初探”一文。
打破了国内多年的沉寂,引发了国内研究热潮。
从1983年以后,他们结合实际开始研制稀土硬质合金新牌号。
例如,针对航天工业中的“红缨”产品零件中钛合金和低磁不锈钢难加工材料的精加工关键,研制了602MM、710MM稀土硬质合金新型刀具材料,与原牌号YG6X、YA6合金牌号相比,其耐用度提高4-6倍,生产率提高2倍以上,且零件精度大大提高。
1984年,他们针对国内引进的“带式输送机清扫器”中的硬质合金刮片,研制了稀土硬质合金牌号840MM(即YT8R),其使用寿命达16个月,超过当时日本同类产品寿命的1.5倍。
每年可节约外汇100万美元。
1986年,他们与北京有色总院、株洲硬质合金厂、自贡硬质合。