碳纤维微电极
电极材料的研究与应用

电极材料的研究与应用在电化学领域,电极材料是影响电化学反应速率和过程的重要因素,也是电化学应用中不可或缺的一环。
因此对电极材料的研究及其应用具有重要意义。
本文将从材料类别及其特点、研究方法和应用领域三个方面进行论述。
一、电极材料的类别及其特点电极材料主要包括金属电极、半导体电极、导电聚合物电极和纳米材料电极等。
不同的电极材料根据其特点有不同的应用场景。
1. 金属电极金属电极是最常见的一种电极材料,常用的金属材料包括铂、金、银、铜等。
金属电极具有导电性好、稳定性高的特点,广泛应用于电化学分析、腐蚀研究等方面。
但是,金属电极还存在一些缺陷,如活性低,易氧化,热膨胀系数大等。
2. 半导体电极半导体电极是指由半导体材料制成的电极。
半导体电极具有一定的导电性,在特殊条件下可以表现出光电效应,常用于光电催化反应。
半导体电极常见的材料有TiO2、ZnO、CdS等。
半导体电极由于表面积大,活性中心多,活性高,成为近年来光电催化领域发展的热门方向。
3. 导电聚合物电极导电聚合物电极是指具有导电性的有机物质,常用的导电聚合物有聚苯胺、聚咔唑等。
导电聚合物电极的优点在于导电性能稳定、形变性小、成本低等。
因此,导电聚合物电极被广泛应用于柔性电子、高性能电池等领域。
4. 纳米材料电极纳米材料电极是指由纳米材料制成的电极。
纳米材料具有球形、盘状或管状等形态,表面积大,唯象化性质亦大大不同于传统材料。
纳米电极材料具有的特性包括晶格畸变、表面跃迁等,因此在电催化、生物传感等领域有着广泛的应用。
二、电极材料的研究方法电极材料的研究方法主要包括电化学方法、物理化学方法、化学方法等。
1. 电化学方法电化学方法主要包括电化学交流阻抗谱、循环伏安法、恒电位法等。
这些方法可以研究电极材料的电化学活性、电导率等性质,并通过一系列测试参数反映其特性。
2. 物理化学方法物理化学方法包括表面等离子体共振、紫外可见吸收光谱等方法。
物理化学方法主要是研究电极材料表面的吸附、结构等性质,可以探究材料表面对电化学反应的影响。
亚甲基蓝——精选推荐

亚甲基蓝(MB)对吸附在CF上的葡萄糖氧化酶的稳定性,这是一套拥有一个随机的三维结构微碳纤维微电极(直径约7μm)。
通过循环伏安法在开机启动真空泵使用HQ作为电子转移载体。
当对被吸附的解决方案GOx-dissolved[例如:纯净水1,10和100mM的磷酸盐缓冲(pH值6.8),100mMNACL和KCL],被吸附的GOX 几乎没有明显生物电催化活性,很可能主要由于吸附感应不利的构象变化或不利的酶表面与活性部位的出场基质和介体引起的。
相反,当GOX被混合的GOX和MB 吸附,被吸附的GOX表现出足够的HQ介体生物电催化活性。
对于吸附溶液,较低的离子强度的溶液(例如,纯净水及1mM的磷酸盐缓冲,pH值6.8)似乎更有可能获得更大的活动。
同时 GOX和MB的混合溶液的吸附比逐步的吸附更有效。
MB 和GOX在水溶液中的约束力相互作用已经被紫外可见光谱和圆二色谱证实。
2012电化学的社会。
[DOI: 10.1149/2.jes036205]保留所有权利。
对于高度发展的功能性生物传感器、生物反应器、生物燃料电池,建立简单、方便和稳定的酶的固定化策略是重要的研究课题支持矩阵。
在各种酶的固定化方法(例如,物理吸附法、共价交联改性,在表面,并且残留在凝胶,小泡,多孔材料),物理吸附是一个最简单的方法来进行,可以在温和的条件下进行。
总之,蛋白质吸附是一个复杂的过程,需要范德华、氢键、疏水相互作用和静电相互作用,吸附过程中含有丰富的蛋白质。
例如,表面吸附蛋白质要尽量放松,例如,优化与表面相互作用。
这个松弛过程往往带来一定程度的表面蛋白质分子传播,涉及结构重组蛋白质的构象变化。
1即在某些情况下,各种蛋白质之间的相互作用和基质的表面的构象分析和蛋白质结构的改变可能导致蛋白质的功能变化。
1-6对酶,这些类型的不利的构象变化通常导致损失或减少吸附酶的催化活性(表面诱发变性或是吸附诱发变性)。
7,8例如,相比而言,亲水性表面吸收剂比疏水性表面吸收剂能够引起更大范围的结构变化。
Nafion修饰碳纤维微电极在抗坏血酸共存下选择性测定去甲肾上腺素

Nafion修饰碳纤维微电极在抗坏血酸共存下选择性测定去甲肾上腺素李梅;陈慧;伍雪巍;农燕婷;陈思伶;唐旻奕;程寒【摘要】制备了碳纤维微电极,将洁净的碳纤维微电极浸入Nafion溶液中,采用电沉积的方法制得Nafion修饰碳纤维微电极.采用循环伏安法(CV)、差分脉冲伏安法(DPV)研究了去甲肾上腺素(NE)和抗坏血酸(AA)在电极上的电化学行为.结果表明:在最优条件下制备的Nafion修饰电极能完全屏蔽AA的电化学响应,而对NE仍表现出良好的电化学响应.修饰电极能在1.0 mmol/L AA的共存下选择性地测定NE,采用DPV进行检测,NE的氧化峰电流与其浓度在1.0×10-6~1.0×10-4mol/L范围内呈良好的线性关系,相关系数(r2)为0.991 2,检出限(S/N=3)为8.6×10-7 mol/L.利用该方法测定了模拟样品中NE的含量,平均加标回收率为101.6%.该电极的重现性和稳定性良好,且具有良好的灵敏度和选择性,有望用于复杂生物环境中NE浓度的检测.【期刊名称】《分析测试学报》【年(卷),期】2016(035)006【总页数】5页(P744-747,752)【关键词】Nafion;碳纤维电极;差分脉冲伏安法;循环伏安法;去甲肾上腺素;抗坏血酸【作者】李梅;陈慧;伍雪巍;农燕婷;陈思伶;唐旻奕;程寒【作者单位】中南民族大学药学院,湖北武汉430074;中南民族大学药学院,湖北武汉430074;中南民族大学药学院,湖北武汉430074;中南民族大学药学院,湖北武汉430074;中南民族大学药学院,湖北武汉430074;中南民族大学药学院,湖北武汉430074;中南民族大学药学院,湖北武汉430074【正文语种】中文【中图分类】O657.1;R458.3去甲肾上腺素(Norepinephrine,NE)是一种神经递质,主要由交感节后神经元和脑内肾上腺素能神经末梢合成和分泌。
电催化反应中的电极材料选择

电催化反应中的电极材料选择电催化反应是一种利用电能促进化学反应的技术,可以用来制备新型材料、降解污染物、储能等。
其中,电极材料是电催化反应的关键。
本文将着眼于电极材料的选择,介绍了常见的电极材料以及其优缺点,为电催化反应的研究提供参考。
一、金属电极金属电极是电催化反应中最常用的电极之一,具有导电性好、易于制备和成本低等优点。
常见的金属电极有铜、银、铝、钼、铁、镍等。
其中,铜和银电极具有良好的催化活性,在有机合成、清洁能源等领域具有广泛的应用。
1. 铜电极铜电极是电化学催化反应中最常用的电极之一,因其良好的催化活性而广受研究者的青睐。
铜电极可以催化各种有机物的还原和氧化反应,如羧酸的加氢还原、硝基化合物的还原、有机酯的水解等。
铜电极的催化活性主要取决于其晶体结构和表面形貌,因此,在制备铜电极时需要注意控制晶体结构和表面形貌。
2. 银电极银电极是一种优良的电化学催化材料,可以用于化学传感、光电催化和电解水制氢等领域。
银电极催化氧化剂还原反应的活性具有明显的结构依赖性,表面原子的密度和组合方式对反应活性有很大的影响。
此外,银电极还可以催化有机化合物的氧化反应,如苯酚的氧化等。
二、半导体电极半导体电极是应用范围广泛的电极材料之一,常用于光电催化、生物传感等领域。
半导体电极的优点在于其表面常态就能形成电子与空穴对,故能够吸收光能激发电子,进而催化化学反应。
常见的半导体电极有TiO2、ZnO、Fe2O3等。
1. TiO2电极TiO2电极是一种良好的光电催化材料,具有高的光催化反应活性、抗腐蚀性、化学稳定性等优点。
TiO2电极主要应用于光催化分解水制氢、有机废水处理等领域,在光催化领域中有着广泛的应用。
2. ZnO电极ZnO电极是一种广泛受到研究的光催化材料,具有高的光催化活性和良好的耐腐蚀性等优点。
ZnO电极可用于水的分解、空气污染物的降解、有机废水的处理等多种领域。
三、碳基材料电极碳基材料电极是一种具有较好催化活性的电极材料,具有导电性好、耐腐蚀等优点。
基于纳米金修饰碳纤维微电极的电化学法测定黄芩素

第 43 卷第 3 期2024年 5 月Vol.43 No.3May 2024中南民族大学学报(自然科学版)Journal of South-Central Minzu University(Natural Science Edition)基于纳米金修饰碳纤维微电极的电化学法测定黄芩素马雯雯1a,谭樟斌1a,潘彦冰1a,胡克菲2,AWAIS Ihsan3,程寒1a,b*(1 中南民族大学a.药学院;b.国家中医药管理局民族药学三级实验室,武汉430074;2 元莱健康产品(武汉)有限公司,武汉430050;3 伊斯兰堡COMSATS大学生物科技学院,萨希瓦尔63354,巴基斯坦)摘要利用柠檬酸三钠还原氯金酸的方法制得小粒径的纳米金颗粒(AuNPs),采用电化学沉积法将其修饰在碳纤维电极(CFME)表面,基于电化学法构建了一种灵敏度高、抗干扰性良好的测定黄芩素的微型电化学传感器.采用透射电镜、紫外分光光度法、扫描电镜等对电极及修饰材料进行表征,运用差分脉冲法、循环伏安法、电化学阻抗谱法考查了黄芩素在电极修饰前后的电化学性质,并优化了扫速、缓冲液pH、电沉积时间等实验条件.实验结果表明,AuNPs对黄芩素具有显著的电催化性能,AuNPs/CFME对黄芩素表现出良好的电化学响应,最佳修饰时间为10 min.黄芩素浓度在0.05~10 µmol/L时,其氧化峰电流与浓度呈良好的线性关系,线性方程为I p(nA)=0.4409C (µmol/L)+0.7066,R2=0.998.该方法响应速度快、稳定性较好,可用于黄芩素的定量检测.关键词纳米金;碳纤维微电极;修饰电极;黄芩素中图分类号R917 文献标志码 A 文章编号1672-4321(2024)03-0344-06doi:10.20056/ki.ZNMDZK.20240308Direct electrochemical determination of baicalein based on goldnanoparticles modified carbon fiber microelectrodeMA Wenwen1a,TAN Zhangbin1a,PAN Yanbing1a,HU Kefei2,Awais Ihsan3,CHENG Han1a,b*(1 South-Central Minzu University a.School of Pharmaceutical Sciences; b.Ethnopharmacology Level 3 Laboratory,National Administration of Traditional Chinese Medicine, Wuhan 430074, China; 2 Yuanlai Health Products (Wuhan)Co., Ltd., Wuhan 430050, China; 3 Ethnopharmacology Level 3 Department of Biosciences,COMSATS UniversityIslamabad Sahiwal Campus, Sahiwal 63354, Pakistan)Abstract AuNPs with small particle size were prepared by reducing chloroauric acid with trisodium citrate,and then modified on the surface of CFME by potentiostatic deposition to construct a highly sensitive and selective electrochemical sensor. The sensor and modified material were characterized by transmission electron microscope,scanning electron microscope and UV spectrophotometry, the electrochemical properties of baicalein on electrode before and after modification were investigated bydifferential pulse voltammetry, cyclic voltammetry and electrochemical impedance spectroscopy, the determination conditions such as scan rate, buffer pH and electrodeposition time were optimized. The results showed that AuNPs had significant electrocatalytic performance to baicalein,and the optimal modification time was 10 min. The oxidation peak current and concentration of baicalein showed good linear relationship between 0.05-10 µmol/L, and the linear regression equation were I p(nA)=0.4409C(µmol/L)+0.7066,R2=0.998. The method has fast response and good stability, which can be used for quantitative detection of baicalein.Keywords gold nanoparticles; carbon fiber microelectrode; modified electrode; baicalein收稿日期2022-11-26* 通信作者程寒(1980-),女,副教授,博士,研究方向:药物分析,*******************基金项目中央高校基本科研业务费专项资金资助项目(CZH20002);中国民族医药学会项目(2020MZ152-000389);科技部“一带一路”创新人才交流外国专家项目(DL2023185001L);中南民族大学科研团队(KTZ20054)第 3 期马雯雯,等:基于纳米金修饰碳纤维微电极的电化学法测定黄芩素黄芩素(baicalein)是一种来源于高黄芩根部的中药有效成分[1],其结构为含三个邻苯酚羟基的黄酮类化合物[2],其结构式如图1所示(C15H10O5). 黄芩素药理活性主要表现在解热、消炎、抗病毒、利胆保肝、降血压等方面[3],它还可以抑制肝癌、宫颈癌等肿瘤细胞的增殖[4-5]. 临床上可预防和治疗新型冠状病毒(SARS-CoV-2)感染[6].常见的定量检测黄芩素的方法有高效液相色谱法、毛细管区带电泳法、薄层色谱扫描法、荧光光谱法、紫外-可见分光光度法等[7-10],这些非电化学方法普遍存在成本高、耗时长、操作繁琐等缺点. 电化学方法耗费低、操作简便、易微型化、响应时间短[11],近年来微型电化学传感器已成为电分析化学研究中极具发展前景的一个领域. 目前,已有关于电化学传感器定量检测黄芩素的报道,杨波等[12]利用聚-L-赖氨酸修饰玻碳电极,测定了尿液中黄芩素的含量,线性范围为0.5~10 µmol/L,检测限达0.048 µmol/L,为黄芩素的检测提供了一个有前景的平台.碳纤维微电极(CFME)尺寸小、成本低、比表面积大,具有良好的电化学性能[13-14],在过氧化氢、神经递质、生物因子等活性物质的检测上广泛应用[15],在生物活体的低损伤检测以及微体积内的空间分辨检测领域具有良好的应用前景. 纳米金(AuNPs)化学性质稳定、电导率高、催化活性高[16],AuNPs修饰电极可减小过电势,增强电流响应,从而实现复杂生物样品的检测,在电化学分析中发挥着重要作用. BUFFON等[17]用纳米金和石墨烯复合修饰丝网印刷电极检测橙皮中的阿魏酸(FA),结果表明电极经AuNPs改性后,其电荷迁移速度明显加快,催化活性得到明显改善.研究采用碳纤维电极建立了一种高灵敏检测黄芩素的电化学分析方法. 通过化学还原法制备表面带负电且粒径较小的纳米金颗粒(AuNPs),恒电位沉积法制得纳米金修饰电极(AuNPs/CFME). AuNPs/CFME对黄芩素表现出优异的电催化性能,将修饰电极成功应用于小鼠血清中黄芩素的含量测定,为中药活性成分的质量控制提供了理论参考. 1 实验部分1.1 仪器与试剂CHI660D型电化学工作站(上海辰华);双电极系统(工作电极:AuNPs/CFME,参比电极:Ag/AgCl);电子显微镜(SU8010型,日本日立);Talos F200X型透射电子显微镜(美国Thermo Fisher);PHSJ-6L型pH 计(上海仪电);PTHW250ML型电热套(武汉科尔).氯金酸、黄芩素、大黄素、黄芩苷(上海源叶);铁氰化钾、亚铁氰化钾、柠檬酸钠、氯化钙、氯化钠、硫酸钾、碳酸钾(分析纯,国药集团);AB胶(得力);导电胶(环氧树脂胶、环氧固化剂,湖南把兄弟新材料);PBS缓冲溶液(自制);实验用水均为超纯水. 1.2 实验方法1.2.1 碳纤维微电极的制备将玻璃毛细管放置在酒精灯火焰上灼烧并拉制为尖端内径约25 µm,将碳纤维与铜丝用自制碳粉导电胶粘连,待晾干后缓慢穿入玻璃毛细管中,直至露出玻璃毛细管尖端外约1.5 mm. 用AB胶封住玻璃毛细管末端,待胶水固化,酒精灯灼烧熔封,并将露出的碳纤维在酒精灯外焰上小心烧蚀,倒置显微镜下测量,碳纤维长度在100~200 µm范围内,制得的CFME放在阴凉干燥处备用.1.2.2 纳米金的制备通过柠檬酸三钠(Na3C6H5O7·2H2O)还原法制备AuNPs. 将40 mL蒸馏水加入三颈烧瓶中,边搅拌边加入500 µL 2.5×10-4 mol/L的氯金酸溶液和900 µL 0.1 mol/L的柠檬酸三钠溶液,持续高速搅拌并加热20 min,制得的酒红色溶胶即AuNPs粒子分散液. 冷却后置于4 ℃的冰箱保存.1.2.3 AuNPs/CFME修饰电极的制备将CFME用蒸馏水清洗,晾干. 采用恒电位沉积法于+1.5 V电压下,将参比电极(Ag/AgCl)和CFME 尖端浸没于AuNPs溶胶中电化学沉积10 min,即在CFME表面构建AuNPs修饰层,然后用乙醇和蒸馏水依次冲洗电极,晾干,即制得AuNPs/CFME. 1.2.4 电化学测量参数CV参数:电位扫描范围为:-0.2 V~0.6 V;扫描速度0.1 V/s. DPV参数:电位扫描范围为:-0.5~0.5 V;振幅0.05 V;脉宽0.05 s;脉冲时间0.2 s. EIS参数:开路电位0.20 V,电压振幅0.01 V. 实验底液均为pH图1 黄芩素结构式Fig.1 Bailcalein structural formula345第 43 卷中南民族大学学报(自然科学版)2.0的PBS缓冲溶液,整个实验过程均在室温下进行. 2 结果与讨论2.1 AuNPs/CFME的表征及电化学性能的探究高分辨率透射电镜(TEM)和扫描电子显微镜(SEM)对纳米金材料及电极表面形貌进行表征. 由图2(a)可知,AuNPs呈球状粒子均匀分布,粒径约20 nm. 图2(b)(c)分别为CFME、AuNPs/CFME的SEM图,从图中可知裸电极表面光滑平整,只有少量火焰烧灼的痕迹. AuNPs/CFME表面有球状纳米颗粒附着且表面粗糙,表明AuNPs材料增大了电极有效表面积,增强了电极的电子传递效率. 如图2(d)紫外-可见吸收光谱图所示,在520 nm处出现AuNPs的特征吸收峰,结合上述分析结果,表明纳米金已成功修饰在CFME表面.采用差分脉冲法在1×10-6 mol/L的黄芩素溶液中探究不同电极的电化学性能. 图2(e)为裸CFME和AuNPs/CFME在5 mmol/L[Fe(CN)6]3-/4-溶液中的电化学阻抗谱图(EIS),电荷转移电阻可由半圆半径计算求得,即半圆半径代表电极的导电性能. AuNPs/ CFME的阻抗值(曲线1)与裸电极(曲线2)相比明显降低,因为AuNPs具有优异导电性和催化活性,增强了电极对黄芩素的吸附能力及响应能力,改善了电极的电催化性能,加快了AuNPs/CFME的电子转移速率. 图2(f)可知,经纳米金修饰10 min后的碳纤维电极氧化峰电流明显增大,其电化学响应显著增强. 这是由于AuNPs可增大电极的比表面积和活性面积,增强电荷转移能力,有利于黄芩素在电极表面聚集,对黄芩素的氧化还原反应具有良好的催化效果,该结果与EIS实验结果相符.2.2 AuNPs/CFME电沉积时间的优化采用恒电位沉积法,将CFME在AuNPs溶液中依次修饰5、10、15、20、25 min(n=3),通过改变电沉积时间控制电极表面的纳米金负载量. 通过DPV观察在1 µmol/L黄芩素溶液中氧化峰电流响应随不同修饰时间的变化趋势,从而确定最佳电沉积时间. 当修饰时间为10 min时,AuNPs/CFME检测黄芩素的电化学信号达到最大,电化学响应最强.之后随电沉积时间增加,氧化峰电流反略有下降. 原因可能是随修饰时间的增加,AuNPs修饰量达到饱和造成修饰层逐渐脱落,导致电极的电化学性能降低. 后续实验均在最佳修饰时间10 min下进行.2.3 扫速和pH对氧化峰电流的影响采用CV法考查不同扫描速率(50~500 mV/s)对AuNPs/CFME电化学性能的影响,进一步探究黄芩素在CFME上的反应机理,其循环伏安响应如图3(a)所示,黄芩素的氧化还原峰电流(Ip)随扫速(v)的增大而增大. 由图3(b)可知,扫速在50~500 mV/s(a)AuNPs高分辨率透射电镜图;(b) CFME扫描电子显微镜图;(c) AuNPs/CFME的扫描电子显微镜图;(d)纳米金溶胶的紫外吸收光谱图;(e)不同电极的电化学阻抗图;(f)不同电极在黄芩素溶液中的DPV曲线图2 电极材料的形貌表征及电极的电化学性能探究Fig.2 The morphology characterization of the electrode material and the electrochemical performance of the electrode 346第 3 期马雯雯,等:基于纳米金修饰碳纤维微电极的电化学法测定黄芩素之间时,Ip 与v 呈良好的线性关系,线性方程为:I pa (nA )=0.0478 V (mV/s )+1.4533,R 2=0.997;I pc (nA )=-0.0629 V (mV/s )-2.9049,R 2=0.999,这表明黄芩素在AuNPs/CFME 上的氧化还原过程受吸附控制. 阳极峰值电位(Epa )和阴极峰值电位(E pc )与扫速对数(lg v )之间的线性关系如图3(c )所示,线性回归方程为:E pa (V )=0.04127log ν-0.04495,R 2=0.995;E pc(V )=-0.0197logν+0.00467,R 2=0.994. Laviron's 方程如下:E pc =E θ'-2.3RTαnF lg v , (1)E pa= E θ'- 2.3RT(1-α)nFlg v .(2)E θ'、R 、T 和F 分别代表形式氧化还原电势、理想气体常数(8.314 J ·mol -1·K -1)、热力学温度(298 K )、法拉第常数(96485 C ·mol -1). 计算得转移系数α为0.67,电子转移数n 为2.1≈2,表明黄芩素在电极上的氧化还原过程涉及两个电子的转移,由于扫速过快会造成基线噪音变大且化学反应的可逆性降低,因此后续实验均采用100 mV/s 的扫描速率.CV 法考查在pH 2.0~7.0范围内的PBS 缓冲液中,黄芩素的电化学响应信号随pH 变化的规律,结果如图4(a )所示. 随pH 值增大,黄芩素的氧化峰电流逐渐减小,黄芩素的氧化峰电位(E p )负移,表明质子直接参与了黄芩素的氧化反应,并且该反应为脱质子过程. 黄芩素的电化学氧化还原是质子-电子偶联反应,因此,需选择酸性分析条件来测定黄芩素,且pH 2.0时其氧化峰电流值达到最大,为保证黄芩素灵敏度检测,后续实验均在pH 2.0的PBS 缓冲液中进行. 为进一步研究黄芩素在AuNPs/CFME 上的反应机理,考查了E p 与pH 值的关系,结果如图4(b )所示,在pH 2.0~7.0范围内,E p 与pH 呈良好的线性关系,其线性回归方程为E p (V )=-0.0614pH+0.4343,R 2=0.998,斜率-0.0614接近于V ·pH -1的理论值-0.0592,因此可推论黄芩素在电极上发生的是等电子等质子反应(m/n=1),即黄芩素在AuNPs/CFME 上的氧化还原过程是双质子双电子转移过程,其氧化还原机理如图5所示.2.4 AuNPs/CFME 检测黄芩素的工作曲线采用DPV 法考查AuNPs/CFME 在不同浓度黄芩素时的电化学响应(图6(a )),黄芩素浓度在(a ) AuNPs/CFME 在不同扫速下检测1.0×10-6 mol/L 黄芩素的CV 图; (b )氧化还原峰电流与扫速的线性关系;(c )氧化还原峰电位与扫速对数的线性关系图3 扫速对AuNPs/CFME 电化学性能的影响Fig.3 The effect of scan rate on the electrochemical performance of AuNPs / CFME(a )黄芩素在不同pH 值缓冲液中的CV 图; (b )E p 与pH 值的线性关系图4 pH 对 AuNPs/CFME 电化学性能的影响Fig.4 The effect of pH on the electrochemical performance of AuNPs / CFME347第 43 卷中南民族大学学报(自然科学版)0.05~10 µmol/L之间时,氧化峰电流随浓度的增加而增加并呈良好的线性关系(图6(b)),线性回归方程为:I p1(nA)=0.4409C(µmol/L)+0.7046,R2=0.998,检出限为0.017 µmol/L(S/N=3),定量限为0.057 µmol/ L,本方法较文献报道的测定方法AuNPs/CFME传感器表现出更宽的线性范围和更低的检测限,表明该电化学方法可以实现对黄芩素的高灵敏定量检测.2.5 抗干扰和稳定性考查在10 µmol/L抗坏血酸、大黄素和1.0 mmol/L Cl-、K+、Na+干扰物质存在情况下,上述干扰物对黄芩素的检测均无明显干扰(RSD<5.0%)(图7(a)),这是由于Cl-、K+、Na+等无机离子在电极表面不发生氧化还原反应,而抗坏血酸荷负电与带负电的纳米金异性电荷相互排斥,修饰电极对上述物质几乎无响应,表明AuNPs/CFME具有良好的抗干扰能力,可在复杂的生物样中高灵敏检测黄芩素. 将同一根电极在黄芩素溶液中平行测定10次,如图7(b)所示,RSD小于5.0%,表明该电极具有良好的稳定性. 2.6 实际样品分析取10 µL小鼠血清在pH 2.0 PBS缓冲溶液中稀释至10 mL,然后向样品溶液中加入不同浓度的黄芩素,采用标准加入法对黄芩素进行加标回收分析. 结果如表1所示,黄芩素的加标回收率在96.5%~102.4%之间,5次平行测定的RSD在1.95%~4.48%之间,表明该电化学检测法的准确性和稳定性均很好,适用于实际样品中黄芩素的高效、快速、灵敏测定.图5 黄芩素氧化反应机理图Fig.5 Schematic representation of the electrooxidation mechanisms of baicalein(a) AuNPs/CFME在不同浓度梯度黄芩素溶液中的DPV图;(b)黄芩素浓度与峰电流的线性相关图6 AuNPs/CFME工作曲线的测定Fig.6 Determination of AuNPs / CFME working curve(a) AuNPs/CFME在干扰物存在下检测黄芩素的氧化峰电流图;(b) AuNPs/CFME在黄芩素溶液中连续扫描10圈的电流响应图7 电极抗干扰和稳定性的考查Fig. 7 Investigation of electrode anti-interference and stability348第 3 期马雯雯,等:基于纳米金修饰碳纤维微电极的电化学法测定黄芩素3 结语制备了一种对黄芩素具有高灵敏性的电化学传感器(AuNPs/CFME ),该传感器能显著加快电极表面的电子转移,对黄芩素有明显的电催化作用,并具有良好的稳定性. 黄芩素的线性范围为5×10-8~1×10-5 mol/L ,检出限为0.017 µmol/L (S/N = 3). 在最优检测条件下,将检测器用于小鼠血清中黄芩素的测定,加标回收率在96.5%~102.4%之间. 实验为黄芩素在复杂生物体系中的选择性检测提供了一种新方案,且该传感器有望实现其他中药活性成分的高灵敏检测,拓展其在中药分析领域的应用.参考文献[1] SONG Q X , PENG S X , ZHU X S. Baicalein protectsagainst MPP+/MPTP -induced neurotoxicity by ameliorating oxidative stress in SH -SY5Y cells and mouse model of Parkinson's disease [J ]. Neurotoxicology , 2021, 87: 188-194.[2] CUI L D , YUAN T Y , ZENG Z M , et al. Mechanisticand therapeutic perspectives of baicalin and baicalein on pulmonary hypertension : A comprehensive review [J ]. Biomed Pharmacother , 2022, 151: 113191-113204.[3] XIANG H L , LEI H , LIU Z Y , et al. Network pharmacologyand molecular docking analysis on molecular targets : Mechanisms of baicalin and baicalein against hyperuricemic nephropathy [J ]. Toxicol Appl Pharm , 2021, 424: 115594-115606.[4] LI J , YAN L J , LUO J H , et al. Baicalein suppresses growthof non -small cell lung carcinoma by targeting MAP4K3[J ]. Biomed Pharmacother , 2021, 133: 110965-110978.[5] LI J , WANG Y , WU T , et al. Baicalein suppresses highglucose -induced inflammation and apoptosis in trophoblasts by targeting the miRNA -17-5p -Mfn1/2-NF -κB pathway [J ]. Placenta , 2022, 121: 126-136.[6] SONG J K , ZHANG L , XU Y F , et al. The comprehensivestudy on the therapeutic effects of baicalein for the treatment of COVID -19 in vivo and in vitro [J ]. Biochem Pharmacol ,2021, 183(3): 114302-114311.[7] KOTANI A , KOJIMA S , HAKAMATA H , et al. HPLCwith electrochemical detection to examine the pharmacokinetics of baicalin and baicalein in rat plasma after oral administration of a Kampo medicine [J ]. Anal Biochem , 2006, 350(1): 99-104.[8] ZHANG Y , WANG X J , WANG L , et al. Interactionsof the baicalin and baicalein with bilayer lipid membranes investigated by cyclic voltammetry and UV -Vis spectroscopy [J ]. Bioelectrochemistry , 2014, 95: 29-33.[9] CHEN G , ZHANG H W , YE J N. Determination ofbaicalein , baicalin and quercetin in Scutellariae Radix and its preparations by capillary electrophoresis with electrochemical detection [J ]. Talanta , 2000, 53(2): 471-479.[10] LUO J B , SUN Z S , ZHOU W Y , et al. Hydrothermalsynthesis of bright blue -emitting carbon dots for bioimaging and fluorescent determination of baicalein [J ]. Opt Mater , 2021, 113: 110796-110806.[11] YANG M Y , WU Z G , WANG X X , et al. Facilepreparation of MnO 2-TiO 2 nanotube arrays composite electrode for electrochemical detection of hydrogen peroxide [J ].Talanta , 2022, 244: 123407-123417.[12] 杨波, 胡芳弟, 魏金萍, 等. 黄芩素在聚-L -赖氨酸修饰电极上的电化学研究[J ]. 化学学报, 2009, 67(22):2585-2591.[13] BAO C H , SHI M , MA W W , et al. Simultaneousdetermination of aesculin and aesculetin and their interactions with DNA using carbon fiber microelectrode modified byPt -Au bimetallic nanoparticles [J ]. Anal Chim Acta ,2022, 1202: 339664-339675.[14] 程寒,李元,李梅等.氧化石墨烯修饰再生碳纤维微电极的新方法[J ].中南民族大学学报(自然科学版),2018,37(1):20-24..[15] SUN W Q , CAI X , WANG Z X , et al. A novel modificationmethod via in -situ reduction of AuAg bimetallic nanoparticles by polydopamine on carbon fiber microelectrode for H 2O 2 detection [J ]. Microchem J , 2020, 154: 104595-104604.[16] MAHMOUDI Z , TASHKHOURIAN J , HEMMATEENEJADB. A disposable paper -based microfluidic electrochemical cell equipped with graphite -supported gold nanoparticles modified electrode for gallic acid determination [J ]. JElectroanal Chem , 2022, 920: 116626-116635.[17] BUFFON E , STRADIOTTO N R. A molecularly imprintedpolymer on reduced graphene oxide -gold nanoparticles modified screen -printed electrode for selective determination of ferulic acid in orange peels [J ]. Microchem J , 2021,167: 106339-106349.(责编&校对 姚春娜)表1 AuNPs/CFME 测定小鼠血清中黄芩素的含量Tab.1 Determination of baicalein in mouse serum by AuNPs/CFME Added/(µmol/L )0.170.330.415.794.043.00Found/(µmol/L )0.170.320.425.813.903.03Recovery/%100.097.0102.4100.396.5101.0RSD/%2.921.952.512.242.874.48349。
利用聚罗丹明B修饰碳纤维微电极测定维生素B6

J u n l f n nU iesyo Ars n e n eNau a S i c dt n o ra a nv ri f t dS i c( trl c n e io ) o Hu t a e e E i
mi ol t d( F ) ndtee c oh mi l rpr e frsln l df deet d saeivsg t y c e cr e ME ,a l t ce c o etso ut gfmsmo ie cr e r et a db r e o C h er ap i e i i i l o n i e cci v l n e yC )T ebs ss m f l t ctyi o i mi B ( B )ntemo ie l t d es de , y l o a ̄ t ( V . et yt o e r a lt f t n 6 6 i df dee r ea u i c t r h e e co a c va V h i co r t d
m i r ee t d s c o lco e
S UN a — i Z Yu n x , HOU - h n L U u l Gu z e , I L — u
( p r n fh mir, n n iesyo A tadS i c, hn d , u a , 1 0 0 C ia Deat t ce s yHu a vr t f r c n eC a g eH nn 4 5 0 , hn ) me o t Un i sn e
e p rme t t n r s t g s o a x d t n p a u rn s a e i i e r r lt n h p wi x e i na o e u i h ws t t o i a i e k c re t r n l a eai s i t VB6 c n e ta o e i n h o n o h o c nrt n i t i n h
碳纤维纳米微电极制作技术与噪声分析

碳纤维纳米微电极制作技术与噪声分析作者:杨晓安李玉桃来源:《现代电子技术》2013年第16期摘要:为了使碳纤维微电极检测系统能在更微环境下低噪声的应用,采用火焰蚀刻等方法,对关键的电化学传感器碳纤维纳米微电极的制作技术进行研究和实验,并在更微环境下检测取得良好的结果。
同时为解决纳米微电极在检测时的噪声问题,建立起碳纤维纳米微电极在检测系统中的噪声模型,并对其噪声的特点作了定性和定量的分析,提出降低电极噪声的方法和措施。
关键字:电化学检测;火焰蚀刻;碳纤维;微电极;噪声模型中图分类号: TN722⁃34; TH79 文献标识码: A 文章编号: 1004⁃373X(2013)16⁃0021⁃05在生命科学中,细胞的生命活动是非常重要的研究对象。
分泌是细胞生命活动的一种基本形态,利用细胞分泌物的氧化(或还原)特性,实现对单个细胞的分泌事件电流信号的检测是分析细胞生命活动的重要方法。
而电化学传感器中的碳纤维微电极(Carbon Fiber Micro Electrode,CFME)记录技术就是一种用电化学原理对单个细胞分泌事件进行检测的方法[1]。
CFME记录技术检测和研究对象:如去甲肾上腺素等、一些可氧化化合物的衍生物如:抗坏血酸等。
由于细胞分泌是通过胞吐实现,因此神经递质分泌⁃突触小囊泡,如多巴胺等,也能用CFME检测方法去研究。
在CFME记录时,应将CFME的尖端置于细胞1 μm处(见图1),并通过探头对电极施加一合适的直流电压,同时对单个细胞施加刺激使之产生分泌,当分泌出的递质或激素扩散到碳纤维微电极传感器附近时即迅速被电压作用而氧化转化出电流信号,从而可直接测量到单个细胞分泌的事件过程[1]。
由于被转化的电流信号只有pA级,碳纤维纳米微电极(Carbon fiber nanoelectrode,CFNE)又可以在更微环境中检测,整个碳纤维微电极传感器检测系统中的噪声会影响检测结果。
本文研究系统中电化学传感器CFME不同制作技术和特点,通过火焰蚀刻法CFNE的制作和实验测试,在理论上建立CFNE及探头放大器电路与噪声模型,为噪声源定性和定量的分析提供依据,进而给出降低噪声的方法和措施。
碳纤维组合超微园盘电极的伏安特性与理论验证

碳纤维组合超微园盘电极的伏安特性与理论验证赵凯元3 王 清(苏州科技学院化学化工系,苏州215009)摘 要 用12根直径7μm 碳纤维均匀胶结在外径1mm 、内径0.4mm 的有机玻璃毛细管外围,形成组合超微园盘电极。
并与Ag ΠAgCl 参比电极和铂丝辅助电极构成复合三电极系统。
在K 3Fe (C N )6ΠK 4Fe (C N )6和Cd 2+/K Cl 溶液体系中,测定了这种复合式的组合超微电极的循环伏安特性和阶梯扫描伏安特性。
理论计算与实验曲线一致。
该电极系统具有良好的组合超微电极的性能。
由于单电极间距离远大于本身直径,扩散场互不干扰,因此,组合超微电极的响应具有加和性。
应用这种复合超微电极,测定了工业污水中的镉含量,与普通极谱法测定结果一致。
关键词 组合超微电极,碳纤维,循环伏安法,阶梯扫描伏安法 2002204206收稿;2002207229接受1 引 言超微电极的研究已十分深入,理论也较成熟[1],应用也日益广泛。
作者曾研究了碳基针孔组合微电极伏安特性[2]。
本文用多根碳纤维制成组合超微园盘电极,并组装成复合三电极系统。
在K 3Fe (C N )6ΠK 4Fe (C N )6和Cd 2+ΠK Cl 溶液体系中,测定了这种电极的循环伏安特性和阶梯扫描伏安特性,并加以理论验证。
用于测定自行车厂外排污水中的镉,效果良好。
2 实验部分211 材料、试剂和仪器碳纤维(武汉大学化学系提供,d =7μm )。
K D 2504A 环氧树脂粘接剂,银导电胶(市售),Ag ΠAgCl 电极取自玻璃电极的内参比电极,经重新电解处理后,作为复合电极的参比电极。
所有试剂都为分析纯以上。
水为重蒸馏水,电导率不大于5×10-6s ・cm-1。
MEC 212A 型多功能微机电化学分析仪和7921型伏安分析仪(江苏电分析仪器厂),M370电化学系统(美国EC&G 公司)。
212 电极系统的制作将碳纤维依次用丙酮2水2浓硫酸2水2浓盐酸2水浸洗各5min ,再用超声波清洗,自然晾干。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
碳纤维微电极
一、碳纤维微电极的定义和应用
碳纤维微电极是一种小型的电化学传感器,由碳纤维制成,具有高灵敏度、快速响应、低噪声等特点。
它广泛应用于生物医学领域中的神经科学研究和药物筛选等方面。
二、碳纤维微电极的制备方法
1. 碳化法:将聚丙烯腈等有机物经过高温处理得到碳纤维,再通过酸洗、氧化、还原等步骤制备成微电极。
2. 化学气相沉积法:将甲烷等气体在高温下分解成碳,沉积在金属棒上形成碳纤维。
3. 电化学方法:利用电解质中的金属离子在阳极上析出形成金属棒,再通过热解得到碳纤维。
三、碳纤维微电极的性能和优点
1. 高灵敏度:由于其小尺寸和低噪声特性,可以检测到微弱信号。
2. 快速响应:由于其低惯性和快速传递电子的特性,可以快速响应反应。
3. 高空间分辨率:由于其小尺寸和柔软性,可以针对微小区域进行测量。
4. 低侵入性:由于其小尺寸和柔软性,可以减少对生物组织的损伤。
5. 长期稳定性:由于其化学稳定性和耐腐蚀性,可以长期使用而不失效。
四、碳纤维微电极在神经科学研究中的应用
1. 神经元活动检测:通过将碳纤维微电极插入到大脑中的神经元区域,可以检测到神经元的活动情况。
2. 神经递质检测:通过将碳纤维微电极与药物结合,可以检测到神经
递质在大脑中的分布情况。
3. 药物筛选:通过将药物与碳纤维微电极结合,可以检测到药物在大
脑中的作用机制和效果。
五、碳纤维微电极在生物医学领域中的其他应用
1. 生物传感器:利用碳纤维微电极对生物分子的特异性反应,可以检
测到生物分子的存在和浓度。
2. 医学诊断:利用碳纤维微电极对生物样品中的代谢产物进行检测,
可以进行医学诊断。
3. 药物研发:利用碳纤维微电极对药物在体内的代谢和作用机制进行
研究,可以指导药物研发。
六、碳纤维微电极在未来的发展趋势
1. 多功能化:将多种功能整合到一个微电极上,实现多种检测和控制。
2. 纳米化:将碳纤维微电极制备成纳米级别,提高空间分辨率和灵敏度。
3. 无线化:将碳纤维微电极与无线传输技术相结合,实现远程监测和
控制。