冷镦钢
2024年冷镦钢市场需求分析

2024年冷镦钢市场需求分析引言冷镦钢是一种具有优异机械性能和加工性能的金属材料,在各行业的应用十分广泛。
本文将对冷镦钢市场的需求进行分析,探讨其发展趋势和市场规模。
1. 冷镦钢的特点冷镦钢是通过冷镦成型工艺制作而成的钢材,具有以下特点:- 优异的机械性能:冷镦钢具有较高的强度和硬度,适用于承受高强度和冲击载荷的场合。
- 准确的尺寸和表面质量:由于冷镦成型过程中材料受到拉伸和压力作用,可以获得高度准确的尺寸和优良的表面质量。
- 良好的加工性能:冷镦钢易于加工和成型,可满足各种复杂形状零部件的加工需求。
2. 行业应用分析2.1 汽车行业汽车行业是冷镦钢的主要消费领域之一。
冷镦钢可以用于制造汽车的各个零部件,如发动机曲轴、齿轮、螺栓等。
随着汽车行业的快速发展,对冷镦钢的需求不断增加。
2.2 机械制造行业在机械制造行业中,冷镦钢常用于制造各种机械零部件和工具。
其高强度和良好的加工性能使得冷镦钢成为制造行业的首选材料之一。
尤其在航空航天、电力设备等领域的应用也越来越广泛。
2.3 建筑行业冷镦钢在建筑行业中用于制作螺纹钢筋、螺栓等构件。
随着建筑行业的发展,对冷镦钢的需求逐年增加。
另外,冷镦钢还广泛应用于桥梁、高速公路等基础设施建设中。
3. 市场规模分析根据市场调研数据,冷镦钢市场规模不断扩大。
经过统计和预测,冷镦钢市场的需求呈稳步增长的趋势。
具体表现如下:- 2017年,全球冷镦钢市场规模为XX万吨,预计到2025年将达到XX万吨。
- 市场主要应用领域包括汽车、机械制造、建筑等行业,预计这些行业对冷镦钢的需求将持续增长。
- 新能源汽车市场的快速发展带动了冷镦钢的需求增加,预计在未来几年将成为冷镦钢市场的新增长点。
4. 发展趋势分析4.1 技术升级随着科技和工艺的不断进步,冷镦钢的质量和性能将得到进一步提升。
未来,通过技术升级,冷镦钢材料将更加适应各行业的需求,拓展市场空间。
4.2 环保意识增强环保意识的提高使得对绿色材料的需求不断增加。
冷镦钢开裂成因分析及质量改进

冷镦钢开裂成因分析及质量改进冷镦钢是一种用途广泛的金属材料,常常用于制作螺栓、螺母等零部件。
在生产过程中,冷镦钢有时会出现开裂的情况,这不仅影响了产品的质量,也增加了生产成本。
对冷镦钢开裂的成因进行分析,并提出质量改进的措施,对于企业的生产和发展具有重要意义。
冷镦钢开裂的成因分析主要包括以下几个方面:原材料质量、冷加工工艺、设备状况、操作技术以及质量控制等方面。
首先是原材料质量。
冷镦钢的开裂与原材料质量有着密切的关系,如果原材料中含有过多的夹杂物、气孔等缺陷,或者材料的组织不均匀,都会导致冷镦钢在冷加工过程中出现开裂的情况。
其次是冷加工工艺。
冷加工工艺的参数设置不当、过程控制不严等因素都可能导致冷镦钢开裂。
冷加工时温度过低或者过高、冷加工过程中受力不均匀等,都会对冷镦钢的质量产生不利影响。
再者是设备状况。
设备的磨损、老化或者不合理的设计都可能导致冷加工过程中对冷镦钢造成损伤,从而引起开裂。
操作技术也是一个重要的因素。
冷加工过程中操作者的技术熟练程度、操作规范程度等都会影响冷镦钢的开裂情况。
如果操作不当、经验不足,都会加剧冷镦钢开裂的风险。
最后是质量控制。
如果生产过程中的质量控制不严格、产品检验不到位,都会让质量不合格的冷镦钢流入市场,增加了产品开裂的风险。
针对以上分析的成因,我们公司提出了以下质量改进措施。
首先是加强原材料的质量控制。
在原材料采购环节,加强对原材料的检验,确保原材料的质量符合要求。
对有质量问题的原材料,及时进行退货处理,避免不良原材料影响产品质量。
其次是优化冷加工工艺。
通过对冷加工工艺参数的优化调整,确保冷加工过程中的温度、压力、速度等参数在合理范围内,减少冷镦钢在冷加工过程中的应力集聚,降低开裂的风险。
再者是加强设备维护和更新。
定期对冷加工设备进行检查、维护和更新,确保设备处于良好的工作状态,避免设备老化和磨损给冷镦钢的质量带来影响。
加强操作技术培训。
对操作者进行系统的技术培训,提高操作者对冷加工过程的理解和技术水平,降低操作不当造成的产品质量问题。
冷镦钢线材的工艺要点

冷镦钢线材的工艺要点冷镦钢线材是一种常用的金属材料,广泛应用于制造各种机械零件、紧固件和工具等领域。
下面是冷镦钢线材的工艺要点。
1. 材料选择:冷镦钢线材所使用的材料通常为低碳或中碳钢。
低碳钢具有良好的可加工性和焊接性能,适用于制造强度要求不高的零件;中碳钢具有较高的强度和硬度,适用于制造要求较高的紧固件。
2. 热处理:冷镦钢线材在制造过程中需要经过热处理,以使材料具有合适的硬度和强度。
常见的热处理工艺有退火、正火、淬火和回火等。
退火可以消除材料内部的应力和晶界碳化物,改善加工性能;正火可提高材料的强度和硬度;淬火可以使材料达到最大硬度并增加强度;回火可消除淬火后的材料内部应力,提高材料的韧性。
3. 冷拉:冷拉是冷镦钢线材制造过程中的重要工艺环节。
通过冷拉可以使材料的直径变细,并在拉伸过程中改变材料的晶粒结构和力学性能。
冷拉操作时需要控制材料的温度和拉伸速度,以确保拉伸过程中材料的变形均匀和不产生裂纹。
4. 弯曲:冷镦钢线材在制造过程中可能需要进行弯曲操作,以满足零件的设计要求。
弯曲工艺需要根据所使用的材料的强度和韧性,确定适当的弯曲半径和角度,以避免材料的破裂或变形。
5. 加工精度控制:冷镦钢线材的加工精度对于零件的装配和使用性能有着重要影响。
在制造过程中,需要控制每个环节的加工尺寸和几何形状,以确保零件的尺寸和形状精度符合设计要求。
6. 表面处理:冷镦钢线材在制造完成后,通常需要进行表面处理,以提高其抗腐蚀性能和外观质量。
表面处理工艺包括酸洗、电镀、镀锌和涂装等。
不同的表面处理方法适用于不同的工艺要求和使用环境。
7. 检测和质量控制:冷镦钢线材制造过程中需要进行各种检测和质量控制措施,以确保产品的质量稳定和合格。
常见的检测方法包括尺寸测量、力学性能测试、化学成分分析和金相组织观察等。
综上所述,冷镦钢线材的工艺要点包括材料选择、热处理、冷拉、弯曲、加工精度控制、表面处理以及检测和质量控制等。
这些要点在冷镦钢线材的制造过程中起着重要的作用,能够确保产品的质量和性能达到设计和使用要求。
各国冷镦钢标准对照

各国冷镦钢标准对照全文共四篇示例,供读者参考第一篇示例:各国冷镦钢标准对照冷镦钢是一种常用的金属材料,广泛用于机械制造领域。
在不同国家和地区,冷镦钢的标准也各有不同。
下面我们就来对比一下各国冷镦钢的标准。
1. 中国标准:中国国家标准GB/T 699-1999《普通碳素结构钢》是对于冷镦钢的主要标准,其中包括不同牌号的冷镦钢的化学成分、力学性能等要求。
GB/T 699-1999中规定的冷镦钢牌号有Q195、Q215、Q235等。
3. 欧洲标准:欧洲标准化委员会(CEN)制定了EN 10263-2标准,该标准适用于冷镦钢以及其他冷加工用的钢材。
EN 10263-2中规定了不同冷镦钢的化学成分、力学性能等要求。
4. 日本标准:日本标准JIS G 3507制定了冷镦钢的标准,主要包括SWRCH6A、SWRCH12A等不同牌号的冷镦钢。
JIS G 3507中规定了冷镦钢的化学成分、力学性能等要求。
通过以上对比可以看出,不同国家和地区对于冷镦钢的标准有所不同,但总体上都注重了冷镦钢的化学成分和力学性能等关键指标。
在实际使用中,需要根据不同国家和地区的标准要求选择合适的冷镦钢材料,以确保产品的质量和性能。
希望本文对大家了解各国冷镦钢标准有所帮助。
第二篇示例:一、中国标准1. GB/T 3077-1999《合金结构钢技术条件》2. GB/T 699-1999《普通碳素结构钢技术条件》3. GB/T 8162-2008《结构用无缝钢管》4. GB/T 1220-2007《不锈钢棒》二、美国标准1. ASTM A108-13《冷加工无缝钢棒标准规范》2. ASTM A29 / A29M-20《普通要求的钢材和合金钢产品的标准规范》3. ASTM A304-16《不锈钢和热加工合金棒材标准规范》4. ASTM A510/A510M-18《通用要求的冷加工高碳合金钢线标准规范》三、德国标准1. DIN EN ISO 683-17 2014《热轧和锻造钢材中高碳非合金钢、低碳合金钢和合金钢的质量要求》2. DIN EN 10083-3:2006《热轧技术要求的结构用钢》3. DIN 17100-1980《结构钢半成品技术条件》4. DIN 17200-1991《高碳钢棒棒瓦技术条件》四、日本标准1. JIS G 3507-1:2005《钢线棒相对于强度的冷镦股螺纹钢》2. JIS G 4051-2009《碳钢芯条》3. JIS G 4311-1991《不锈钢钢棒》4. JIS G 4319-1991《不锈钢钢线》以上是对一些主要国家的冷镦钢标准进行的对照,每个国家都有自己的冷镦钢标准,其中可能存在一些差异,但总体上都遵循国际标准,以确保产品的质量和安全性。
冷镦模具和冷镦钢及模具材料

冷镦模具和冷镦钢及模具材料随着工业和制造业的不断发展,越来越多的工厂和企业开始采用冷镦加工技术。
而冷镦加工中的模具是至关重要的一个组成部分,对于产品的精度和质量有着至关重要的影响。
本文将从以下三个方面详细介绍冷镦模具、冷镦钢及模具材料。
一、冷镦模具冷镦模具,又称为钢材模具,指的是用于冷镦加工的模具。
冷镦加工是指在室温下,利用模具对金属材料进行冷加工变形的一种工艺。
由于冷加工的温度比热加工低,可以保证产品的强度和硬度更高,而且在加工过程中不需要加热处理,节能环保。
由于冷加工的变形量比较大,因此需要使用高硬度、高强度的钢材制作模具。
冷镦模具的种类很多,通常分类有以下几种:1.普通冷镦模具:适用于加工普通材料,使用寿命较短。
2.合金冷镦模具:适用于加工高强度材料和特殊材料,使用寿命较长。
3.精密冷镦模具:适用于加工精密零件,加工精度更高。
4.复合冷镦模具:由多个模块组成,适用于加工复杂形状和大批量生产。
冷镦模具的制造过程复杂,通常需要经过多道加工工艺和不同类型的热处理。
制作过程中需要考虑材料的热膨胀系数、热传导系数、变形和断裂等性能。
合理设计模具结构,采用优质钢材,能够极大地提高冷镦模具的使用寿命和工作效率。
二、冷镦钢冷镦钢是一种适用于冷加工的钢材种类,主要材质包括碳素钢、合金钢、不锈钢和高速钢。
相比于热加工钢,冷镦钢的强度和硬度都要更高,适合于制造高质量的机械零部件。
冷镦钢的分类较多,常见的有:1.普通碳素钢:强度和硬度适中,适用于一般机械零部件。
2.低合金钢:加入适量的合金元素,能够更好地提高钢材的强度和硬度。
3.高速钢:添加大量的合金元素,具有较高的切削刃性能。
4.不锈钢:具有耐腐蚀性,常用于生产厨具和餐具等。
在制作冷镦模具时,选择合适的冷镦钢材料是非常重要的。
不同的冷镦材料具有不同的力学性能和加工性能,因此需要根据不同的加工要求选择一种最适合的冷镦钢材料。
三、模具材料模具材料是制造模具的基础材料,根据模具的使用要求和加工环境不同,模具材料也会有所不同。
冷镦钢开裂成因分析及质量改进

冷镦钢开裂成因分析及质量改进冷镦钢开裂是指在冷镦加工过程中,钢材出现裂纹现象,这种现象严重影响了产品的使用性能和质量,也给生产制造过程带来了一定的损失。
深入分析冷镦钢开裂的成因并进行质量改进非常重要。
一、冷镦钢开裂的成因分析1.原材料质量不合格冷镦钢的原材料主要是钢坯,如果钢坯的质量不合格,如夹杂物含量过高、组织不均匀等,都会导致冷镦钢在加工过程中容易产生开裂现象。
2.冷加工参数设置不合理冷镦是一种冷加工工艺,如果冷加工参数设置不合理,如温度、速度、力度等方面没有精确控制,就会导致钢材变形过大、应力过大,从而引起开裂。
3.模具磨损严重冷镦加工需要使用模具,如果模具磨损严重,就会导致钢材在加工过程中受到不均匀的力度作用,从而导致开裂。
4.加工环境不合理如果冷镦加工的环境温度、湿度等因素不合理,就会导致钢材在加工过程中受到外部环境的影响,从而引起开裂。
二、冷镦钢开裂的质量改进1.严格控制原材料质量从源头上保证原材料的质量,选择质量合格的钢坯,并严格对其进行质量检测,确保原材料质量的稳定性。
3.加强模具维护及时对冷镦加工所使用的模具进行检查和保养,发现磨损严重的模具及时更换,确保模具的使用状态良好,减少对钢材的不良影响。
4.改善加工环境优化冷镦加工的环境,控制好温湿度等因素,营造一个适合冷镦加工的环境条件,减少外部环境对钢材的影响,降低开裂的风险。
5.加强质量控制在冷镦加工过程中,加强对产品质量的检测和控制,对一旦发现开裂等质量问题,及时进行处理和改进,确保产品质量符合要求。
冷镦钢开裂是一个需要认真对待并加以解决的问题,只有深入分析其成因,并从原材料质量、加工参数、模具维护、加工环境和质量控制等方面进行全面改进,才能有效预防和减少冷镦钢的开裂现象,提高产品质量和生产效率。
冷镦钢牌号及用途

冷镦钢牌号及用途冷镦钢是一种通过冷镦加工制成的工程金属材料。
它的牌号及用途可以根据不同的国家和地区而有所差异。
以下是一些常见的冷镦钢牌号及其主要用途的简介。
1. SWRCH系列(日本工业标准):SWRCH6A-23A是一种含有高碳的冷镦钢,适用于制造高强度及高导电性的螺栓、铆钉等紧固件。
2. ML系列(美国标准):ML10B-30B是一种含有中碳的冷镦钢,常用于生产汽车零部件、螺栓、螺母等高强度需要强度和韧性的零件。
3. ML20MnTiB(美国标准):ML20MnTiB是一种含有中碳及合金元素的冷镦钢,广泛用于生产汽车的传动轴、悬挂系统、车架等零部件。
4. SAE系列:SAE1006-1065是一种低碳的冷镦钢,通常用于制造细径螺钉、螺栓以及冷镦件。
5. SWRCH系列(中国国家标准):SWRCH8A-22A是中国国家标准中的一种冷镦钢,用于制造高强度的标准零件、紧固件和机械零件。
6. SC碳素系列(中国国家标准):SCM435-440是中国国家标准中的一种合金结构钢,也常用于冷镦加工,广泛应用于汽车制造、工程机械和航空航天等领域。
7. 45系列(中国国家标准):45钢是一种中碳钢,适合进行冷硬化和冷镦加工,常用于制造强度较高的标准零件和紧固件。
8. SWCH系列(中国国家标准):SWCH6-25是中国国家标准中的一种冷镦钢,适合制造高强度的螺栓、钉子、铆钉及各种紧固件。
总结起来,冷镦钢的牌号及用途可以根据所在地区的标准和需求而有所不同。
不同的冷镦钢具有不同的化学成分和机械性能,因此用途差异也较大。
冷镦钢通常在制造行业中广泛应用,例如汽车制造、航空航天、轴承、农机制造等领域。
通过冷镦加工,冷镦钢可以制造出各种形状的零件,具有较高的强度、耐磨性和耐用性。
冷镦钢牌号及用途

冷镦钢牌号及用途
冷镦钢是一种用于冷镦加工的钢材,具有良好的加工性能和较高的强度。
冷镦加工是一种在室温下对金属进行塑性变形的工艺,通常用于制造螺栓、螺母、铆钉等零件。
根据不同的性能要求和用途,冷镦钢有很多牌号。
以下是一些常见的冷镦钢牌号及用途:
1. 高质碳素结构钢:例如20#、45#等,主要用于制造强度要求较高的螺栓、螺母等零件。
2. 合金结构钢:如40Cr、35CrMo等,具有良好的强度、韧性和耐磨性,适用于制造大型、重要零件。
3. 不锈钢:如304、316等,具有良好的耐腐蚀性和美观性,主要用于食品、化工等行业的设备及建筑装饰部件。
4. 工具钢:如CrWMn、CrMoV等,具有高硬度、高强度和良好的耐磨性,适用于制造刃具、模具等。
5. 弹簧钢:如65Mn、55Si2Mn等,具有较高的弹性模量和疲劳强度,
用于制造各种弹簧零件。
6. 轴承钢:如GCr15、GCr18等,具有高硬度、高耐磨性和良好的接触疲劳性能,用于制造轴承零件。
7. 耐热钢:如40CrNiMoA、50Cr2MoV等,具有较高的耐热性能和强度,用于制造高温环境下的零件。
需要注意的是,冷镦钢的牌号和用途可能会根据具体需求和应用场景有所不同。
在选择冷镦钢时,需根据零件的性能要求、使用环境等因素进行合理选材。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
影响冷镦钢品质的主要因素及控制措施(一)冷镦钢,又称铆螺钢或冷顶锻钢,是利用金属的塑性,采用冷镦加工成型工艺生产互换性较高的标准件用钢。
冷镦钢产品广泛用于制造螺栓、螺母、螺钉等各类紧固件;另一重要用途是制造冷挤压零部件和各种冷镦成形的零配件,该用途是随着汽车工业发展起来的,逐步扩大到电器、照相机、纺织器材、机械制造等领域。
一、国内外冷镦钢生产概况1、国内冷镦钢我国冷镦钢的标准化工作起步较晚,尚未形成完整体系,冷镦钢用国家标准仅有3个:GB/T6478—2001《冷镦和冷挤压用钢》,GB/T4232—1993《冷顶锻用不锈钢丝》和GB/T5953—1999《冷镦钢丝》。
冷镦用钢的实物品质尚不能完全满足标准件行业要求,在一定程度上依赖进口。
据海关统计,我国每年进口的紧固件在12~13万t。
随着紧固件工业的迅猛发展,新钢种不断地开发和引进,对外的出口日益增多,随汽车、石油、机械等各行业的技术进步,对配套的紧固件提出许多新要求,不但是形式尺寸上的,而且是性能与可靠性上的,实际上是对紧固件材料提出更高的要求。
我国紧固件行业发生了较大的变化,具体表现在:(1)采用国外钢种牌号如10B22M,10B25LHC,MnB123H等,主要是出口订单上规定要使用的牌号。
(2)同一牌号的钢种衍生出多个交货状态的品种,如SWRCH35K,有免退火、正火、退火+磷化交货,满足不同用户的需求。
(3)大量采用合金、低合金钢种,以适合耐高温、耐高压、耐腐蚀的要求,如SNB5-7,SNB16(JIS4107—94),SNB21-24(JIS4108)。
(4)采用抗延时断裂用钢生产的钢结构用螺栓抗拉强度超过1200MPa。
2、国外冷镦钢国外采用HNDS2制造12.9级螺栓(代替SCM440),延时破断有明显改进,采用45CrNiMoTi 在1500MPa级别使用,其性能优于回火马氏体高强度螺栓,贝氏体钢很少见到有(晶界)碳化物析出,避免了穿晶破坏而发生的延时断裂。
国外发达国家冷镦钢产业已基本形成规模,重点是根据用户的要求改善冷镦钢材料的品质性能,而产量无太大变化。
日本大同为降低标准件材料成本和加工成本,推出了多种不锈钢螺栓和螺钉用钢;高周波钢业开发了一系列不锈冷镦钢新产品,利用设备优势推出SUS系列产品,大大提高了钢的冷镦性能;日本精线为适应建筑行业要求,开发了具有良好耐蚀和冷镦性能、通过淬回火硬化的马氏体冷镦钢。
爱知制钢公司开发了AUS系列冷锻用不锈钢,分为奥氏体(A)、铁素体(F)、马氏体(M)及沉淀硬化系列,其强度范围大,抗拉强度为400~1200MPa,且规格多。
进口冷镦线材具有良好的强塑性,优良的拉拔性能,断丝率较低。
晶粒大小仅为1~2μm,为国产中碳钢丝的1/10左右。
进口钢丝可能在热处理时并没有完全奥氏体化,而仅仅加热到奥氏体和铁素体的双相区进行保温后再冷却至室温,奥氏体化温度低,保温时间短,从而热处理后的组织细小,渗碳体尺寸较小,厚度较薄,分布均匀,呈现出进口钢丝特殊的“双相组织”。
二、冷镦钢的技术要求及主要工艺流程1、冷镦钢的技术要求:冷镦钢盘条一般为低、中碳优质碳素结构钢和合金结构钢。
标准件对原材料尺寸精度要求比较严格,热轧钢材规格有限,尺寸精度也很难满足要求,所以标准件几乎全部采用冷拉钢丝作为原料,合格的冷镦钢丝必须满足以下要求。
(1)化学成分要求:O,P,S等元素对钢中夹杂物的形态及数量、大小有决定性影响,所以要求控制其含量;对合金钢而言,硅、铝、锰等元素控制在中下限为宜,避免造成冷顶锻裂纹。
(2)表面品质:标准件厂统计表明,冷镦开裂的80%是由钢丝表面缺陷造成的,如折迭、划伤、密集的发纹、局部微裂纹、结疤。
因此对线材表面品质要求很严,尺寸公差±0.20mm,不圆度<0.30mm,表面裂纹、划伤最深<0.07mm。
(3)脱碳:表面脱碳造成螺栓表面强度降低,疲劳寿命大幅下降。
平均脱碳层深度要求见表1。
表1 冷镦线材的脱碳层要求mm(4)非金属夹杂物:钢中非金属夹杂物含量高、尺寸大是造成标准件冷镦开裂的一个重要原因,尤其是非金属夹杂中B类和D类脆性夹杂,距钢丝表面愈近危害性越大,所以要求B类夹杂物距表层2mm之内应不大于15μm。
(5)金相组织:冷镦钢的金相组织为铁素体+粒状珠光体,珠光体的晶粒尺寸和分布也是影响冷镦性能的因素,理想的组织是珠光体晶粒大小相近并均匀地分布在铁素体基体上。
珠光体不同显微组织冷镦性能从好到坏的排列次序为粒状珠光体、索氏体、细片状珠光体、片状珠光体。
(6)低倍组织:冷镦钢丝对钢的低倍组织要求比较严,低倍检查不应有缩孔、分层、白点、裂纹、气孔等缺陷,对中心疏松、方框偏析、中心增碳等缺陷,不同钢种都有明确的级别规定。
(7)晶粒度:冷镦钢丝内部组织不同于其它钢丝,晶粒度不是越细越好。
晶粒度太细,抗拉强度、屈服强度升高,变形抗力增大,对冷镦成型很不利。
除10.9级以上螺栓晶粒细、保证成品强度外,冷镦钢丝的晶粒度应控制在5~7级。
(8)冷镦性能:冷镦性能好是指钢丝具有较低的变形抗力,能经受很大程度的变形而不产生裂纹。
一般认为以断面收缩率和屈强比作为衡量冷镦性能指标比较可靠。
合金钢的断面收缩率应不小于50%。
冷镦钢丝的屈强比小,冷镦性能相对要好,合金钢的屈强比应不大于0.70。
从冷镦性能角度考虑,钢丝的冷加工强化系数越低越好,即不易产生加工硬化。
高档次标准件对原料的品质要求:盘条具有较高的塑性指标、断面收缩率及延伸率;在冷塑性变形中,材料的变形抗力小,加工硬化率低,材料的屈强比小,盘条硬度适中,不要过高;盘条具有良好的表面品质,一定的表面粗糙度,不允许有折迭、裂纹等表面缺陷;钢的组织致密,无内部缺陷。
2、冷镦钢主要生产工艺冶炼冷镦钢的关键是要提高钢水的纯凈度,降低钢水的非金属夹杂物含量。
钢水终点碳含量稳定在规定范围内是降低钢水氧化程度和减少钢水非金属夹杂的主要措施。
冷镦钢盘条生产的工艺流程:⌝铁水→转炉→精炼炉→连铸→加热→高速线材轧制→高线控制冷却→成品检验→入库。
合金冷镦钢线材的生产工艺流程与碳素钢线材基本相同,但合金冷镦钢丝变形抗力较大。
为保证冷镦成型,球化退火是必不可少的,可获得比较理想的组织。
常用工艺路线:⌝线材→冷拉→球化退火;线材→再结晶退火→冷拉→球化退火。
对冶炼工艺的要求:(1)新炉前20炉、补炉前3炉及新包第1炉不得冶炼冷镦钢;(2)出钢温度为1630~1660℃;(3)脱氧合金化,终脱氧加入硅铝钙钡合金;(4)钢包清洁无冷钢,钢包进行吹氩。
LF精炼时间不少于35min,白渣保持时间不低于15min。
出钢温度:开浇(1585±5)℃,连浇(1567±5)℃。
出钢时喂CaSi线,并进行弱搅拌。
同时方坯表面不得有脱方、裂纹、重接、分层等缺陷。
影响冷镦钢品质的主要因素及控制措施(二)三、影响冷镦钢品质的主要因素一般情况下,可将影响冷镦钢品质因素归纳为材料塑性、材料基体连续性、材料组织连续性和材料表面品质等。
根据对冷镦钢的品质检测,发现影响冷镦钢品质的因素主要有以下4个方面:钢的化学成分、坯料表面缺陷、设备调整、晶粒度和轧制工艺参数。
(1)化学成分的影响:钢中硫、磷等杂质元素直接影响冷镦钢冷镦性能。
在冷镦钢的冶炼过程中针对不同钢种应去除相应杂质。
某些非金属夹杂破坏了钢的基体连续性,在静载荷和动载荷的作用下,往往成为冷镦钢裂纹的起点。
因此,应尽量降低钢中非金属夹杂物,同时对其进行处理(如钙化等),减少其在钢中的危害。
(2)坯料表面缺陷的影响:坯料表面缺陷是产生冷顶锻开裂的裂纹源,主要形式有坯料表面重皮、裂纹、尖锐过度等。
在加工时,由于裂纹的存在引起应力集中,同时产生复杂的应力状态,导致裂纹扩张,最终冷顶锻开裂,因此,选用优质钢坯是提高冷镦钢品质的前提。
在轧制过程中存在严重的温度不均也会促使产品出现开裂现象。
(3)轧制过程中设备调整对冷镦钢性能的影响:生产过程中各项轧制规程的制定是影响产品冷镦性能的主要因素,例如压下量、张力等的调整以及生产备件的装配和调整。
若轧制生产调整不当,使产品在轧制过程中产生折迭或划伤,破坏产品的表面,形成开裂的裂纹源。
因此,制定合理的轧制规程是提高冷镦钢品质的关键。
(4)晶粒度的影响:晶粒度是衡量冷镦钢能否达到一定的综合性能的标准之一。
晶粒越细,其内部因应力集中引起的开裂的机会就越小,有利于冷顶锻等性能的提高。
细晶钢可以承受较大的变形量,具有较大的延伸率、断面收缩率、较好的塑性以及较高的韧性和强度。
因此要求在轧制过程中,奥氏体化温度不宜过高,保温时间不宜过长。
(5)轧制工艺参数的影响。
冷镦钢组织为铁素体+珠光体,其控冷关键是使奥氏体分解在适中的温度下进行,并且使分解转变的时间较长,以便得到适中的铁素体晶粒和少量的珠光体,提高冷镦钢的强度,并使塑性指标不致下降,获得较好的综合力学性能。
通过实施低温轧制(出钢温度930~950℃)、合理的吐丝温度(820~840℃,过低容易使轧件形成较大温度梯度,过高容易使晶粒异常长大)、较适中的冷却速度(斯太尔摩冷却丝入口辊道段速度13~15m/min)及集卷温度,使最终产品性能达到要求,符合铁碳基本组织成分与力学性能关系。
四、提高冷镦钢品质的主要措施国内冷镦钢生产中最大的问题就是如何解决在实际冷顶锻加工过程中镦头开裂。
针对冷镦钢的技术要求,结合影响冷镦钢性能的各项因素以及生产实际,在冷镦钢的生产中应采取如下措施:(1)严格按冷镦钢的标准控制钢的化学成分,优化材料组织,提高材料塑性,保证钢质性能的稳定,减少夹杂物对性能的危害,降低钢中有害元素的含量。
(2)通过对冶炼、轧钢过程的控制,减少压下量、轧制道次以及翻钢次数,以获得均匀、细化晶粒组织,避免生产过程中皱折及由耳子产生的折迭,提高冷镦钢的综合力学性能。
(3)选择适当轧辊和变形均匀的孔型系统,保证产品表面光洁,同时减少成品裂纹,提高生产备件品质,保证工艺要求。
(4)严格控制加热温度、时间和炉内气氛,保持正压操作,减少表面烧损和表面脱碳。
(5)加强钢坯验收和装炉前的品质检查,严格控制钢坯表面品质,尽量采用大断面的钢坯,增加由坯到材的总变形量。
五、结论我国冷镦钢生产企业通过设备引进和技术开发,冷镦钢生产规模和品质已取得一定的成果,但对于市场提出的技术要求,还需采取措施进一步提高产品品质。
(1)了解和掌握国内外冷镦钢的生产技术水准,借鉴国内钢厂的成功经验,通过大量技术研。