带电粒子在匀强磁场中的运动知识小结
带电粒子在匀强磁场中的匀速圆周运动

洛伦兹力提供向心力,使带电 粒子绕固定点做圆周运动。
运动过程中,带电粒子的速度 方向时刻改变,但速度大小保 持不变。
周期和半径公式
周期公式
$T = frac{2pi m}{qB}$,其中$m$是带电粒子的质量,$q$是带电粒子的电荷 量,$B$是匀强磁场的磁感应强度。
半径公式
$r = frac{mv}{qB}$,其中$v$是带电粒子运动的速度。
偏转方向和速度大小不变
偏转方向
带电粒子在匀强磁场中做匀速圆周运 动时,其偏转方向与磁场方向垂直。
速度大小不变
由于洛伦兹力始终与带电粒子的速度 方向垂直,因此洛伦兹力不做功,带 电粒子的速度大小保持不变。
04 带电粒子在磁场中的运动 规律
周期与速度的关系
总结词
带电粒子在匀强磁场中做匀速圆周运动时,其周期与速度无关,即T=恒定值。
域。
核聚变反应
在高温高压条件下,带电粒子在匀 强磁场中高速旋转,可以引发核聚 变反应,为未来的清洁能源提供可 能。
磁流体发电
利用高温导电流体在匀强磁场中做 高速旋转运动,可以将机械能转化 为电能,具有高效、环保的优点。
对未来研究的展望
1 2 3
探索极端条件下的运动特性
随着实验技术的不断发展,未来可以进一步探索 带电粒子在更高温度、更高磁感应强度等极端条 件下的运动特性。
详细描述
带电粒子在匀强磁场中受到洛伦兹力作用,该力提供向心力使粒子做匀速圆周运 动。根据牛顿第二定律和向心力公式,粒子的周期T与速度v无关,只与磁场强度 B和粒子的质量m有关。
周期与磁场强度的关系
总结词
带电粒子在匀强磁场中做匀速圆周运 动时,其周期与磁场强度成正比。
详细描述
带电粒子在匀强磁场中运动

图 10
(2)平行边界 (存在临界条件,如图 11)
图 11 (3)圆形边界 (沿径向射入必沿径向射出,如图 12)
图 12
典例剖析 1.带电粒子在直线边界磁场中的运动问题 例2 如图 13 所示,在一底边长 为 2a, θ= 30° 的等腰三角形区域 内 (D 在底边中点),有垂直纸面向 外的匀强磁场.现有一质量为 m, 电荷量为 q 的带正电的粒子,从静止 开始经过电势差为 U 的电场加速后,从 D 点垂直于 EF 进入磁场, 不计重力与空气阻力的影响.
解析
设粒子的入射速度为 v,已知粒子带正电,故它
在磁场中先顺时针做圆周运动,再逆时针做圆周运动, 最后从 A4 点射出,用 B1、 B2、 R1、 R2、 T1、 T2 分别表 示在磁场Ⅰ区和Ⅱ区中的磁感应强度、轨道半径和周期 v2 qvB1= m R1 v2 qvB2= m R2 2πR1 2πm T1= = v qB1 2πR2 2πm T2= = v qB2
图8
(2)半径的确定 用几何知识(勾股定理、三角函数等)求出半径大小. (3)运动时间的确定
图9
粒子在磁场中运动一周的时间为 T,当粒子运动的圆弧所 α α 对应的圆心角为 α 时, 其运动时间为: t= T(或 t= T). 360° 2π
3.规律总结 带电粒子在不同边界磁场中的运动 (1)直线边界 (进出磁场具有对称性,如图 10)
(2)粒子速率恒定,从进入磁场到第一 次打到 ED 板的轨迹与 EC 边相切时, 路程最长,运动时间最长,如图所示, 设圆周半径为 r2 由图中几何关系: r2+ πr2 最长时间 t= v 由以上各式联立得: t=
答案 1 (1) a 2mU q
r2 1 = a,得: r2= a sin θ 3
带电粒子在匀强磁场中的运动知识小结

带电粒子在匀强磁场中的运动(知识小结)一.带电粒子在磁场中的运动(1)带电粒子在磁场中运动时,若速度方向与磁感线平行,则粒子不受磁场力,做匀速直线运动;即 ① 为静止状态。
② 则粒子做匀速直线运动。
(2)若速度方向与磁感线垂直,带电粒子在匀强磁场中做匀速圆周运动,洛伦兹力起向心力作用。
(3)若速度方向与磁感线成任意角度,则带电粒子在与磁感线平行的方向上做匀速直线运动,在与磁感线垂直的方向上做匀速圆周运动,它们的合运动是螺线运动。
二、带电粒子在匀强磁场中的圆周运动1.运动分析:洛伦兹力提供向心力,使带电粒子在匀强磁场中做匀速圆周运动.(4)运动时间: (Θ 用弧度作单位 )1.只有垂直于磁感应强度方向进入匀强磁场的带电粒子,才能在磁场中做匀速圆周运动.2.带电粒子做匀速圆周运动的半径与带电粒子进入磁场时速率的大小有关,而周期与速率、半径都无关.三、带电粒子在有界匀强磁场中的匀速圆周运动(往往有临界和极值问题)(一)边界举例:1、直线边界(进出磁场有对称性)规律:如从同一直线边界射入的粒子,再从这一边射出时,速度与边界的夹角相等。
速度与边界的夹角等于圆弧所对圆心角的一半,并且如果把两个速度移到共点时,关于直线轴对称。
2、平行边界(往往有临界和极值问题)(在平行有界磁场里运动,轨迹与边界相切时,粒子恰好不射出边界)3、矩形边界磁场区域为正方形,从a 点沿ab 方向垂直射入匀强磁场:若从c 点射出,则圆心在d 处若从d 点射出,则圆心在ad 连线中点处4.圆形边界(从平面几何的角度看,是粒子轨迹圆与磁场边界圆的两圆相交问题。
)特殊情形:在圆形磁场内,沿径向射入时,必沿径向射出一般情形:磁场圆心O 和运动轨迹圆心O ′都在入射点和出射点连线AB 的中垂线上。
或者说两圆心连线OO ′与两个交点的连线AB 垂直。
(二)求解步骤:(1)定圆心、(2)连半径、(3)画轨迹、(4)作三角形.(5)据半径公式求半径,2.其特征方程为:F 洛=F 向. 3.三个基本公式: (1)向心力公式:qvB =m v 2R ; (2)半径公式:R =mv qB ; (3)周期和频率公式:T =2πm qB =1f ; 222m t qB m qB T θππθπθ==⨯=⨯v L =t再解三角形求其它量;或据三角形求半径,再据半径公式求其它量(6)求时间1、确定圆心的常用方法:(1)已知入射方向和出射方向(两点两方向)时,可以作通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心,如图3-6-6甲所示,P 为入射点,M 为出射点,O 为轨道圆心.(2)已知入射方向和出射点的位置时(两点一方向),可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心,如图3-6-6乙所示,P 为入射点,M 为出射点,O 为轨道圆心.(3)两条弦的中垂线(三点):如图3-6-7所示,带电粒子在匀强磁场中分别经过O 、A 、B 三点时,其圆心O ′在OA 、OB 的中垂线的交点上.(4)已知入射点、入射方向和圆周的一条切线:如图3-6-8所示,过入射点A 做v 垂线AO ,延长v 线与切线CD 交于C 点,做∠ACD 的角平分线交AO 于O 点,O 点即为圆心,求解临界问题常用到此法.(5)已知入射点,入射速度方向和半径大小2.求半径的常用方法 :由于已知条件的不同,求半径有两种方法:一是:利用向心力公式求半径;二是:利用平面几何知识求半径。
带电粒子在匀强磁场中的运动

三、加速器(回旋加速器) 3、注意
1)交变电场的往复变化周期和粒子的运动周期T 相同,这样就可以保证粒子在每次经过交变电场 时都被加速
2)带电粒子每经电场加速一次,回旋半径就增大 一次,每次增加的动能为 E =qU
K
所以各次半径之比为 1 ∶ 2∶ 3∶ ... 3)带电粒子在回旋加速器中飞出的速度为
三、粒子加速器(直线加速)
为了认识原子核内部结构 方案一:利用电场加速
U m q
1 2 qU mv 2
v
2qU U m
可知电压越高,粒子获得的能量越 高,速度越大,但电压不可能无限制地 提高(为什么?)
方案二:多级电场加速
1 2 nqU mv 2
+
粒子
一级 二级 三级
+ ……
n级
世界上最大的直线加速器:
世界上最长的直线加速器位于美国斯坦福大 学一座毫不起眼的灰色建筑群内。美国斯坦 福大学直线加速器实验室的科学家们曾获得 过三次诺贝尔奖,他们目前正在收集首个科 学证据,通过对撞正电子与电子,证明宇宙 中的物质比反物质更多。这个庞然大物长约 3公里 。
美国斯坦福大学直线加速器
在直线加速器末端,600吨重的电磁石坐落在庞大的建筑物— —终端站A的地面,它被用来改变加速器射出的高能粒子束路 径。在磁铁工作时,电阻会产生大量热量,周围的橙色管起到 冷却、散热的作用。
一、带电粒子在匀强磁场中的运动 实验结论: 1.沿着与磁场垂直的方向射入磁场的带电粒子, 在匀强磁场中做 匀速圆周运动 2.洛伦兹力提供了带电粒子做匀速圆周运动所 需的 向心力 3.磁场强度不变,粒子射入的速度增加,轨道半 径 增大 4.粒子射入速度不变,磁场强度增大,轨道半径 减小
带电粒子在匀强磁场中的运动

即 eUd2=evB1,代入 v 值得 U2=B1d
2eU1 m
(3)在 c 中,e 受洛伦兹力作用而做圆周运动,回
转半径 R=Bm2ve,代入 v 值得 R=B12
2U1m e
答案:(1)
2eU1 m
(2)B1d
2eU1 m
1 (3)B2
2U1m e
点评:解答此类问题要做到: (1)对带电粒子进行正确的受力分析和运动过程 分析. (2)选取合适的规律,建立方程求解.
[错误解法]由 Bqv0=mvR02,得 B=
mqvR0. 则
B
=
3×10-20×105 10-13× 3×10-1
T≈0.17T.
[错因点评]对公式中有关物理量不甚明了,在套
用公式 Bqv0=mRv20时,误将 R 的值代为磁场区域半径 之值了.
[正确解答]作进、出磁场点处 速度的垂线 PO、QO 得交点 O,O 点即粒子做圆周运动的圆心.据此
A.增大匀强电场间的加速电压 B.增大磁场的磁感应强度 C.增加周期性变化的电场的频率 D.增大 D 形金属盒的半径 答案:BD
解析:粒子最后射出时的旋转半径为 D 形盒的最 大半径 R,R=mqBv,Ek=12mv2=q22Bm2R2.可见,要增大 粒子的动能,应增大磁感应强度 B 和增大 D 形盒的 半径 R,故正确答案为 B、D.
︵ 作出运动轨迹如图中的PQ.此圆半 径为 PO,记为 r.
易知∠POQ=60°,则 r=PQ= 3R=0.3m. 由 Bqv0=mvr20得 B=mqvr0.则 B=3×101-01-3 ×20×0.1305T =0.1T.
[正确答案]0.1T
[感悟心语]像这种不太复杂的带电粒子在匀强磁 场中的圆周运动问题,解题要点在于作出带电粒子实 际运动的轨迹.方法有两种:
1.3带电粒子在匀强磁场中的运动

依据所给数据分别计算出带电粒子所受的重力和洛伦兹力,就可求出
所受重力与洛伦兹力之比。带电粒子在匀强磁场中受洛伦兹力并做匀速圆
周运动,由此可以求出粒子运动的轨道半径及周期。
完全解答:
重力与洛伦兹力之比
(1)粒子所受的重力
G= mg = 1.67×10-27kg×9.8 N= 1.64×10-26N
匀强磁场中。求电子做匀速圆周运动的轨道半径和周期。
解:洛伦兹力提供向心力,首先列:
2
v
qvB m
r
2πr
T
v
mv
9.110 31 1.6 10 6
2
.
55
10
m
r
19
4
1.6 10 2 10
qB
2m
T
qB
2 9.110 31
7
5
.
6875
洛伦兹力提供向心力
v2
qvB m
r
圆周运动的半径
mv
r
qB
粒子在匀强磁场中做匀速圆周运动的半径与它的质量、速度成
正比,与电荷量、磁感应强度成反比。
观察带电粒子的运动径迹
洛伦兹力演示仪示意图
洛伦兹力演示仪
励磁线圈
玻璃泡
电子枪
加速极电压
励磁电流
选择档
选择档
电子枪可以发射电子束
玻璃泡内充有稀薄的气体,在电
2 m
T
eB
电子在矩形磁场中沿圆弧从
a点运动到c点的时间
t
T
带电粒子在匀强磁场中运动的规律总结画图分析技巧

带电粒子在匀强磁场中运动的规律总结、画图分析技巧本文适用于高三学生复习参考、或者高二(已学习带电粒子在匀强磁场中的运动相关章节内容)的学生。
文中系统总结了带电粒子在匀强磁场中运动的相关知识点,列举了这类问题常用的方法技巧,比如,找半径的方法,粒子轨迹圆心的确定方法,周期的算法,粒子运动时间的算法;超出书本之外的方法技巧:如常用的画圆弧技巧,需要用到的几何知识,粒子运动最长时间最短时间的确定方法,磁聚焦类问题规律方法,并附有相关例题,以及详细的画图(附手绘画图步骤)、解析过程。
详见如下具体内容,谨供有需要的学生参考。
一些用红色字迹显示的结论,可以在理解的基础上记忆。
目录一、带电粒子在匀强磁场中运动的基本知识点:半径公式、周期公式、运动时间公式、圆心的确定方法 (2)二、基本画图技巧 (2)三、常用画图相关几何知识、规律1.对称性的应用(1)直线边界磁场(附证明过程) (3)(2)圆形边界磁场(附证明过程) (4)2.缩放圆法 (5)3.旋转圆法 (5)四、粒子在有界磁场中运动过程的最长、最短时间的确定方法 (5)五、磁聚焦类问题原理(附详细证明过程)、规律与分析方法 (6)六、带电粒子在磁场中运动的多解情形举例 (8)七、精选带电粒子在匀强磁场中运动例题,附手绘画图步骤、分析过程、解答过程……………………………………………………9—23一、带电粒子在匀强磁场中运动的基本知识点:半径公式、周期公式、运动时间公式(并附有推理过程)、圆心的确定方法1.基本知识点:物理情景模型:以下内容只讨论匀强磁场。
当带电粒子以一定的初速度v 沿垂直磁场方向进入匀强磁场时,带电粒子只受洛伦兹力,洛伦兹力与粒子运动的速度方向总是垂直的,因此,洛伦兹力只改变粒子的速度方向,不改变粒子运动的速度大小,由F 洛=qvB ,可知,v 大小不变,F 洛大小也不变,如右图,这一特征符合物体做匀速圆周运动的动力学特征——向心力总与物体运动的速度方向垂直,只改变速度方向,不改变速度大小。
带电粒子在匀强磁场中的圆周运动

带电粒子在匀强磁场中的运动一、带电粒子在匀强磁场中的匀速圆周运动1.洛伦兹力的作用效果洛伦兹力只改变带电粒子速度的方向,不改变带电粒子速度的大小,或者说洛伦兹力不对带电粒子做功,不改变粒子的能量。
2.带电粒子的运动规律沿着与磁场垂直的方向射入磁场的带电粒子,在匀强磁场中做匀速圆周运动。
洛伦兹力总与速度方向垂直,正好起到了向心力的作用。
公式:q v B =m v 2rr =m vqBT =2πm qB3.圆心、半径、运动时间的分析思路(1)圆心的确定:带电粒子垂直进入磁场后,一定做圆周运动,其速度方向一定沿圆周的切线方向,因此圆心的位置必是两速度方向垂线的交点,如图(a)所示,或某一速度方向的垂线与圆周上两点连线中垂线的交点,如图(b)所示.(2)运动半径大小的确定:一般先作入射点、出射点对应的半径,并作出相应的辅助三角形,然后利用三角函数求解出半径的大小.(3)运动时间的确定:首先利用周期公式T =2πm qB ,求出运动周期T ,然后求出粒子运动的圆弧所对应的圆心角α,其运动时间t =α2πT .(4)圆心角的确定:①带电粒子射出磁场的速度方向与射入磁场的速度方向间的夹角φ叫偏向角.偏向角等于圆心角即φ=α,如图所示.②某段圆弧所对应的圆心角是这段圆弧弦切角的二倍,即α=2θ.[特别提醒]带电粒子(不计重力)以一定的速度v 进入磁感应强度为B 的匀强磁场时的运动轨迹:(1)当v ∥B 时,带电粒子将做匀速直线运动.(2)当v ⊥B 时,带电粒子将做匀速圆周运动.(3)当带电粒子斜射入磁场时,带电粒子将沿螺旋线运动.4、带电粒子在三类有界磁场中的运动轨迹特点(1)直线边界:进出磁场具有对称性。
(2)平行边界:存在临界条件。
(3)圆形边界:沿径向射入必沿径向射出。
【例题1】如图所示,一束电荷量为e 的电子以垂直于磁场方向(磁感应强度为B )并垂直于磁场边界的速度v 射入宽度为d 的磁场中,穿出磁场时速度方向和原来射入方向的夹角为θ=60°.求电子的质量和穿越磁场的时间.答案:23dBe 3v 23πd 9v解析:过M 、N 作入射方向和出射方向的垂线,两垂线交于O 点,O 点即电子在磁场中做匀速圆周运动的圆心,过N 作OM 的垂线,垂足为P ,如图所示.由直角三角形OPN 知,电子的轨迹半径r =d sin 60°=233d ①由圆周运动知e v B =m v 2r②解①②得m =23dBe 3v.电子在无界磁场中运动周期为T =2πeB ·23dBe 3v =43πd 3v.电子在磁场中的轨迹对应的圆心角为θ=60°,故电子在磁场中的运动时间为t =16T =16×43πd 3v =23πd 9v.带电粒子在磁场中的圆周运动问题处理方法(1)定圆心:圆心一定在与速度方向垂直的直线上,也在弦的中垂线上,也是圆的两个半径的交点.(2)求半径的两种方法:一是利用几何关系求半径,二是利用r =m v Bq 求半径.(3)求时间:可以利用T =2πr v 和t =Δl v 求时间,也可以利用t =θ2πT 求时间.【例题2】如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v从A 点沿直径AOB 方向射入磁场,经过t 时间从C 点射出磁场,OC 与OB 成60°角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带电粒子在匀强磁场中的运动(知识小结)一.带电粒子在磁场中的运动(1)带电粒子在磁场中运动时,若速度方向与磁感线平行,则粒子不受磁场力,做匀速直线运动;即 ① 为静止状态。
② 则粒子做匀速直线运动。
(2)若速度方向与磁感线垂直,带电粒子在匀强磁场中做匀速圆周运动,洛伦兹力起向心力作用。
(3)若速度方向与磁感线成任意角度,则带电粒子在与磁感线平行的方向上做匀速直线运动,在与磁感线垂直的方向上做匀速圆周运动,它们的合运动是螺线运动。
二、带电粒子在匀强磁场中的圆周运动1.运动分析:洛伦兹力提供向心力,使带电粒子在匀强磁场中做匀速圆周运动.(4)运动时间: (Θ 用弧度作单位 )1.只有垂直于磁感应强度方向进入匀强磁场的带电粒子,才能在磁场中做匀速圆周运动.2.带电粒子做匀速圆周运动的半径与带电粒子进入磁场时速率的大小有关,而周期与速率、半径都无关.三、带电粒子在有界匀强磁场中的匀速圆周运动(往往有临界和极值问题)(一)边界举例:1、直线边界(进出磁场有对称性)规律:如从同一直线边界射入的粒子,再从这一边射出时,速度与边界的夹角相等。
速度与边界的夹角等于圆弧所对圆心角的一半,并且如果把两个速度移到共点时,关于直线轴对称。
2、平行边界(往往有临界和极值问题)(在平行有界磁场里运动,轨迹与边界相切时,粒子恰好不射出边界)3、矩形边界磁场区域为正方形,从a 点沿ab 方向垂直射入匀强磁场:若从c 点射出,则圆心在d 处若从d 点射出,则圆心在ad 连线中点处4.(从平面几何的角度看,是粒子轨迹圆与磁场边界圆的两圆相交问题。
)特殊情形:在圆形磁场内,沿径向射入时,必沿径向射出2.其特征方程为:F 洛=F 向. 3.三个基本公式: (1)向心力公式:qvB =m v 2R ; (2)半径公式:R =mv qB ; (3)周期和频率公式:T =2πm qB =1f ; 222m t qB m qB T θππθπθ==⨯=⨯v L =t一般情形:磁场圆心O和运动轨迹圆心O′都在入射点和出射点连线AB的中垂线上。
或者说两圆心连线OO′与两个交点的连线AB垂直。
(二)求解步骤:(1)定圆心、(2)连半径、(3)画轨迹、(4)作三角形.(5)据半径公式求半径,再解三角形求其它量;或据三角形求半径,再据半径公式求其它量(6)求时间1、确定圆心的常用方法:(1)已知入射方向和出射方向(两点两方向)时,可以作通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心,如图3-6-6甲所示,P为入射点,M为出射点,O为轨道圆心.(2)已知入射方向和出射点的位置时(两点一方向),可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心,如图3-6-6乙所示,P为入射点,M为出射点,O为轨道圆心.(3)两条弦的中垂线(三点):如图3-6-7所示,带电粒子在匀强磁场中分别经过O、A、B三点时,其圆心O′在OA、OB的中垂线的交点上.(4)已知入射点、入射方向和圆周的一条切线:如图3-6-8所示,过入射点A做v垂线AO,延长v线与切线CD交于C点,做∠ACD的角平分线交AO于O点,O点即为圆心,求解临界问题常用到此法.(5)已知入射点,入射速度方向和半径大小2.求半径的常用方法:由于已知条件的不同,求半径有两种方法:一是:利用向心力公式求半径;二是:利用平面几何知识求半径。
(一般构建直角三角形,利用勾股定理或几何关系求半径)其中,利用三角函数知识解题往往要结合两个有用的结论:1、圆心角(α)等于速度的偏向角(φ)2、圆心角等于弦切角的两倍求半径方法示例:3、确定圆心角的方法:(1)利用圆心角等于弦切角的两倍(2)利用圆心角等于速度偏向角(3)四边形内角和为360°(4)N边形的内角和为(N-2)x180°4、运动时间的确定粒子在磁场中运动一周的时间为T,当粒子转过的圆心角为α时,其运动时间为:T360tα=(α以“度”为单位)Tπα2t=(α以“弧度”为单位)或:t=L/v(L为弧长)(三)、多解问题222)d(-+=RLRθsind=R2tanrα=Rθsin2ABLR=带电粒子在洛仑兹力作用下做匀速圆周运动的问题有时要考虑多解。
形成多解的原因有:1. 带电粒子电性不确定2. 磁场方向不确定3. 临界状态不惟一4、初始条件不确定5. 运动的重复性(四)、临界与极值问题形成原因:1.入射点不确定引起的临界问题。
2.出射点不确定引起的临界问题。
3.入射速度方向确定、大小不确定,从而使得轨迹多样,并且出射点不确定,引起的临界问题。
4.入射速度大小确定,方向不确定,从而引起的临界问题(五)常用策略:--------三种重要的模型模型1:缩放圆:(入射点确定)速度方向确定,大小不确定模型2:旋转圆:(入射点确定)速度大小确定,方向不确定模型3:平移圆:速度大小、方向确定,入射点不确定三.带电粒子在复合场中的运动1.复合场:指电场、磁场和重力场并存,或其中某两场并存,或分区域存在,从场的复合形式上一般可分为如下四种情况:①相邻场;②重叠场;③交替场;④交变场.2.带电粒子在复合场中的运动分类:①静止或匀速直线运动:当带电粒子在复合场中所受为零时,将处于静止状态或做匀速直线运动;②匀速圆周运动:当带电粒子所受的重力与电场力相等,相反时,带电粒子在力的作用下,在垂直于的平面内做匀速圆周运动;③一般的曲线运动:当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一条直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线;④分阶段运动:带电粒子可能依次通过几个情况不同的复合场区域,运动情况随区域发生变化,运动过程由几种不同的运动阶段组成.3.电场磁场同区域应用实例(速度选择器模型)⑴速度选择器:原理图如图所示,平行板中电场强度E和磁感应强度B互相垂直.这种装置能把具有一定速度的粒子选择出来,所以叫做速度选择器.带电粒子能够沿直线匀速通过速度选择器的条件是qE = qv0B,即v0 = .⑵磁流体发电机:原理图如图所示,磁流体发电是一项新兴技术,它可以把内能直接转化为电能.根据左手定则,如图中的B是发电机极.磁流体发电机两极板间的距离为l,等离子体速度为v,磁场磁感应强度为B,则两极板间能达到的最大电势差U = .电源电阻r = ρl/S,外电阻R中的电流可由闭合电路欧姆定律求出,即I = E/(R + r) = BlvS/(RS +ρl).⑶电磁流量计:原理图如图所示,圆形导管直径为d,用非磁性材料制成,导电液体在管中向左流动,导电液体中的自由电荷(正、负离子),在洛伦兹力的作用下横向偏转,a、b间出现电势差,形成电场,当自由电荷所受的电场力和洛伦兹力平衡时,a、b间的电势差就保持稳定,即:qvB = qE = qU/D,所以v = ,因此液体流量所以Q = vS = .⑷霍尔效应:原理图如图所示,在匀强磁场中放置一个矩形截面的载流导体,当磁场方向与电流方向垂直时,导体在与磁场、电流方向都垂直的方向上出现了电势差,这种现象称为霍尔效应.所产生的电势差称为霍尔电势差.当达到稳定状态时,都存在电场力和洛伦兹力平衡的关系,即qU/d= qvB,霍尔电势差U = .4.电场和磁场分区域存在的实例(1).质谱仪组成:离子源O,加速场U,速度选择器(E,B),偏转场B2,胶片。
原理:加速场中qU=mv2/2选择器中:偏转场中:d=2r,qvB2=mv2/r比荷:质量作用:主要用于测量粒子的质量、比荷、研究同位素。
(2).回旋加速器组成:两个D形盒,大型电磁铁,高频振荡交变电压,两缝间可形成电压U作用:电场用来对粒子(质子、氛核,a粒子等)加速,磁场用来使粒子回旋从而能反复加速.高能粒子是研究微观物理的重要手段。
要求:粒子在磁场中做圆周运动的周期等于交变电源的变化周期.关于回旋加速器的几个问题:(1)D形盒作用:静电屏蔽,使带电粒子在圆周运动过程中只处在磁场中而不受电场的干扰,以保证粒子做匀速圆周运动。
(2)所加交变电压的频率f = 带电粒子做匀速圆周运动的频率:(3)最后使粒子得到的能量,,在粒子电量、质量m和磁感应强度B一定的情况下,回旋加速器的半径R越大,粒子的能量就越大。
【注意】直线加速器的主要特征。
如图所示,直线加速器是使粒子在一条直线装置上被加速。
5、外切圆与内切圆问题1、从同一点垂直匀强磁场射入的两个粒子,在入射点处轨迹相切,过切点的两个半径一定共线如果带同种电荷------入射速度方向相同,轨迹内切;入射速度方向相反,轨迹外切;如果带异种电荷------入射速度方向相反,轨迹内切;入射速度方向相同,轨迹外切;2、同一粒子先后进入相邻两磁场时,在交界点处,轨迹相切。
半径共线磁场同向时,轨迹内切磁场反向时,轨迹外切二、旋转圆法在磁场中向垂直于磁场的各个方向发射速度大小相同的带电粒子时,带电粒子的运动轨迹是围绕发射点旋转的半径相同的动态圆(如图7),用这一规律可快速确定粒子的运动轨迹。
例3.如图8所示,S为电子源,它在纸面360°度范围内发射速度大小为v0,质量为m,电量为q的电子(q<0),MN是一块足够大的竖直挡板,与S的水平距离为L,挡板左侧充满垂直纸面向外的匀强磁场,磁感应强度大小为mv0/qL,求挡板被电子击中的范围为多大?解析:由于粒子从同一点向各个方向发射,粒子的轨迹为绕S点旋转的动态圆,且动态圆的每一个圆都是逆时针旋转,这样可以作出打到最高点与最低点的轨迹,如图9所示,最高点为动态圆与MN的相切时的交点P,最低点为动态圆与MN相割,且SQ为直径时Q为最低点,带电粒子在磁场中作圆周运动,由洛仑兹力提供向心力,由得:SQ为直径,则:SQ=2L,SO=L ,由几何关系得:P为切点,所以OP=L,所以粒子能击中的范围为。
三、缩放圆法带电粒子以大小不同,方向相同的速度垂直射入匀强磁场中,作圆周运动的半径随着速度的变化而变化,因此其轨迹为半径缩放的动态圆(如图12),利用缩放的动态圆,可以探索出临界点的轨迹,使问题得到解决。
例5.如图13所示,匀强磁场中磁感应强度为B,宽度为d,一电子从左边界垂直匀强磁场射入,入射方向与边界的夹角为θ,已知电子的质量为m,电量为e,要使电子能从轨道的另一侧射出,求电子速度大小的范围。
解析:如图14所示,当入射速度很小时电子会在磁场中转动一段圆弧后又从同一侧射出,速率越大,轨道半径越大,当轨道与边界相切时,电子恰好不能从另一侧射出,当速率大于这个临界值时便从右边界射出,设此时的速率为v0,带电粒子在磁场中作圆周运动,由几何关系得:r+r cosθ=d①电子在磁场中运动时洛伦兹力提供向心力:,所以:②联立①②解得:,所以电子从另一侧射出的条件是速度大于。