自动驾驶汽车硬件系统概述

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自动驾驶汽车硬件系统概述

自动驾驶汽车的硬件架构、传感器、线控等硬件系统

如果说人工智能技术将是自动驾驶汽车的大脑,那么硬件系统就是它的神经与四肢。从自动驾驶汽车周边环境信息的采集、传导、处理、反应再到各种复杂情景的解析,硬件系统的构造与升级对于自动驾驶汽车至关重要。

自动驾驶汽车硬件系统概述

从五个方面为大家做自动驾驶汽车硬件系统概述的内容分享,希望大家可以通过我的分享,对硬件系统的基础有个全面的了解:

一、自动驾驶系统的硬件架构

二、自动驾驶的传感器

三、自动驾驶传感器的产品定义

四、自动驾驶的大脑

五、自动驾驶汽车的线控系统

自动驾驶事故分析

根据美国国家运输安全委员会的调查报告,当时涉事Uber汽车——一辆沃尔沃SUV系统上的传感器在撞击发生6s前就检测到了受害者,而且在事故发生前1.3秒,原车自动驾驶系统确定有必要采取紧急刹车,此时车辆处于计算机控制下时,原车的紧急刹车功能无法启用。于是刹车的责任由司机负责,但司机在事故发生前0.5s低头观看视频未能抬头看路。

从事故视频和后续调查报告可以看出,事故的主要原因是车辆不在环和司机不在环造成的。Uber在改造原车加装自动驾驶系统时,将原车自带的AEB功能执行部分截断造成原车ADAS功能失效。自动驾驶系统感知到受害者确定要执行应急制动时,并没有声音或图像警报,此时司机正低头看手机也没有及时接管刹车。

目前绝大多数自动驾驶研发车都是改装车辆,相关传感器加装到车顶,改变车辆的动力学模型;改装车辆的刹车和转向系统,也缺乏不同的工况和两冬一夏的测试。图中Uber研发用车是SUV车型自身重心就较高,车顶加装的设备进一步造成重心上移,在避让转向的过程中转向过急过度,发生碰撞时都会比原车更容易侧翻。

自动驾驶研发仿真测试流程

所以在自动驾驶中,安全是自动驾驶技术开发的第一天条。为了降低和避免实际道路测试中的风险,在实际道路测试前要做好充分的仿真、台架、封闭场地的测试验证。

软件在环(Software in loop),通过软件仿真来构建自动驾驶所需的各类场景,复现真实世界道路交通环境,从而进行自动驾驶技术的开发测试工作。软件在环效率取决于仿真软件可复现场景的程度。对交通环境与场景的模拟,包括复杂交通场景、真实交通流、自然天气(雨、雪、雾、夜晚、灯光等)各种交通参与者(汽车、摩托车、自行车、行人等)。采用软件对交通场景、道路、以及传感器模拟仿

真可以给自动驾驶的环境感知提供丰富的输入可以对算法进行验证和测试。

硬件在环(Hard-ware in loop),各种传感器类似人的眼睛和耳朵,作为自动驾驶系统的感知部分,该部分的性能决定了自动驾驶车辆能否适应复杂多变的交通环境。包括,摄像头、毫米波雷达、超声波雷达、激光雷达。针对不同的传感器,硬件在环会根据不同的传感器和环境因素来部署。

车辆在环(Vehicle in loop),车辆执行系统向传动系统发出执行命令来控制车辆,在自动驾驶中取代了人类的手脚。自动驾驶系统的执行控制优劣决定了车辆是否能够安全舒适的行驶。车辆运行在空旷的场地上,自动驾驶系统感知系统模拟的虚拟场景,自动驾驶系统根据虚拟的场景发出控制指令,再通过传感器将车辆的真实轨迹反馈到虚拟环境中,实现真车与虚拟环境的融合,从而进行车辆操控的验证。

司机在环(Driver in loop),基于实时仿真技术开发,结合驾驶员的实际行为,可以实现对车辆和自动驾驶技术开发测试做出主观的评价。司机在环,可以一方面获得司机的主观评价,另一方面可以验证人机共驾驶的功能。

一、自动驾驶系统的硬件架构

就整体而言,汽车是个全社会化管理的产品,其固有的行业特点是相对保守的。在人工智能的大潮下,面对造车新势力和消费者需求

变化的冲击,传统汽车行业渐进式的创新方法已经面临巨大的挑战。急需改变传统的架构和方法不断创新。自动驾驶整体的硬件架构不光要考虑系统本身也要考虑人的因素。

自动驾驶的硬件架构

自动驾驶系统主要包含三个部分:感知、决策、控制。从整个

硬件的架构上也要充分考虑系统感知、决策、控制的功能要求。整

体设计和生产上要符合相关车规级标准,如ISO26262、AECQ-100、TS16949等相关认证和标准。目前L1、L2、ADAS系统的硬件架构体系和供应链相对完善符合车规级要求。

感知层:依赖大量传感器的数据,分为车辆运动、环境感知、驾驶员检测三大类。

车辆运动传感器:速度和角度传感器提供车辆线控系统的相关横行和纵向信息。惯性导航+全球定位系统=组合导航,提供全姿态信息参数和高精度定位信息。

环境感知传感器:负责环境感知的传感器类似于人的视觉和听觉,如果没有环境感知传感器的支撑,将无法实现自动驾驶功能。主要依靠激光雷达、摄像头、毫米波雷达的数据融合提供给计算单元进行算法处理。V2X就是周围一切能与车辆发生关的事物进行通信,包括V2V 车辆通信技术、V2I与基础设施如红绿灯的通信技术、V2P车辆与行人的通信。

驾驶员监测传感器:基于摄像头的非接触式和基于生物电传感器的接触式。通过方向盘和仪表台内集成的传感器,将驾驶员的面部细节以及心脏、脑电等部位的数据进行收集,再根据这些部位数据变化,判断驾驶员是否处于走神和疲劳驾驶状态。

计算单元部分:各类传感器采集的数据统一到计算单元处理,为了保证自动驾驶的实时性要求,软件响应最大延迟必须在可接受的范围内,这对计算的要求非常高。目前主流的解决方案有基于GPU、FPGA、ASIC等。

车辆控制:自动驾驶需要用电信号控制车辆的转向、制动、油门系统,其中涉及到车辆地盘的线控改装,目前在具备自适应巡航、紧急制动、自动泊车功能的车上可以直接借用原车的系统,通过CAN总线控制而不需要过度改装。

警告系统:主要是通过声音、图像、振动提醒司机注意,通过HMI 的设计有效减少司机困倦、分心的行为。

二、自动驾驶的传感器

自动驾驶的传感器

摄像头:主要用于车道线、交通标示牌、红绿灯以及车辆、行人检测,有检测信息全面、价格便宜的特定,但会受到雨雪天气和光照的影响。由镜头、镜头模组、滤光片、CMOS/CCD、ISP、数据传输部分组成。光线经过光学镜头和滤光片后聚焦到传感器上,通过CMOS或CCD集成电路将光信号转换成电信号,再经过图像处理器(ISP)转换成标准的RAW,RGB或YUV等格式的数字图像信号,通过数据传输接口传到计算机端。

激光雷达:激光雷达使用的技术是飞行时间法(Time of Flight)根据光线遇到障碍的折返时间计算距离。为了覆盖一定角

相关文档
最新文档