初等数论结课论文
学完初等数论的感受3000字

学完初等数论的感受3000字初等数论是数学中最基础的一部分,包括整数的加法、减法、乘法、除法、小数、分数等概念,以及它们之间的关系和应用。
通过学习初等数论,我们可以了解数学的基本概念和方法,培养数学思维和解决问题的能力。
在学习初等数论的过程中,我发现数学是一门非常有逻辑性和规律性的学科。
每个概念和方法都有其自身的意义和适用范围,而并不像某些科学领域那样存在严格的国界和学科之间的壁垒。
数学中的每一个概念和方法都可以通过严谨的证明来证明其正确性,这种证明的过程本身也是一种数学。
初等数论的学习还让我深刻认识到数学的重要性。
数学不仅是自然科学的基础,也是社会科学和人文科学的重要工具。
在现代社会,数学已经成为一种独立的学科,被广泛应用于各个领域。
无论是计算机编程、物理学、经济学、工程学,还是文化艺术、哲学等领域,都需要运用数学的知识和方法。
因此,掌握初等数论的知识和技能,对于我们理解和应用数学知识都是至关重要的。
除了学习初等数论让我有了更深入的数学认识外,我还发现数学的实际应用非常广泛。
在实际应用中,我们需要运用数学的知识和方法来解决各种问题。
例如,在计算机科学中,数学被广泛应用于算法设计、数据结构、人工智能等领域。
在经济学中,数学被应用于统计学、概率论、金融学等领域。
在工程学中,数学被应用于控制系统、信号处理、图像处理等领域。
在文化艺术中,数学被应用于音乐、绘画、雕塑等领域。
因此,掌握初等数论的知识和技能,对于我们理解和应用数学知识解决实际问题也是非常有用的。
学习初等数论让我对数学有了更深入的认识,也让我认识到数学在实际应用中的重要性。
学习数学不仅仅是为了掌握一些理论知识,更重要的是培养我们的逻辑思维、分析问题的能力和解决问题的能力。
数学是一门非常有逻辑性和规律性的学科,可以帮助我们更好地理解世界,解决实际问题,推动人类社会的发展。
数学与应用数学毕业论文(剁树枝问题,组合数学、初等数论方向)

摘要有一根正整数单位长树枝,要剁成一定长的短树枝,在剁的过程中可以重叠,问如何剁次数最少?这样的问题被称为剁树枝问题。
剁树枝问题是许多实际问题的一个模型,有着广泛的应用。
本课题的任务是提供一般的方法使剁的次数最少。
采用例举、分析、归纳、证明的流程,给出了剁树枝问题最少次数的递推关系和具体表达式,并对其进行了证明。
关键词初等数论;组合数学;递归;数学归纳法AbstractSuppose there is a positive integer units long branches, to chop them into a certain length of short branches. During the cutting process overlap is allowed, then how many times is needed at least? This problem is known as cutting the tree problem. The cutting branches-problem is a model for many practical problems, with a wide range of applications. Based on the idea of dynamic programming, the recursion formula of the least number of movements necessary for this problem is presented. The direct formula of the least number of movements necessary for this problem is given and proved by triple mathematical induction and pure combinatorics.Key words number theory;combinatorial mathematics;recursive; mathematical目录摘要 (2)第一章.绪论 (4)1.1 剁树枝问题的简介 (4)1.2 剁树枝问题的研究意义及主要方法 (4)第二章.主要理论:递归关系 (5)第三章.推导过程 (6)3.1 剁成1分米长的短树枝的情况 (6)3.2 剁成2或3分米长的短树枝的情况 (9)第四章.结论 (13)致谢 (14)参考文献 (15)附录:外文参考文献 (16)参考文献翻译 (18)第一章.绪论1.1 剁树枝问题的简介有一根正整数单位长树枝,要剁成一定长的短树枝,在剁的过程中可以重叠,问如何剁次数最少?这样的问题被称为剁树枝问题。
初等数论课程教学的改进论文

初等数论课程教学的改进论文初等数论课程教学的改进论文初等数论课程教学的改进论文【1】摘要:初等数论是大学本科数学的专业基础课,但长期得不到足够的重视。
究其原因,除其内容相对简单不受师生重视外,也有课程设置不科学和课堂教学方式方法陈旧等因素。
本文旨在改进教学方法,阐述课堂教学中的经验心得。
归根结底,就是在备课和课堂教学的设计上下工夫,取得理想的教学质量。
关键词:初等数论;教学方法;改进初等数论是数学专业本科阶段代数系列课程中的一门,与高等代数和近世代数等已得到普遍重视的情况相比,初等数论课程的重要性尚未得到充分的认识,主要体现在课程设置不科学、教学方法陈旧等方面,由此导致教学效果差,教学质量无法提高等诸多问题。
那么,如何改进初等数论课程的教学、改善教学效果,从而提高教学质量?本文仅就教学实践从两个方面谈谈这一问题。
一、在思想上给予初等数论以足够的重视初等数论是一门古老的学科,主要研究数的性质和方程的整数解,是中等数学中数的理论的继续和提高,是中学数学与大学数学的最好衔接。
尽管其使用的方法是初等的,但应该看到其很多内容及思想为高等代数和近世代数做了很好的铺垫,提供了抽象理论的具体实例。
初等数论为后续的代数提供了一个样板,很多理论都要推广到更一般的情形上去。
在整数集这个熟悉的领域中体会好代数的思想和方法,为将来学习和研究的提升做准备。
更为重要的是目前RSA公钥体制和离散对数体制均来自初等数论,并且正在不断采用数论更为高深的理论成果[1]。
这反映出初等数论在实践应用上的价值。
既然初等数论课程如此重要,那么一些高校数学专业为什么会不重视这门课程?最根本的原因在于这门课程内容表面上相对浅显,教学单位没有从科学的角度来审视初等数论在大学数学教学中的真实作用,低估了它存在的价值,他们认为大学数学应当讲授更为抽象的问题,初等数论的存在比较尴尬,因此,在课程设置上不够突出这门课程的地位。
不但没有将之安排在大一的第一学期讲授,而且有的将其由专业必修课改成大三讲授的选修课。
初等数论结课论文.pdf

初等数论结课论文一.课程感悟 初等数论是研究数的规律,特别是整数性质的数学分支,它是数论的一个最古老的分支。
它以算术方法为主要研究方法,主要内容有整数的整除理论、同余理论、连分数理论和某些特殊不定方程。
换言之,初等数论就是用初等、朴素的方法去研究数论。
这学期我在初等数论的学习中,从学习方法和解题思路上明显感觉出有别于之前学的的数学分析和高等代数等数学课程,那种学习中学数学的熟悉感觉又回来了。
可能在难度上这门课程并不逊色于其他,但是对于我却更容易接受这门课程的内容。
二.连分数的学习1.连分数的定义若 为整数 , ,… 皆为正整数,则叫简单连分数。
2.要把一个分数写成连分数,只要不断的把分子分母同除以分子,将分子化为1,。
如: 121211121251211213725219937+++=++=+==[0;2,1,2,12]当然,连分数也可写成分数,如3043301311342114131211=+=++=+++3.早在公元前三世纪,欧几里德就发现了一个较优的求连分数算法——辗转相除法,实际上就是中学求最大公约数的辗转相除法。
例如:用辗转相除法求942和1350的最大公约数。
012341111a a a a a +++++0a 1a 2a13504081942942942126240840840830312612612664303030506=+=+=+=+=+13501119422131450=+++++代入得:4.连分数的应用。
例如:求斐波那契数列前项与后项之比的极限(黄金比)5122111251251511151212111115112−====++−−++−+=++−+()三.结课感悟数论与其他科目相比有很大的不同,内容上主要是引进了一些全新的数学思想,特别是最大公因数、最小公倍数、不定方程等;从形式上讲,学习方式也很不一样,初等数论一周只有2节课,课程进度快,所以对学生自学能力的要求也就非常高。
浅析小学教育专业初等数论课程例题和练习题论文

浅析小学教育专业初等数论课程例题和练习题论文浅析小学教育专业初等数论课程例题和练习题论文1小学教育专业开设初等数论课程的必要性初等数论是一门古老的数学基础学科,主要研究整数的基本性质,它的理论和方法已广泛用于现代密码学、算子理论、最优设计、组合代数及信息科学等诸多领域.师范院校小学教育专业开设的初等数论课程作为一门专业主干课程,主要研究整数的整除与同余及不定方程,其中的许多内容如整除、约数、倍数、分解质因数等概念和性质都是现行小学数学的主要内容,对小学数学的教学和研究具有重要的指导作用,而小学教育专业的数学类课程设置的目标是为了培养合格的小学数学教师,所以小学教育专业开设初等数论课程很有必要。
由于初等数论要求论证严格,所以它是进行思维训练的有效工具,学习初等数论能发展学生的逻辑数学思维能力。
数论的许多问题本身很容易弄懂,容易引起人们的兴趣,例如哥德巴赫猜想,但要想解决却非常困难。
古今中外许多数学家都是由于被数论问题吸引而投身数学研究,并做出了巨大的贡献,在初等数论课程中有许多简明而又具创造性的问题,它们都是培养学生创造性的很好材料,所以学习初等数论能激发学生对数学的兴趣和创造力。
2小学教育专业初等数论课程例题和练习题的重要性例题和练习题是初等数论教材的重要组成部分,例题是实现课程目标、实施教学的重要资源,具有示范引领、揭示方法、介绍新知、巩固新知、思维训练等功能,而练习题则是将所学的知识进行应用的一个载体,也是教师检查学生学习状况的一个手段,所以初等数论课程的例题和练习题的选择很重要.当前高等院校数学系所开设的初等数论课程所用的教材虽然由于使用的时间长教材所配置的例题和练习题大部分比较合适,但也存在例题和练习题都偏少且练习题难度偏大和基础性的题目所占比例太小等问题[}z},更何况小学教育专业是最近几年开设的新专业,所用的教材也是近几年编的,大部分的教材在教材内容的选取上比较适合小学教育专业,但例题和练习题的配置大部分是照搬数学系所用的题目,或者是为了应用某个定理而生造一些例题和练习题,因而很多例题和练习题不适合小学教育专业,尤其是与小学数学教学没有多少联系。
数论论文

关于欧拉定理问题及其应用摘要:从欧拉定理的证明为切入口,探讨欧拉定理证明所体现数学思想方法,在此基础上探究其应用。
关键词:欧拉定理,数学思想方法,应用。
在初等数论中,关于欧拉定理问题的理解、应用以及体现出的数学思想方法是理解数学中其他知识的基础,但目前各种教材对这类问题的提出和总结的不够,尤其对它所体现的数学思想方法。
为了加深对欧拉定理的有关理解,本文从欧拉定理的证明为切入口,探讨欧拉定理证明所体现数学思想方法,在此基础上探究其应用。
一、欧拉定理和其推论的证明(一)欧拉定理的证明及其体现的数学思想方法1.定理(Euler):设n是大于1的整数,(a,n)=1,则a^φ(n) ≡ 1 (mod n)证明:首先证明下面这个命题:对于集合Zn={x1,x2,...,xφ(n)},其中xi(i=1,2,…φ(n))是φ(n)个n的素数,且两两互素,即n的一个化简剩余系,(或称简系,或称缩系),考虑集合S = {a*x1(mod n),a*x2(mod n),...,a*xφ(n)(mod n)} 则S = Zn1) 由于a,n互质,xi也与n互质,则a*xi也一定于p互质,因此任意xi,a*xi(mod n) 必然是Zn的一个元素2) 对于Zn中两个元素xi和xj,如果xi ≠ xj 则a*xi(mod n) ≠ a*xi(mod n),这个由a、p互质和消去律可以得出。
所以,很明显,S=Zn既然这样,(a*x1 ×a*x2×...×a*xφ(n))(mod n) = (a*x1(mod n) × a*x2(mod n) × ... × a*xφ(n)(mod n))(mod n)= (x1 × x2 × ... ×xφ(n))(mod n)考虑上面等式左边和右边左边等于(a*(x1 × x2 × ... × xφ(n))) (mod n)右边等于x1 × x2 × ... ×xφ(n))(mod n)而x1 × x2 × ... ×xφ(n)(mod n)和n互质根据消去律,可以从等式两边约去,就得到:a^φ(n)≡ 1 (mod n)证明:设集合{A1,A2,...,Am}为模n的一个缩系(若整数A1,A2,...,Am模n分别对应0,1,2,...,n-1中所有m个与n互素的自然数,则称集合{A1,A2,...,Am}为模n的一个缩系)则{a A1,a A2,...,a Am}也是模n的一个缩系(如果a Ax与a Ay (x不等于y)除以n余数相同,则a(Ax-Ay)是n的倍数,这显然不可能)即A1*A2*A3*……Am≡aA1*aA2*……aAm(mod n) (这里m=φ(n))两边约去A1*A2*A3*……Am即得1≡a^φ(n)(mod n)2.(例题)设(a, m) = 1, d是(d,a)≡1(mod m)成立的最小正整数,则(i)d/ mϕ(ii)对于任意的 I , j , 0 ≤ I , j ≤,d-1 , I ≠ j , 有j i aa≡ (mod m)解:(i) 由Euler 定理,0d≤)(mϕ(因)(mϕ满足同于式,而0d是最小的)因此,由带余除法,有)=(mϕ= qd+r,q∈Z, q>0 ,0≤r<0d. 因此,由上式及0d的定义,利用定理1,我们得到 1≡r(mod m) 即整数r满足1≡ra(mod m) , 0 0dr<≤由0d的定义可知必是r=0 ,即)(/0mdϕ(ii): 若式(3)不成立,则存在I , j, 0i≤, j 10-≤d, 使得jiaa≡(mod m). 因ij≠, 所以不妨设i<j . 由jiaa≡(mod m). m/(jiaa≡) m/() 1--jijaa,因为(a,m)=1, 所以m/( )1--j ia ,即 1≡-jia(mod m) , 0<i-j<0d . 这与0d的定义矛盾,所以式(二)欧拉定理的推论的证明及其体现的数学思想方法1.推论(Fermat定理)若p是素数,则(a ,p ) ≡.(modpa)证明:若(a,p)=1 ,由定理1及£3定理5即得(a ,p ) ≡.(modpa)若(a,p)≠1,则p/a,故a p ).(modpa≡2.(例题)1841 1777(mod41),a≡求a在0到41的值解:因为41是素数,所以由费马定理有40 17771(mod41)≡,而1841=46*40+1,所以1841,1777177714(mod41)≡≡,a=14二、有关于欧拉定理的应用问题(一)欧拉定理对循环小数的应用定理1.有理数a/b,0<a<b ,(a ,b)=1 ,能表成纯循环小数的充分必要条件是(b ,10)=1证明:(i)若a/b能表成纯循环小数,则由0<a/b<1及定义知 a/b=0.1a2a …….ta1a2ata…..因而t10a/b=110-t1a+210-t2a+……..+101-ta+ta+0.1a2a…….ta1a2a….ta…..=q+a/b,q>0.故a/b=q/(t 10-1) 即a(t 10-1)=bq .由 (a ,b)=1 即得b/(t 10-1), 因而(b ,10)=1 (ii) 若(b ,10)=1,则由定理1知有一正整数 t使得 t 10≡1(modb), 0<t≤(b) 成立,因此t 10 a=qb+a,且 0<q<t 10a/≤t 10(1-1/b)< t10-1 故t10a/b=q+a/b 令 q=10q+ta,q=102q+1-ta,…………,1-t q=10tq+1a,09≤≤ia,则q= tttttaaaq++++--11110.......1010.由0<q<1101--t,即得tq=0,且1a2a …….ta不全是9,也不全是0。
初等数论论文

初等数论“整除”【摘要】本文主要讲述整除和有关整除问题【关键词】整除整除问题是数学学习的一大方面,无论小学,中学,还是高中,甚至大学数学都有关于整除的问题。
理解掌握整除的概念、性质及某些特殊数的整除特征,可以简单快捷地解决许多整除问题。
现在对整除问题做下整理,以方便关于整除问题的学习,来了解、深入的探讨整除问题。
一、整除的定义:当两个整数a和b(b≠0),a被b除的余数为零时(商为整数),则称a被b整除或b整除a,也把a叫做b的倍数,b叫a的约数,记作b|a,如果a被b除所得的余数不为零,则称a不能被b整除,或b不整除a,记作b a.注:a , b作除数的其一为0则不叫整除。
二、数的整除性质:(1)对称性:若甲数能被乙数整除,乙数也能被甲数整除,那么甲、乙两数相等。
记作:a|b,b|a,则a=b。
( 2)传递性:若甲数能被乙数整除,乙数能被丙数整除,那么甲数能被丙数整除。
记作:若a|b,b|c,则a|c。
(3) 若两个数能被一个自然数整除,那么这两个数的和与差都能被该自然数整除。
记作:如果b∣a,b∣c那么b∣a±c.(4) 几个数相乘,若其中有一个因子能被某一个数整除,那么它们的积也能被该数整除。
(5) 若一个数能被两个互质数中的每一个数整除,那么这个数也能分别被这两个互质数的积整除。
记作:若a|b,c|b,(a,c)=1, 则ac|b。
(6) 若一个数能被两个互质数的积整除,那么,这个数也能分别被这两个互质数整除。
记作:若ac|b,(a,c)=1, 则a|b,c|b。
(7) 若一个质数能整除两个自然数的乘积,那么这个质数至少能整除这两个自然数中的一个。
(8) 若a|b,m≠0,则am|bm。
(9) 若am|bm,m≠0,则a|b。
(10)若c|a,c|b,则c|(ma+nb),其中m、n为任意整数(这一性质还可以推广到更多项的和)三、整除特征(1)1与0的特性:1是任何整数的约数,即对于任何整数a,总有1|a.0是任何非零整数的倍数,a≠0,a为整数,则a|0.(2)若一个整数的末位是0、2、4、6或8,则这个数能被2整除。
数学毕业论文---数形结合在初等数学解题中的应用

数形结合在初等数学解题中的应用学生姓名:马文静指导教师:郝建华引言:数形结合是中学数学中重要的思想方法之一,是数学的本质特征。
华罗庚先生曾指出:数缺形时少直观,形少数时难入微;数形结合百般好,隔裂分家万事非。
就代数本身而言,缺乏直观性,就几何本身而言,缺乏严密性。
只有将二者有机地结合起来,互相取长补短,才能突破思维的限制,加快数学的发展。
法国数学家拉格朗日所指出的“只要代数同几何分道扬镶,它们的进展就缓慢,它们的应用就狭窄,但是当两门科学结合成伴侣时,它们就相互吸取新鲜的活力,从那以后,就以快速的步伐走向完善”。
在解决数学问题时,将抽象的数学语言同直观的图形相结合,实现抽象的概念与具体形象的联系和转化,使数与形的信息相互渗透,可以开拓我们的解题思路,使许多数学问题简单化。
一、利用数形结合思想解代数问题借助图形直观地研究数学问题,不仅可以加深对数量关系的理解,而且还可以简化运算过程。
(一)利用数形结合思想解决方程问题1.利用二次函数的图像解决一元二次方程根的分布情况问题利用函数y=f(x)的图象直观解决问题。
例1:a为何值时,方程2222210++-=的两根在(-1,1)之内?a x ax a图1分析:显然2a≠0,我们可从已知方程联想到相应的二次函数2222210a x ax a ++-=的草图,从图像上我们可以看出,要使抛物线与x 轴的两个交点在(-1,1)之间,必须满足条件: 即2(1)0a ->1()02f -≤ 2102a -≤ f(1)>0 2(1)0a +>从而可解得a 的取值范围为a ≥22或a ≤22-且a ≠±1.例2:如果方程220x ax k ++=的两个实根在方程2240x ax a ++-=的两实根之间,试求a 与k 应满足的关系式.图2分析:我们可联想对应的二次函数22122,24y x ax k y x ax a =++=++-的草图.这两个函数图像都是开口向上,形状相同且有公共对称轴的抛物线(如图2).要使方程220x ax k ++=的两实根在方程2240x ax a ++-=的两实根之间,则对应的函数图像1y 与x 轴的交点应在函数图像2y 与x 轴的交点之内,它等价于抛物线1y 的顶点纵坐标不大于零且大于抛物线2y 的顶点纵坐标.由配方法可知1y 与2y 的顶点分别为: 2212(,),(,4)Pa a k P a a a --+--+-.故2240a a a k -+-<-+≤.故可求出a 与k 满足的关系式为: 24a k a -<≤.2.利用函数图像解决方程的近似解或解的个数问题通过构造函数,把求方程解的问题,转化为两函数图像的交点问题.例3:解方程32x x =-.图3分析:由方程两边的表达式我们可以联想起函数3xy =与y=2-x,作出这两个函数的图像,这两个函数图像交点的横坐标为方程的近似解,可以看出方程的近似解为x ≈0.4.(二)利用数形结合思想解决不等式的证明和求解问题1.利用二次函数的图像求一元二次不等式的解集求一元二次不等式的解集时,只要联想对应的二次函数的图像,确定抛物线的开口方向和与x 轴的交点情况,便可直观地看出所求不等式的解集.例4:解不等式260x x -->.图4分析:我们可先联想对应的二次函数26y x x =--的图像(见图4).从260x x --=解得122,3x x =-=,知该抛物线与x 轴交点横坐标为-2,3,当x 取交点两侧的值时,即x<-2或x>3时,y>0.即260x x -->.故可得不等式 260x x -->的解集为:{x|x<-2或x>3}.2.利用三角函数的图像解不等式通过构造函数,把不等式问题转化为两个函数图像的关系问题.如:例5:解不等式|cosx|>|sinx|,x ∈[0,2π].分析:不等式两边的表达式我们可以看成两个函数1y =|cosx|, 2y =|sinx|.在[0,2π]上作出它们的图像(图5),得到四个不同的交点,横坐标分别为: 4π, 34π, 54π,74π,而当x 在区间[0, 4π),( 34π, 54π),( 74π,2π]内时, 1y =|cosx|的图像都在2y =|sinx|的图像上方.所以可得到原不等式的解集为:{0≤x< 4π或34π<x< 54π或74π<x ≤2π}.3.利用单位圆中的有向线段解决三角不等式问题在教材中利用单位圆的有向线段表示角的正弦线,余弦线,正切线,并利用三角函数线可作出对应三角函数的图像.如果能利用单位圆中的有向线段表示三角函数线,应用它解决三角不等式问题,简便易行.例6:解不等式sinx> 12-.图6分析:因为正弦线在单位圆中是用方向平行于y 轴的有向线段来表示.我们先在y轴上取一点P,使OP= 12-恰好表示角x 的正弦线sinx= 12-,过点P 作x 轴的平图5行线交单位圆于点1P , 2P (如图6),在[3,22ππ-]内, 12,OPOP 分别对应于角7,66ππ-,(这时所对应的正弦值恰好为12-).而要求sinx> 12-的解集,只需将弦12P P 向上平移,使12,OPOP 重合(也即点P 向上平移至与单位圆交点处).这样12,OP OP 所扫过的范围即为所求的角.原不等式的解集为:{x|2k π- 6π<x<2k π+76π,k ∈Z.}4.利用三角形的二边和大于第三边关系和余弦定理证明不等式对于有些不等式证明,可造图形,使之与三角形的三边相联系,利用三角形的二边之和大于第三边来证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初等数论结课论文
一.课程感悟 初等数论是研究数的规律,特别是整数性质的数学分支,它是数论的一个最古老的分支。
它以算术方法为主要研究方法,主要内容有整数的整除理论、同余理论、连分数理论和某些特殊不定方程。
换言之,初等数论就是用初等、朴素的方法去研究数论。
这学期我在初等数论的学习中,从学习方法和解题思路上明显感觉出有别于之前学的的数学分析和高等代数等数学课程,那种学习中学数学的熟悉感觉又回来了。
可能在难度上这门课程并不逊色于其他,但是对于我却更容易接受这门课程的内容。
二.连分数的学习
1.连分数的定义
若 为整数 , ,… 皆为正整数,则
叫简单连分数。
2.要把一个分数写成连分数,只要不断的把分子分母同除以分子,将分子化为1,。
如: 121211121251211213725219937+++=++=+==[0;2,1,2,12]
当然,连分数也可写成分数,如
30433013113421
14
131211=+=++=+++
3.早在公元前三世纪,欧几里德就发现了一个较优的求连分数算法——辗转相除法,实际上就是中学求最大公约数的辗转相除法。
例如:用辗转相除法求942和1350的最大公约数。
012341111a a a a a +++++0a 1a 2a
13504081942942
9421262408408
408303126126
126643030
30506=+=+=+=+=+
135011194221
31
450=++
+++代入得:
4.连分数的应用。
例如:求斐波那契数列前项与后项之比的极限(黄金比)
122111212211
1112
-====+=
++
三.结课感悟
数论与其他科目相比有很大的不同,内容上主要是引进了一些全新的数学思想,特别是最大公因数、最小公倍数、不定方程等;从形式上讲,学习方式也很不一样,初等数论一周只有2节课,课程进度快,所以对学生自学能力的要求也就非常高。
所以从某种意义上讲,大学生应形成不懂先思考的良好学习作风,并自觉培养自身的抽象思维能力,对于某些题目是由于自己的思路不清晰,一时难以得出解答方法的时候,应先让自己的头脑冷静下来,重新认真分析题目,尽量通过自己的思考去解决。
其次就是要学会自我思考,换位思考。
如果确实无法解答出,再请教他人或看解析书,不要留有疑问。
一个定理要想真正融会贯通,就要多看,多做题。
经过最近这段时间对初等数论的学习,我更加明确的认识到,这和之前我所理解的数学是有所不同的。
例如在求最大公因数这一板块,以前学的方法是分解质因数法、短除法、辗转相除法,而数论则是在辗转相除法的基础上,再深一层次的知识。
正如老师所说,数论不仅对以后走上讲台所需要用到的数学知识联系非常密切,而且还对我们培养严谨的数学思维具有良好的帮助,这对我们这种师范类数学专业的学生来说无疑是非常重要。