发电机中性点接地装置设计及选型

合集下载

某核电工程发电机中性点接地方式及接地装置选型的研究

某核电工程发电机中性点接地方式及接地装置选型的研究
p we ln ,wh c a a e i v s me t i l yc n t u t n a d a o d ma s e man e a c .Th ac lto o h o i g o rp a t ih c n s v n e t n ,s mp i o sr c i n v i si i t n n e f o v e c lu a i n f rc o s n
a d t e h g —e it n e mo e v a ta s o me ,a e c n h i h r ssa c d i r n f r r r omp rd n n l z d fr t Th n t e g n r t rn u r l o n a t i g a e a d a a y e is. e h e e a o e ta i te r h n p
的检修和维护工Βιβλιοθήκη ,同时介绍 了接地 变压器的选型计 算;最后 ,提 出在 满足核 电站安全要 求的条件下 ,可 以考
虑 将 一 点 接 地 的 方式 应 用 到核 电站 上 。 关 键 词 :发 电机 ;接 地 变压 器 ; 中性 点 ;接 地 方 式
中 图分 类号 :T 1. 3 M3 07
o r oe t a h i l h s ru dn rtci t n rtr url n e eao ul d i t r l p we rj t s etr h ntes gep aego n igp oet na e eao eta a dgn rtro t t i ema p c ib e t n - o g n esen h
Ab ta t sr c :Two man g o n i g mo e o r e c p c t e e a o si i a . .t e r s n n d e v a a c s p r s i n c i i r u d n d sf rl g —a a iy g n r t r Ch n ,i e h e o a t a n mo i r u p e s o l o

10kV发电机组中性点经电阻接地方式

10kV发电机组中性点经电阻接地方式

中性点经电阻接地方式——适宜于以电缆线路为主配电网的中性点接地方式一、前言三相交流电系统中性点与大地之间电气连接的方式,称为电网中性点接地方式。

中性点接地方式是一个综合性的、系统性的问题,既涉及到电网的安全可靠性、也涉及电网的经济性。

中性点接地方式直接影响到系统设备绝缘水平的选择、系统过电压水平及过电压保护元件的选择、继电保护方式、系统的运行可靠性、通讯干扰等。

在选择电网中性点接地方式时必须进行具体分析、全面考虑。

我国110kV及以上电压等级的电网一般都采用中性点直接接地方式,在中性点直接接地系统中,由于中性点电位固定为地电位,发生单相接地故障时,非故障相的工频电压升高不会超过1.4倍运行相电压;暂态过电压水平也相对较低;故障电流很大继电保护装置能迅速断开故障线路,系统设备承受过电压的时间很短,这样就可以使电网中设备的绝缘水平降低,从而使电网的造价降低。

这里对中性点直接接地系统不做过多的讨论,下面主要讨论6~35kV配电网的接地方式。

配电网中性点的接地方式主要可分为以下三种:●不接地●经消弧线圈接地●经电阻接地自1949年至80年代我国基本上沿用前苏联的规定,6~35KV电网均采用中性点不接地或经消弧线圈(谐振)接地方式。

近10多年来沿海一些大城市经济飞速发展,电网的容量和规模急剧扩大,配电线路逐步实现电缆化,系统电容电急剧增加、特别是近几年大规模城市电网改造,电缆线路逐步代替架空线路,电网结构大大加强。

在电缆线路为主的城市电网中采用不接地或经消弧线圈接地方式,因单相接地过电压烧坏设备的事故概率大大增加,为了解决这一矛盾,许多城市电力部门广泛考察了国外配电网的中性点接地方式,结合本地电网的具体情况,经过充分的分析、研究,发现采用中性点经低电阻接地方式是解决这一矛盾的有效措施,20世纪80年代后期开始在广州、深圳试用、推广,并很快推广到其他城市(如广州、深圳、珠海、上海、北京、天津、厦门、南京、苏州工业园区、无锡、讪头、惠州、顺德、东莞等),同时,也在发电厂,机场、港口、地铁、钢厂、有色金属冶炼厂等行业被广泛采用。

电厂300MW发电机中性点的接地方式选型与计算

电厂300MW发电机中性点的接地方式选型与计算

电厂300MW发电机中性点的接地方式选型与计算发表时间:2013-09-09T10:03:56.983Z 来源:《科学教育前沿》2013年第6期供稿作者:顾进良[导读] 但是合理选择这个电阻的大小与机组安全运行密切相关。

顾进良(河北大唐国际张家口热电有限责任公司设备工程部河北张家口 075000)【摘要】发电机中性点接地方式与定子接地保护的构成密切相关,正确选择发电机中性点的接地方式和接地设备,对发电机甚至电网的安全运行有着举足轻重的作用。

【关键词】汽轮发电机;中性点设备;单相接地故障;接地变压器;电阻中图分类号:G62 文献标识码:A文章编号:ISSN1004-1621(2013)06-013-01电厂300MW汽轮发电机中性点接地方式的选择与发电机100%范围定子接地保护装置相关联,中性点设备参数的选择与保护要相配合,在保证发电机定子绕组电气绝缘安全的前提下使得发生单相接地短路时健全相电压不超过2.6倍额定电压,避免烧伤定子铁芯,并且可使流过故障点的是一固定的电阻性电流,保证接地保护可靠动作。

一、发电机定子单相接地电流电压值发电机内部单相接地时,流经接地点的电流为发电机所在电压网络(一般为发电机本身、封闭母线、主变等元件网络)对地的电容电流之和,而不同之处在于故障点零序电压随发电机内部接地点的位置而改变。

假设发电机A相发生单相接地,位置在距离绕组中心处,表示故障点绕组占全部绕组的百分数(0~100%),如图1所示,则--故障点零序电压;--故障点零序电流;--发电机电动势;--发电机每相对地电容;--发电机以外设备每相对地电容。

上述式中为发电机相电动势,一般在计算时常用发电机额定相电压代替。

综上可见,故障点的零序电压和零序电流值均与成正比,在发电机出线端子附近 ≈1,此时零序电压和零序电流值最大,分别为和。

二、发电机定子单相接地电流允许值大中型发电机中性点多为不接地或者经高阻抗接地方式,定子单相接地故障时并不产生太大的故障电流,所以定子绕组单相接地保护可以只发信号而不直接跳闸,故障机组经负荷转移后才平稳停机。

35kV系统中性点接地电阻及接地变压器设计选型

35kV系统中性点接地电阻及接地变压器设计选型

中性点接地电阻及接地变压器选型方案深圳市华力特电气股份有限公司一、系统设计现状及电容电流计算变电站总共上3台的主变压器,联接组别Y/Δ,额定电压110kV/35kV。

35kV配电系统全部采用电缆线路,根据变电站35kV电缆线路型号及长度计算系统电容电流如下:据乔工介绍:I、II、III段母线对应的电容电流各为Ic=50A,35kV侧共有三段母线,三段母线都采用中性点经电阻接地方式,因此三段母线应考虑并列运行情况则系统总的对地电容电流为IcI+IcII+IcIII =50A+50A+50A=150A考虑以后用电负荷增加和远期发展及变电站其他设备的对地电容电流。

系统总的电容电流取150A*1.2=180A。

二、中性点经电阻接地方式优点变电站35KV系统采用中性点经电阻接地方式的主要目的是限制系统过电压水平和单相接地故障情况下实现快速准确选线。

中性点经电阻接地方式的两个最主要优点即是:(1)有效限制系统各种过电压,特别是对间歇性弧光接地过电压水平的限制;(2)利用大的接地故障电流,解决选线难,达到准确快速选线切除故障线路的目的。

中性点经电阻接地方式特别适用于电缆线路为主的配电网,大型工矿企业、机场、港口、地铁、钢铁等重要电力用户,以及发电厂发电机和厂用电系统。

其主要优点体现在:1)降低工频过电压,非故障相电压升高小于√3倍;2)有效限制间歇性弧光接地过电压;3)消除谐振过电压;降低各种操作过电压;4)可准确判断并及时切除故障线路;5)系统承受过电压水平低,时间短;可适当降低设备的绝缘水平,提高系统设备的使用寿命,具有很好的经济效益。

6)有利于具有优良伏秒特性的氧化锌避雷器MOA的应用,降低雷电过电压水平;适用于系统以后扩容及对地电容电流大范围变化情况,电阻不需要调节;设备简单、可靠,投资少、寿命长。

三、中性点接地电阻选型中性点接地电阻的选型主要依据系统总的电容电流选取。

采用中性点经电阻接地时,电阻值的选取必须根据电网的具体情况,应综合考虑限制过电压倍数,继电保护的灵敏度,对通信的影响,人身安全等因素。

发电机中性点接地方式及作用

发电机中性点接地方式及作用

发电机中性点接地方式及作用随着现代电力系统的发展,发电机的中性点接地方式也越来越多样化。

发电机的中性点接地方式根据电力系统的要求和实际情况选择,以确保系统的安全运行和设备的可靠工作。

本文将介绍几种常见的发电机中性点接地方式及其作用。

1.无中性点接地方式无中性点接地方式是指发电机中性点不接地,即不与任何接地点相连。

这种方式适用于一些特殊的发电机系统,如高压直流输电系统或其他要求无中性点接地的电力系统。

该方式的作用是防止中性点电流的产生,以及减小对系统产生的潮流冲击。

2.直接接地方式直接接地方式是指发电机中性点直接接地。

这种方式适用于小型和中型的发电机系统,一般用于低电压和小容量的发电机组。

直接接地方式的作用是将发电机的中性点电位固定在地电位,避免中性点电位漂移造成的不稳定。

3.高阻抗接地方式高阻抗接地方式是指通过中性点接线电抗或电容将发电机中性点与地相连。

这种方式适用于中型和大型的发电机系统,一般用于额定电压为10kV以上的发电机组。

高阻抗接地方式的作用是限制中性点电流的大小,减小对系统的影响,并增强系统的抗干扰能力。

4.低阻抗接地方式低阻抗接地方式是指通过中性点接线电阻将发电机中性点与地相连。

这种方式适用于大型的发电机系统,一般用于输电系统或大容量的发电机组。

低阻抗接地方式的作用是提供系统的绝对保护,能够及时检测和隔离发电机的接地故障,并快速恢复电力系统的运行。

除了上述几种常见的发电机中性点接地方式,还有一些其他的方式,如星形接地方式、虚地方式等。

每种方式都有其特点和适用范围,选择时需根据具体情况综合考虑。

发电机的中性点接地方式在电力系统中具有重要的作用,它能够保护电力设备和人身安全,减小电力系统的故障和事故发生的概率,提高电力系统的可靠性和稳定性。

总之,发电机的中性点接地方式是电力系统中重要的技术措施,它能够保证系统的安全运行和设备的可靠工作。

各种接地方式具有不同的作用和适用范围,选择时应根据实际情况进行合理选择,并加强对接地方式的监测和维护,以确保电力系统的正常运行。

发电机中性点接地方式选择研究

发电机中性点接地方式选择研究

发电机中性点接地方式选择研究摘要:分析表明,单相接地产生的电容电流会燃烧堆芯。

描述了发电机柱点接地的作用。

了解几种主要的中性接地方式。

为两个主要的接地方式在我国目前使用的,应当考虑所有因素,诸如故障电流、过电压和组成,保护接地,并选择最好的接地方式根据国家和国际经验。

关键词:发电机;中性点接地方式;变压器;消弧线圈;前言因为电力系统的迅速发展,作为电力系统动力的发电机组容量显得十分重要。

接地故障发电机定子绕组的保护问题越来越关心的大容量发电机的出现是由于增加电容电流容量的引擎和定子电流的接地故障,接地故障点进行电容电流发电机中性点运行方式。

1、关于中性点接地方式的演变20世纪70年代初,捷克共和国研究所举行了单相发电机允许漏电的科学实验,漏电电流的规定:允许故障电流和时间长短,如五次试验内发生铁芯二次烧结,就是存在故障的。

1.1直接接地方式当单相接地问题故障时,接地弧过电压最低。

此外,地面保护是最简单的。

但是,大机组的电压水平和容量都大大提高了,即使继电保护由于接地故障电流过大而迅速切断,也会对发电机造成损坏。

1.2经低阻抗的接地方式单相接地电流可能部分受到发电机低阻抗接地操作的限制,但选择其电阻是为了给继电器保护装置提供足够的电源。

故障点接地电流幅值至少为100A。

在这种接地电流下,继电保护可以迅速关闭电机,但铁芯不可避免地会严重烧伤。

1.3不接地的运行方式如果中性点发电机不在地面上运行,发电机应连接到发电机/变压器单元。

在C0电容(包括C0、变压器和电容的电容发生器母线电容C0)电容的影响下,90度相位的电压领先于大多数电容电流。

三相电流之和为零。

单相接地故障时,假设A相为A相:从上式可以得出,计算出300Mw机组的发电参数:发电机u=20kV,电容器C0= 0.224芯,结果为SI = 2.44 A(不含主变压器等容电流)。

或者中性的,只要符合条件,地面接地单相发电机,故障电流发生器中立的方式更加严重,因此这种操作方式不适用于大容量单位,特别是在一些大型发电机以及三峡水利电容的相对较多,例如三个电容电流发生器为30A左右,远远超过目前的安全许可。

发电机中性点用接地电阻设计计算书

发电机中性点用接地电阻设计计算书

发电机中性点用接地电阻设计计算书发电机中性点用接地电阻设计计算书一、发电机中性点接地方式的选择,设计依据发电机定子绕组发生单相接地故障时,接地点流过的电流是发电机本身及其引出回路所连接元件(主母线、厂用分支线、主变压器等)的对地电容电流。

当超过允许值时,将烧坏定子铁芯,进而损坏定子绕组绝缘,引起相间短路,故需要在发电机中性点采取经高电阻接地的措施。

以保护发电机免遭损坏。

表1示发电机接地电流允许值。

发电机额定电压(KV) 6.3 10.5 13.8~15.75 18~20 发电机额定容量(MW)≤50 50_100 125-200 300 表1发电机接地电流允许值二、发电机中性点经高电阻接地设计原则1、接地点阻性电流应大于(1~1.5)倍单相接地总的容性电流,以限制系统过电压不超过2.6倍额定相电压,其中容性电流应以发电机运行回路中出现的最大单相接地电容电流为依据。

2、发生单相接地时。

总的故障电流不宜小于3A,以满足继电保护动作的灵敏度。

3、发生单相接地时,总的故障电流不宜大于(10~15)A,以满足在定子绕组对铁芯发生单相接地时不损坏铁芯。

4、为定子接地保护提供电源,便于检测。

三、发电机电阻器的阻值计算1. 发电机定子绕组单相接地电容电流的计算根据发电机定子绕组的电容:C1=0.1uf发电机额定电压U0=10.5KV,则发电机电容电流为:Ic1=1.732_ωC1U0=1.732_2πfC1U0=1.732_314_0.1_10-6_10500=0.571A 2. 发电机出口电缆头及电缆头至主变低压绕组的单相接地电容电流计算按常规配电网络的经验估计:发电机出口电缆头及电缆头到主变低压绕组的故障电流允许值(A) 4 3 2 1 单相接地电容约为:C2=0.2uf发电机额定电压U0=10.5KV,则发电机电容电流为:Ic2=1.732_ωC2U0=1.732_2πfC2U0=1.732_314_0.2_10-6_10500=1.142A 3. 电缆单相接地电容电流的计算:电缆线总长为10m,其电容电流为: Ic3=0.1U0L=0.1_10.5_0.01=0.01A4. 发生单相接地时流向故障点的总的电容电流为:ΣIC= Ic1+ I c2+Ic3=0.571+1.142+0.01=1.723A从上计算结果可以看出,发电机发生单相短路时,接地电流小于表1规定值.考虑到保护,电流值选取为3A 5. 中性点接地电阻的选取计算: R=U相/I=10500/(1.732_3)=____.8ohm 四、发生单相接地时,总故障电流: I总2=I2+IC2I总=3.46A。

10kV发电机组中性点经电阻接地方式

10kV发电机组中性点经电阻接地方式

中性点经电阻接地方式——适宜于以电缆线路为主配电网的中性点接地方式一、前言三相交流电系统中性点与大地之间电气连接的方式,称为电网中性点接地方式。

中性点接地方式是一个综合性的、系统性的问题,既涉及到电网的安全可靠性、也涉及电网的经济性。

中性点接地方式直接影响到系统设备绝缘水平的选择、系统过电压水平及过电压保护元件的选择、继电保护方式、系统的运行可靠性、通讯干扰等。

在选择电网中性点接地方式时必须进行具体分析、全面考虑。

我国110kV及以上电压等级的电网一般都采用中性点直接接地方式,在中性点直接接地系统中,由于中性点电位固定为地电位,发生单相接地故障时,非故障相的工频电压升高不会超过1.4倍运行相电压;暂态过电压水平也相对较低;故障电流很大继电保护装置能迅速断开故障线路,系统设备承受过电压的时间很短,这样就可以使电网中设备的绝缘水平降低,从而使电网的造价降低。

这里对中性点直接接地系统不做过多的讨论,下面主要讨论6~35kV配电网的接地方式。

配电网中性点的接地方式主要可分为以下三种:●不接地●经消弧线圈接地●经电阻接地自1949年至80年代我国基本上沿用前苏联的规定,6~35KV电网均采用中性点不接地或经消弧线圈(谐振)接地方式。

近10多年来沿海一些大城市经济飞速发展,电网的容量和规模急剧扩大,配电线路逐步实现电缆化,系统电容电急剧增加、特别是近几年大规模城市电网改造,电缆线路逐步代替架空线路,电网结构大大加强。

在电缆线路为主的城市电网中采用不接地或经消弧线圈接地方式,因单相接地过电压烧坏设备的事故概率大大增加,为了解决这一矛盾,许多城市电力部门广泛考察了国外配电网的中性点接地方式,结合本地电网的具体情况,经过充分的分析、研究,发现采用中性点经低电阻接地方式是解决这一矛盾的有效措施,20世纪80年代后期开始在广州、深圳试用、推广,并很快推广到其他城市(如广州、深圳、珠海、上海、北京、天津、厦门、南京、苏州工业园区、无锡、讪头、惠州、顺德、东莞等),同时,也在发电厂,机场、港口、地铁、钢厂、有色金属冶炼厂等行业被广泛采用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

发电机中性点接地装置设计及选型
1. 电容及电容电流计算:
1. 发电机定子绕组三相对地电容C of =0.7242uF ;
2. 10kV 母线长度为260m ,每100m 三相母线电容电流约为0.05A
0.05×2.6=0.13A 即三相对地电容 C ol =0.06829uF
3. 发电机出口至升压主变低压绕组间单相对地等值电容为C 02=0.2uF (经验值);
4. 主变低压侧三相对地电容20470PF 即0.02047 uF
5. 阻容参数:单相电容0.1 uF ,三相为0.3 uF
发电机的三相对地总电容:C =0.7242+0.06829+0.6+0.02047+0.3=1.71296uF
发电机系统电容电流为:
I C =ωCU fx ×103=2πfCU fx ×103=314×1.71296×106-×10.53×103=3.26A
2. 接地电阻值的选择:
接入发电机中性点高电阻的大小,将影响发电机单相接地时健全相暂时过电压值。

按运行机组的耐压值为1.5倍发电机额定电压,则健全相暂时过电压不宜超过2.6倍相电压。

此时中性点接地电阻值为:
Ω==≤-⨯⨯⨯⨯14.1859610
713.15014.32121
fC R π 原边电压:kV U 5.101=
副边电压:V 1.02k U = 变比:0095.0/5
.101.012===N N K 变压器容量:KVA kVA S K I U C 3045.244
.126.35.1011⇒===⨯⨯ (K 1——过负荷系数,查曲线。

按t=1h 选取,1.9≤K 1≤1.4) 变压器低压侧接入电阻值:222
22S PU RK R -=(P ——变压器总损耗,W )
忽略变压器损耗,得接地变二次侧电阻Ω==168.022RK R
电阻器短时通流(60s ): A R U I 345168
.0310022=⨯==
3. 配套选型设备型号及数量:
a. 电阻片型号规格:NGR0.1kV-345A-1h ,数量2台。

b. 单相干式接地变压器DKDC-30kVA/10.5kV/0.1kV :系统最高电压12kV ,额定电压10.5kV ,额
定容量30kVA ,变比和精确等级10.5±2x2.5%/0.1kV ,AN ,数量2台。

c. 电流互感器:LMZJ1-0.5/53*15 200/5,0.5 20VA 布置在接地变二次侧,数量2台。

d. 单相隔离开关 GN19-12/630:系统最高电压12kV ,额定电压10.5kV ,电流630A 配手动操作机
构,数量2台。

e. 冷板外壳,户内,1450X1200X1800mm (参考) ,数量2台。

备注:低压过电压保护设备,用于保护变压器及二次回路,不属于中性点接地装置;从接地变压器至发电机中性点的连接电缆我方不予提供。

4. 执行标准:
DL/T 780-2001 配电系统中性点接地电阻器
GB 50150—1991 电气装置安装工程电气设备交接试验标准
GB 311.1—1997 高压输变电设备的绝缘配合
GB763-90 交流高压电器在长期工作时的发热
GB 311.2-6 高电压试验技术
GB6450 干式电力变压器
GB 4208(93) 外壳防护等级
GB1028—1997 电流互感器
IEC289—1998 相关部分
IEEE32—1972标准 (1991年重新颁布) 相关部分。

相关文档
最新文档